Knowledge (XXG)

Particle shower

Source 📝

743:
other processes. The phenomena which determine the development of the hadronic showers are: hadron production, nuclear deexcitation and pion and muon decays. Neutral pions amount, on average to 1/3 of the produced pions and their energy is dissipated in the form of electromagnetic showers. Another important characteristic of the hadronic shower is that it takes longer to develop than the electromagnetic one. This can be seen by comparing the number of particles present versus depth for pion and electron initiated showers. The longitudinal development of hadronic showers scales with the
45: 1248: 828: 439:). The shower depth increases logarithmically with the energy, while the lateral spread of the shower is mainly due to the multiple scattering of the electrons. Up to the shower maximum the shower is contained in a cylinder with radius < 1 radiation length. Beyond that point electrons are increasingly affected by multiple scattering, and the lateral size scales with the 128:. These two processes (pair production and bremsstrahlung) continue, leading to a cascade of particles of decreasing energy until photons fall below the pair production threshold, and energy losses of electrons other than bremsstrahlung start to dominate. The characteristic amount of matter traversed for these related interactions is called the radiation length 822:
let γ(E,E')dE' be the probability per unit path length for a photon of energy E to produce an electron with energy between E' and E'+dE'. Finally let π(E,E')dE' be the probability per unit path length for an electron of energy E to emit a photon with energy between E' and E'+dE'. The set of integro-differential equations which govern Π and Γ are given by
1243:{\displaystyle {\begin{aligned}{\frac {d\Pi (E,x)}{dx}}&=2\int _{E}^{\infty }\Gamma (u,x)\gamma (u,E)du+\int _{E}^{\infty }\Pi (u,x)\pi (u,u-E)du-\int _{0}^{E}\Pi (E,x)\pi (E,E-u)du\\{\frac {d\Gamma (E,x)}{dx}}&=\int _{E}^{\infty }\Pi (u,x)\pi (u,E)du-\int _{0}^{E}\Gamma (E,x)\gamma (E,u)du.\end{aligned}}} 35:
particle interacting with dense matter. The incoming particle interacts, producing multiple new particles with lesser energy; each of these then interacts, in the same way, a process that continues until many thousands, millions, or even billions of low-energy particles are produced. These are then
821:
A simple model for the cascade theory of electronic showers can be formulated as a set of integro-partial differential equations. Let Π (E,x) dE and Γ(E,x) dE be the number of particles and photons with energy between E and E+dE respectively (here x is the distance along the material). Similarly
742:
The physical processes that cause the propagation of a hadron shower are considerably different from the processes in electromagnetic showers. About half of the incident hadron energy is passed on to additional secondaries. The remainder is consumed in multiparticle production of slow pions and in
182:
is both the mean distance over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung and 7/9 of the mean free path for pair production by a high energy photon. The length of the cascade scales with
621: 303: 808: 437: 833: 471:. The propagation of the photons in the shower causes deviations from Molière radius scaling. However, roughly 95% of the shower are contained laterally in a cylinder with radius 501: 469: 366: 665: 692: 333: 208: 180: 153: 1307:
records the energy of particles by causing them to produce a shower and then measuring the energy deposited as a result. Many large modern detectors have both an
732: 712: 1405:, The structure of ionization showers in air generated by electrons with 1 MeV energy or less, Plasma Sources Sci. Technol. (2014), vol. 23, no. 045001 1355: 512: 1587: 216: 753: 506:
The mean longitudinal profile of the energy deposition in electromagnetic cascades is reasonably well described by a gamma distribution:
1315:, with each designed specially to produce that particular kind of shower and measure the energy of the associated type of particle. 375: 372:(the critical energy can be defined as the energy in which the bremsstrahlung and ionization rates are equal. A rough estimate is 96:
An electromagnetic shower begins when a high-energy electron, positron or photon enters a material. At high energies (above a few
1264:
hit Earth's atmosphere on a regular basis, and they produce showers as they proceed through the atmosphere. It was from these
1304: 1277: 744: 1328: 1360: 1345: 1289: 1292:, have detected the remains of a shower by sampling the energy deposited over a large area on the ground. 1276:
were detected experimentally, and they are used today by a number of experiments as a means of observing
1375: 1371: 57: 1332: 474: 445: 342: 1558: 1506: 1469: 1428: 1324: 1300: 1265: 369: 101: 85: 44: 1548: 105: 28: 1497:
Migdal, A. B (1956). "Bremsstrahlung and Pair Production in Condensed Media at High Energies".
629: 1381: 1350: 1296: 440: 1566: 1514: 1477: 1436: 1365: 336: 20: 670: 311: 186: 158: 131: 109: 1562: 1510: 1473: 1432: 717: 697: 125: 117: 1581: 97: 1570: 1462:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1421:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
1285: 1281: 1530: 124:. High-energy electrons and positrons primarily emit photons, a process called 1339: 1261: 616:{\displaystyle {\frac {dE}{dt}}=E_{0}b{\frac {(bt)^{a-1}e^{-bt}}{\Gamma (a)}}} 1518: 1458:"On the Stopping of Fast Particles and on the Creation of Positive Electrons" 1402: 1482: 1457: 1441: 1416: 56:
are produced by a particle that interacts primarily or exclusively via the
1553: 121: 113: 65: 1327:, an extensive (many kilometres wide) cascade of ionized particles and 77: 73: 61: 32: 298:{\displaystyle X=X_{0}{\frac {\ln(E_{0}/E_{\mathrm {c} })}{\ln 2}},} 803:{\displaystyle \lambda ={\frac {A}{N_{A}\sigma _{\mathrm {abs} }}}} 734:
are parameters to be fitted with Monte Carlo or experimental data.
1253:γ and π are found in for low energies and in for higher energies. 81: 43: 210:; the "shower depth" is approximately determined by the relation 1273: 1269: 108:
are insignificant, photons interact with matter primarily via
1342:(i.e. one of extraterrestrial origin) enters our atmosphere. 432:{\displaystyle E_{\mathrm {c} }=800\,\mathrm {MeV} /(Z+1.2)} 1288:
produced at the peak intensity of the shower; others, like
813:
The lateral shower development does not scale with λ.
1536: 831: 756: 720: 700: 673: 632: 515: 477: 448: 378: 345: 314: 219: 189: 161: 134: 1242: 802: 726: 706: 686: 659: 615: 495: 463: 431: 360: 327: 297: 202: 174: 147: 112:— that is, they convert into an electron- 1384:, a set of collisions between atoms in a solid 8: 1417:"The Cascade Theory of Electronic Showers" 1552: 1481: 1440: 1185: 1180: 1125: 1120: 1074: 1016: 1011: 950: 945: 890: 885: 836: 832: 830: 784: 783: 773: 763: 755: 719: 699: 678: 672: 651: 642: 631: 584: 568: 552: 543: 516: 514: 486: 485: 476: 454: 453: 447: 409: 398: 397: 384: 383: 377: 351: 350: 344: 319: 313: 268: 267: 258: 252: 236: 230: 218: 194: 188: 166: 160: 139: 133: 1356:High Altitude Water Cherenkov Experiment 1284:, have observed the visible atmospheric 1394: 52:There are two basic types of showers. 48:The start of an electromagnetic shower. 16:Extra particles from a particle impact 1531:"Passage of particles through matter" 7: 36:stopped in the matter and absorbed. 1191: 1131: 1126: 1080: 1022: 956: 951: 896: 891: 842: 791: 788: 785: 598: 487: 455: 405: 402: 399: 385: 352: 269: 14: 1535:S. Eidelman; et al. (2004). 496:{\displaystyle 2R_{\mathrm {M} }} 120:or electron in order to conserve 31:produced as the result of a high- 464:{\displaystyle R_{\mathrm {M} }} 361:{\displaystyle E_{\mathrm {c} }} 1571:10.1016/j.physletb.2004.06.001 1224: 1212: 1206: 1194: 1164: 1152: 1146: 1134: 1095: 1083: 1061: 1043: 1037: 1025: 995: 977: 971: 959: 929: 917: 911: 899: 857: 845: 607: 601: 565: 555: 426: 414: 275: 245: 84:), and proceed mostly via the 1: 1588:Experimental particle physics 1456:Bethe, H; Heitler, W (1934). 1366:ATLAS experiment calorimeters 1278:ultra-high-energy cosmic rays 1537:"Review of Particle Physics" 1415:Landau, L; Rumer, G (1938). 80:and other particles made of 1309:electromagnetic calorimeter 1604: 1280:. Some experiments, like 745:nuclear interaction length 694:is the initial energy and 116:pair, interacting with an 27:is a cascade of secondary 1351:MAGIC Cherenkov Telescope 1329:electromagnetic radiation 660:{\displaystyle t=X/X_{0}} 1519:10.1103/PhysRev.103.1811 1361:Pierre Auger Observatory 1346:Telescope Array Project 1290:Haverah Park experiment 92:Electromagnetic showers 54:Electromagnetic showers 1483:10.1098/rspa.1934.0140 1442:10.1098/rspa.1938.0088 1244: 804: 728: 708: 688: 661: 617: 497: 465: 433: 362: 329: 299: 204: 176: 149: 49: 1301:particle accelerators 1299:built at high-energy 1245: 805: 729: 709: 689: 687:{\displaystyle E_{0}} 662: 618: 498: 466: 434: 363: 330: 328:{\displaystyle X_{0}} 300: 205: 203:{\displaystyle X_{0}} 177: 175:{\displaystyle X_{0}} 150: 148:{\displaystyle X_{0}} 58:electromagnetic force 47: 1325:Air shower (physics) 1313:hadronic calorimeter 1303:, a device called a 829: 817:Theoretical analysis 754: 718: 698: 671: 630: 513: 475: 446: 376: 343: 312: 217: 187: 159: 132: 102:photoelectric effect 86:strong nuclear force 1563:2004PhLB..592....1P 1511:1956PhRv..103.1811M 1474:1934RSPSA.146...83B 1433:1938RSPSA.166..213L 1190: 1130: 1021: 955: 895: 339:of the matter, and 1297:particle detectors 1240: 1238: 1176: 1116: 1007: 941: 881: 800: 724: 704: 684: 657: 613: 493: 461: 429: 358: 325: 295: 200: 172: 145: 106:Compton scattering 50: 1541:Physics Letters B 1382:Collision cascade 1107: 869: 798: 727:{\displaystyle b} 707:{\displaystyle a} 611: 534: 290: 1595: 1574: 1556: 1554:astro-ph/0406663 1523: 1522: 1505:(6): 1811–1820. 1494: 1488: 1487: 1485: 1453: 1447: 1446: 1444: 1427:(925): 213–228. 1412: 1406: 1399: 1370:CMS experiment, 1331:produced in the 1249: 1247: 1246: 1241: 1239: 1189: 1184: 1129: 1124: 1108: 1106: 1098: 1075: 1020: 1015: 954: 949: 894: 889: 870: 868: 860: 837: 809: 807: 806: 801: 799: 797: 796: 795: 794: 778: 777: 764: 738:Hadronic showers 733: 731: 730: 725: 713: 711: 710: 705: 693: 691: 690: 685: 683: 682: 666: 664: 663: 658: 656: 655: 646: 622: 620: 619: 614: 612: 610: 596: 595: 594: 579: 578: 553: 548: 547: 535: 533: 525: 517: 502: 500: 499: 494: 492: 491: 490: 470: 468: 467: 462: 460: 459: 458: 438: 436: 435: 430: 413: 408: 390: 389: 388: 367: 365: 364: 359: 357: 356: 355: 337:radiation length 334: 332: 331: 326: 324: 323: 304: 302: 301: 296: 291: 289: 278: 274: 273: 272: 262: 257: 256: 237: 235: 234: 209: 207: 206: 201: 199: 198: 181: 179: 178: 173: 171: 170: 154: 152: 151: 146: 144: 143: 100:), in which the 72:are produced by 70:Hadronic showers 21:particle physics 1603: 1602: 1598: 1597: 1596: 1594: 1593: 1592: 1578: 1577: 1534: 1527: 1526: 1499:Physical Review 1496: 1495: 1491: 1468:(856): 83–112. 1455: 1454: 1450: 1414: 1413: 1409: 1400: 1396: 1391: 1372:electromagnetic 1321: 1268:that the first 1259: 1237: 1236: 1109: 1099: 1076: 1071: 1070: 871: 861: 838: 827: 826: 819: 779: 769: 768: 752: 751: 740: 716: 715: 696: 695: 674: 669: 668: 647: 628: 627: 597: 580: 564: 554: 539: 526: 518: 511: 510: 481: 473: 472: 449: 444: 443: 379: 374: 373: 370:critical energy 346: 341: 340: 315: 310: 309: 279: 263: 248: 238: 226: 215: 214: 190: 185: 184: 162: 157: 156: 135: 130: 129: 110:pair production 94: 42: 17: 12: 11: 5: 1601: 1599: 1591: 1590: 1580: 1579: 1576: 1575: 1525: 1524: 1489: 1448: 1407: 1393: 1392: 1390: 1387: 1386: 1385: 1379: 1368: 1363: 1358: 1353: 1348: 1343: 1320: 1317: 1258: 1255: 1251: 1250: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1188: 1183: 1179: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1128: 1123: 1119: 1115: 1112: 1110: 1105: 1102: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1073: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1019: 1014: 1010: 1006: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 953: 948: 944: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 893: 888: 884: 880: 877: 874: 872: 867: 864: 859: 856: 853: 850: 847: 844: 841: 835: 834: 818: 815: 811: 810: 793: 790: 787: 782: 776: 772: 767: 762: 759: 739: 736: 723: 703: 681: 677: 654: 650: 645: 641: 638: 635: 624: 623: 609: 606: 603: 600: 593: 590: 587: 583: 577: 574: 571: 567: 563: 560: 557: 551: 546: 542: 538: 532: 529: 524: 521: 489: 484: 480: 457: 452: 441:Molière radius 428: 425: 422: 419: 416: 412: 407: 404: 401: 396: 393: 387: 382: 354: 349: 322: 318: 306: 305: 294: 288: 285: 282: 277: 271: 266: 261: 255: 251: 247: 244: 241: 233: 229: 225: 222: 197: 193: 169: 165: 142: 138: 126:bremsstrahlung 118:atomic nucleus 93: 90: 41: 38: 15: 13: 10: 9: 6: 4: 3: 2: 1600: 1589: 1586: 1585: 1583: 1572: 1568: 1564: 1560: 1555: 1550: 1546: 1542: 1538: 1532: 1529: 1528: 1520: 1516: 1512: 1508: 1504: 1500: 1493: 1490: 1484: 1479: 1475: 1471: 1467: 1463: 1459: 1452: 1449: 1443: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1408: 1404: 1398: 1395: 1388: 1383: 1380: 1377: 1373: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1341: 1338: 1334: 1330: 1326: 1323: 1322: 1318: 1316: 1314: 1310: 1306: 1302: 1298: 1293: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1256: 1254: 1233: 1230: 1227: 1221: 1218: 1215: 1209: 1203: 1200: 1197: 1186: 1181: 1177: 1173: 1170: 1167: 1161: 1158: 1155: 1149: 1143: 1140: 1137: 1121: 1117: 1113: 1111: 1103: 1100: 1092: 1089: 1086: 1077: 1067: 1064: 1058: 1055: 1052: 1049: 1046: 1040: 1034: 1031: 1028: 1017: 1012: 1008: 1004: 1001: 998: 992: 989: 986: 983: 980: 974: 968: 965: 962: 946: 942: 938: 935: 932: 926: 923: 920: 914: 908: 905: 902: 886: 882: 878: 875: 873: 865: 862: 854: 851: 848: 839: 825: 824: 823: 816: 814: 780: 774: 770: 765: 760: 757: 750: 749: 748: 746: 737: 735: 721: 701: 679: 675: 652: 648: 643: 639: 636: 633: 604: 591: 588: 585: 581: 575: 572: 569: 561: 558: 549: 544: 540: 536: 530: 527: 522: 519: 509: 508: 507: 504: 482: 478: 450: 442: 423: 420: 417: 410: 394: 391: 380: 371: 347: 338: 320: 316: 292: 286: 283: 280: 264: 259: 253: 249: 242: 239: 231: 227: 223: 220: 213: 212: 211: 195: 191: 167: 163: 140: 136: 127: 123: 119: 115: 111: 107: 103: 99: 91: 89: 87: 83: 79: 75: 71: 67: 63: 59: 55: 46: 39: 37: 34: 30: 26: 22: 1547:(1–4): 1–5. 1544: 1540: 1502: 1498: 1492: 1465: 1461: 1451: 1424: 1420: 1410: 1397: 1378:calorimeters 1336: 1312: 1308: 1294: 1286:fluorescence 1260: 1252: 820: 812: 741: 625: 505: 307: 95: 69: 60:, usually a 53: 51: 24: 18: 1305:calorimeter 1266:air showers 1262:Cosmic rays 1401:Köhn, C., 1389:References 1340:cosmic ray 1333:atmosphere 1403:Ebert, U. 1282:Fly's Eye 1210:γ 1192:Γ 1178:∫ 1174:− 1150:π 1132:Π 1127:∞ 1118:∫ 1081:Γ 1056:− 1041:π 1023:Π 1009:∫ 1005:− 990:− 975:π 957:Π 952:∞ 943:∫ 915:γ 897:Γ 892:∞ 883:∫ 843:Π 781:σ 758:λ 599:Γ 586:− 573:− 284:⁡ 243:⁡ 29:particles 1582:Category 1376:hadronic 1319:See also 1257:Examples 122:momentum 114:positron 78:nucleons 66:electron 1559:Bibcode 1533:, from 1507:Bibcode 1470:Bibcode 1429:Bibcode 1337:primary 1335:when a 368:is the 335:is the 74:hadrons 1311:and a 626:where 308:where 82:quarks 76:(i.e. 62:photon 33:energy 25:shower 1549:arXiv 1274:pions 1270:muons 40:Types 1374:and 1272:and 714:and 104:and 23:, a 1567:doi 1545:592 1515:doi 1503:103 1478:doi 1466:146 1437:doi 1425:166 1295:In 424:1.2 395:800 98:MeV 68:. 64:or 19:In 1584:: 1565:. 1557:. 1543:. 1539:. 1513:. 1501:. 1476:. 1464:. 1460:. 1435:. 1423:. 1419:. 747:: 667:, 503:. 281:ln 240:ln 155:. 88:. 1573:. 1569:: 1561:: 1551:: 1521:. 1517:: 1509:: 1486:. 1480:: 1472:: 1445:. 1439:: 1431:: 1234:. 1231:u 1228:d 1225:) 1222:u 1219:, 1216:E 1213:( 1207:) 1204:x 1201:, 1198:E 1195:( 1187:E 1182:0 1171:u 1168:d 1165:) 1162:E 1159:, 1156:u 1153:( 1147:) 1144:x 1141:, 1138:u 1135:( 1122:E 1114:= 1104:x 1101:d 1096:) 1093:x 1090:, 1087:E 1084:( 1078:d 1068:u 1065:d 1062:) 1059:u 1053:E 1050:, 1047:E 1044:( 1038:) 1035:x 1032:, 1029:E 1026:( 1018:E 1013:0 1002:u 999:d 996:) 993:E 987:u 984:, 981:u 978:( 972:) 969:x 966:, 963:u 960:( 947:E 939:+ 936:u 933:d 930:) 927:E 924:, 921:u 918:( 912:) 909:x 906:, 903:u 900:( 887:E 879:2 876:= 866:x 863:d 858:) 855:x 852:, 849:E 846:( 840:d 792:s 789:b 786:a 775:A 771:N 766:A 761:= 722:b 702:a 680:0 676:E 653:0 649:X 644:/ 640:X 637:= 634:t 608:) 605:a 602:( 592:t 589:b 582:e 576:1 570:a 566:) 562:t 559:b 556:( 550:b 545:0 541:E 537:= 531:t 528:d 523:E 520:d 488:M 483:R 479:2 456:M 451:R 427:) 421:+ 418:Z 415:( 411:/ 406:V 403:e 400:M 392:= 386:c 381:E 353:c 348:E 321:0 317:X 293:, 287:2 276:) 270:c 265:E 260:/ 254:0 250:E 246:( 232:0 228:X 224:= 221:X 196:0 192:X 168:0 164:X 141:0 137:X

Index

particle physics
particles
energy

electromagnetic force
photon
electron
hadrons
nucleons
quarks
strong nuclear force
MeV
photoelectric effect
Compton scattering
pair production
positron
atomic nucleus
momentum
bremsstrahlung
radiation length
critical energy
Molière radius
nuclear interaction length
Cosmic rays
air showers
muons
pions
ultra-high-energy cosmic rays
Fly's Eye
fluorescence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.