Knowledge (XXG)

Pathophysiology of Parkinson's disease

Source 📝

461: 206: 379: 259:). PINK1 is a protein normally transported into the mitochondrion, but can also accumulate on the surface of impaired mitochondria. Accumulated PINK1 then recruits Parkin; Parkin initiates the breakdown of dysfunctional mitochondria, a mechanism that acts as a "quality control". In Parkinson's disease, the genes coding PINK1 and Parkin are thought to be mutated so as to impair the ability of these proteins to breakdown dysfunctional mitochondria, leading to abnormal mitochondrial function and 233: 97: 323: 29: 346:. Microglia actively survey their environment and change their cell morphology significantly in response to neural injury. Acute inflammation in the brain is typically characterized by rapid activation of microglia. During this period, there is no peripheral immune response. Over time, however, chronic inflammation causes the degradation of tissue and of the blood–brain barrier. During this time, microglia generate 492:, to motor neurons in the spinal cord. However, when a significant percentage of the motor neurons die (about 50-60%), this decreases dopamine levels by up to 80%. This inhibits the ability for neurons to generate and transmit a signal. This transmission inhibition ultimately causes the characteristic 274:
are highly reactive molecules that contain oxygen and can disrupt functions within the mitochondria and the rest of the cell. With increasing age, mitochondria lose their ability to remove ROS yet still maintain their production of ROS, causing an increase in net production of ROS and eventually cell
217:, is a mechanism by which inner components of the cell are broken down and recycled for use. Autophagy has been shown to play a role in brain health, helping to regulate cellular function. Disruption of the autophagy mechanism can lead to several different types of diseases like Parkinson's disease. 422:
are thought to be dysregulated in neurodegenerative diseases. The interaction between the VEGF protein and its receptors leads to cell proliferation, but is believed to be disrupted in Parkinson's disease and Alzheimer's disease. This then causes cells to stop growing and therefore, prevents new
158:
This mechanism is substantiated by the facts that α-synuclein lacks toxicity when unable to form aggregates; that heat-shock proteins, which assist in refolding proteins susceptible to aggregation, beneficially affect PD when overexpressed; and that reagents which neutralize aggregated species
365:
factors. Microglia are usually in a resting state (M2), but in Parkinson's disease can enter M1 due to the presence of α-synuclein aggregates. The M1 microglia release pro-inflammatory factors which can cause motor neurons to die. In this case, dying cells can release factors to increase the
120:(shown to left) in neurons. Traditionally, Lewy bodies were thought to be the main cause of cell death in Parkinson's disease; however, more recent studies suggest that Lewy bodies lead to other effects that cause cell death. Regardless, Lewy bodies are widely recognized as a 302:
appears to have a role in mediating separate pathological events that together ultimately result in cell death in PD. Oxidative stress leading to cell death may be the common denominator underlying multiple processes. Oxidative stress causes
447:
the brain. This mechanism is also known as vascular leakiness, where capillary degeneration leads to blood and blood proteins "leaking" into the brain. Vascular leakiness can eventually cause neurons to alter their function and shift towards
442:
in endothelial cells in the BBB help prevent large or harmful molecules from entering the brain by regulating the flow of nutrients to the brain. However, as gap junctions break down, plasma proteins are able to enter in
263:, and eventually cell death. Mitochondrial DNA (mtDNA) mutations have also been shown to accumulate with age indicating that susceptibility to this mechanism of neuronal death increases with age. 1461:
Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N (2006). "Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells".
334:, is generally understood for neurodegenerative diseases, however, specific mechanisms are not completely characterized for PD. One major cell type involved in neuroinflammation is the 1121:
Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (December 1999). "Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson's disease".
685:
Schaser AJ, Osterberg VR, Dent SE, Stackhouse TL, Wakeham CM, Boutros SW, Weston LJ, Owen N, Weissman TA, Luna E, Raber J, Luk KC, McCullough AK, Woltjer RL, Unni VK (Jul 2019).
438:
Without new capillary formation, the existing capillaries break down and cells start to dissociate from each other. This in turn leads to the breakdown of gap junctions.
68:
in PD; however, not all of them are well understood. Five proposed major mechanisms for neuronal death in Parkinson's Disease include protein aggregation in
1335:"Signaling through the vascular endothelial growth factor receptor VEGFR-2 protects hippocampal neurons from mitochondrial dysfunction and oxidative stress" 415: 1411:"Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood-brain barrier" 174: 1572: 402:. In neurodegenerative diseases, BBB breakdown has been measured and identified in specific regions of the brain, including the 1577: 244:
organelle. In Parkinson's disease, mitochondrial function is disrupted, inhibiting energy production and resulting in death.
1148:
Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (April 2007). "Oxidative damage in nucleic acids and Parkinson's disease".
1382:
Almodovar CR, Lambrechts D, Mazzone M, Carmeliet P (2009). "Role and Therapeutic Potential of VEGF in the Nervous System".
460: 643:"DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms" 515:"Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention" 182: 104:
The first major proposed cause of neuronal death in Parkinson's disease is the bundling, or oligomerization, of
1040:
Jomova K, Vondrakova D, Lawson M, Valko M (2010). "Metals, oxidative stress and neurodegenerative disorders".
803:
Hu Z, Yang B, Mo X, Xiao H (2014). "Mechanism and Regulation of Autophagy and Its Role in Neuronal Diseases".
687:"Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders" 387: 85: 189:
reduces its nuclear levels leading to decreased DNA repair, increased DNA double-strand breaks and increased
411: 347: 271: 267: 247:
The mechanism behind mitochondrial dysfunction in Parkinson's disease is hypothesized to be centered in the
485: 390:(BBB). The BBB has three cell types which tightly regulate the flow of molecules in and out of the brain: 343: 112:
has increased presence in the brains of Parkinson's Disease patients and, as α-synuclein is insoluble, it
58: 1002:
Lin MT, Beal MF (2006). "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases".
283: 190: 170: 444: 339: 260: 378: 181:. Alpha-synuclein binds to breaks in double-stranded DNA and facilitates the DNA repair process of 266:
Another mitochondrial-related mechanism for cell death in Parkinson's disease is the generation of
240:
The third major proposed cause of cell death in Parkinson's disease involves the energy-generating
113: 410:
in Alzheimer's disease. Protein aggregates or cytokines from neuroinflammation may interfere with
205: 28: 139:; patients at this stage are asymptomatic. As the disease progresses, Lewy bodies develop in the 839:"Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases" 431:. Cell receptor disruption can also affect the ability for cells to adhere to one another with 232: 1548: 1521: 1440: 1364: 1312: 1227: 1175: 1130: 1103: 1019: 979: 928: 870: 716: 664: 623: 544: 493: 432: 367: 362: 331: 136: 132: 81: 1511: 1501: 1470: 1430: 1422: 1391: 1354: 1346: 1302: 1294: 1258: 1217: 1209: 1165: 1157: 1093: 1083: 1049: 1011: 969: 959: 918: 908: 860: 850: 812: 783: 750: 706: 698: 654: 613: 605: 574: 534: 526: 489: 477: 469: 403: 308: 299: 295: 140: 287: 252: 162: 109: 96: 357:
are known to have two major states: M1, a state in which cells are activated and secrete
220:
Autophagy dysfunction in Parkinson's disease has also been shown to lead to dysregulated
1350: 1283:"Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders" 1516: 1489: 1435: 1410: 1359: 1334: 1307: 1282: 1222: 1197: 1098: 1071: 974: 948:"Parkin is recruited selectively to impaired mitochondria and promotes their autophagy" 947: 923: 896: 865: 838: 711: 686: 618: 593: 539: 514: 419: 128: 641:
Abugable AA, Morris JL, Palminha NM, Zaksauskaite R, Ray S, El-Khamisy SF (Sep 2019).
322: 1566: 770:
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Ɓos MJ (2014).
350:
and release signals to recruit peripheral immune cells for an inflammatory response.
304: 279: 788: 771: 481: 439: 428: 358: 241: 77: 255:
complex, having this been shown to drive autophagy of mitochondria (also known as
1426: 1263: 1246: 913: 659: 642: 609: 407: 391: 117: 1395: 1213: 897:"The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson's Disease" 702: 213:
The second major proposed mechanism for neuronal death in Parkinson's disease,
1088: 1053: 816: 578: 530: 330:
The fourth proposed major mechanism of neuronal death in Parkinson's Disease,
166: 185:. It was suggested that cytoplasmic aggregation of alpha-synuclein to form 449: 424: 399: 354: 335: 256: 221: 214: 186: 152: 148: 121: 73: 69: 65: 47: 1552: 1525: 1506: 1444: 1368: 1316: 1247:"The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders" 1231: 1179: 1134: 1107: 1023: 983: 932: 874: 720: 668: 627: 548: 57:
as a result of changes in biological activity in the brain with respect to
1409:
Förster C, Burek M, Romero IA, Weksler B, Couraud P, Drenckhahn D (2008).
964: 739:"Role for nanomaterial-autophagy interaction in neurodegenerative disease" 386:
The fifth proposed major mechanism for cell death is the breakdown of the
855: 473: 395: 291: 144: 51: 36:
A brain without and with Parkinson's Disease compared in Substantia Nigra
1015: 105: 1474: 1161: 755: 738: 565:
Schapira AH (2009). "Etiology and Pathogenesis of Parkinson Disease".
1170: 194: 178: 62: 54: 1298: 772:"Autophagy and apoptosis dysfunction in neurodegenerative disorders" 361:
factors; and M2, a state in which cells are deactivated and secrete
278:
As reviewed by Puspita et al. studies have demonstrated that in the
1072:"Oxidative stress and cellular pathologies in Parkinson's disease" 459: 377: 321: 248: 236:
A simplified illustration of energy production in a mitochondrion.
231: 204: 159:
protect neurons in cellular models of α-synuclein overexpression.
95: 468:
Dopaminergic neurons are the most abundant type of neuron in the
1539:
Barnett MW, Larkman PM, Larkman (2007). "The action potential".
488:. The activated motor neurons then transmit their signals, via 496:
with symptoms such as hunched and slowed walking or tremors.
472:, a part of the brain regulating motor control and learning. 1196:
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010).
311:
of PD patients and may lead to nigral neuronal cell death.
382:
An image depicting blood–brain barrier shape and function.
1198:"Mechanisms Underlying Inflammation in Neurodegeneration" 169:
and Parkinson’s disease. Alpha-synuclein activates ATM (
1488:
Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009).
307:. Such damage is increased in the mitochondria of the 414:and alter their function in the BBB. Most notably, 21: 1456: 1454: 1276: 1274: 890: 888: 886: 884: 88:(BBB) breakdown resulting in vascular leakiness. 560: 558: 370:which causes continually increasing cell death. 61:(PD). There are several proposed mechanisms for 1065: 1063: 1035: 1033: 946:Narendra D, Tanaka A, Suen D, Youle RJ (2008). 326:Microglia(green) interacting with neurons(red). 1191: 1189: 1070:Puspita L, Chung SY, Shim JW (November 2017). 294:levels are likely involved in contributing to 732: 730: 680: 678: 8: 1328: 1326: 997: 995: 993: 832: 830: 828: 826: 18: 1515: 1505: 1434: 1358: 1306: 1262: 1221: 1169: 1097: 1087: 973: 963: 922: 912: 864: 854: 787: 754: 710: 658: 617: 538: 366:activation of M1 microglia, leading to a 165:appears to be a key link between reduced 1490:"Calcium signaling in neurodegeneration" 505: 44:pathophysiology of Parkinson's disease 464:An image depicting Parkinsonian gait. 7: 594:"α-Synuclein in Parkinson's disease" 1351:10.1016/j.freeradbiomed.2013.05.036 416:vascular endothelial growth factor 338:. Microglia are recognized as the 14: 1339:Free Radical Biology and Medicine 480:which modulates the activity of 209:An image illustrating Autophagy. 127:Lewy bodies first appear in the 100:A brain tissue with Lewy bodies. 76:, changes in cell metabolism or 27: 789:10.1016/j.pneurobio.2013.10.004 513:Tansey MG, Goldberg MS (2010). 124:marker of Parkinson's disease. 1463:Journal of Cellular Physiology 22:Neuronal Death in the PD brain 1: 737:Stern ST, Johnson DN (2008). 598:Cold Spring Harb Perspect Med 1427:10.1113/jphysiol.2007.146852 1264:10.1016/j.neuron.2008.01.003 914:10.1016/j.neuron.2014.12.007 895:Pickrell A, Youle R (2015). 660:10.1016/j.dnarep.2019.102669 952:The Journal of Cell Biology 610:10.1101/cshperspect.a009399 592:Stefanis, Leonidas (2012). 406:in Parkinson's disease and 1594: 1396:10.1152/physrev.00031.2008 1333:Hao T, Rockwell P (2013). 1214:10.1016/j.cell.2010.02.016 703:10.1038/s41598-019-47227-z 228:Changes in cell metabolism 183:non-homologous end joining 1415:The Journal of Physiology 1089:10.1186/s13041-017-0340-9 1054:10.1007/s11010-010-0563-x 817:10.1007/s12035-014-8921-4 579:10.1016/j.ncl.2009.04.004 531:10.1016/j.nbd.2009.11.004 35: 26: 843:Human Molecular Genetics 837:Chen H, Chan DC (2009). 776:Progress in Neurobiology 452:behavior or cell death. 298:as well as PD symptoms. 222:mitochondria degradation 519:Neurobiology of Disease 348:reactive oxygen species 268:reactive oxygen species 1507:10.1186/1750-1326-4-20 805:Molecular Neurobiology 486:central nervous system 465: 383: 368:positive feedback loop 344:central nervous system 327: 237: 210: 101: 1578:Programmed cell death 1384:Physiological Reviews 965:10.1083/jcb.200809125 463: 381: 325: 284:endoplasmic reticulum 235: 208: 191:programmed cell death 171:ataxia-telangiectasia 99: 1281:Zlokovic BV (2011). 1245:Zlokovic BV (2008). 456:Impact on locomotion 445:extracellular matrix 305:oxidative DNA damage 201:Autophagy disruption 1573:Parkinson's disease 1016:10.1038/nature05292 388:blood–brain barrier 340:innate immune cells 92:Protein aggregation 86:blood–brain barrier 59:Parkinson's disease 856:10.1093/hmg/ddp326 647:DNA Repair (Amst.) 567:Neurologic Clinics 466: 433:adherens junctions 384: 328: 238: 211: 173:mutated), a major 102: 1475:10.1002/jcp.20647 1162:10.1002/jnr.21191 1010:(7113): 787–795. 849:(R2): R169–R176. 756:10.4161/auto.7142 494:Parkinsonian gait 392:endothelial cells 363:anti-inflammatory 332:neuroinflammation 318:Neuroinflammation 177:repair signaling 137:pontine tegmentum 133:medulla oblongata 82:neuroinflammation 40: 39: 16:Medical condition 1585: 1557: 1556: 1536: 1530: 1529: 1519: 1509: 1494:Mol Neurodegener 1485: 1479: 1478: 1458: 1449: 1448: 1438: 1421:(7): 1937–1949. 1406: 1400: 1399: 1379: 1373: 1372: 1362: 1330: 1321: 1320: 1310: 1287:Nat Rev Neurosci 1278: 1269: 1268: 1266: 1242: 1236: 1235: 1225: 1193: 1184: 1183: 1173: 1150:J. Neurosci. Res 1145: 1139: 1138: 1118: 1112: 1111: 1101: 1091: 1067: 1058: 1057: 1042:Mol Cell Biochem 1037: 1028: 1027: 999: 988: 987: 977: 967: 943: 937: 936: 926: 916: 892: 879: 878: 868: 858: 834: 821: 820: 811:(3): 1190–1209. 800: 794: 793: 791: 767: 761: 760: 758: 749:(8): 1097–1100. 734: 725: 724: 714: 682: 673: 672: 662: 638: 632: 631: 621: 589: 583: 582: 562: 553: 552: 542: 510: 490:action potential 478:neurotransmitter 470:substantia nigra 404:substantia nigra 359:pro-inflammatory 309:substantia nigra 300:Oxidative stress 296:oxidative stress 141:substantia nigra 72:, disruption of 31: 19: 1593: 1592: 1588: 1587: 1586: 1584: 1583: 1582: 1563: 1562: 1561: 1560: 1538: 1537: 1533: 1487: 1486: 1482: 1460: 1459: 1452: 1408: 1407: 1403: 1381: 1380: 1376: 1332: 1331: 1324: 1299:10.1038/nrn3114 1293:(12): 723–738. 1280: 1279: 1272: 1244: 1243: 1239: 1195: 1194: 1187: 1147: 1146: 1142: 1120: 1119: 1115: 1069: 1068: 1061: 1048:(1–2): 91–104. 1039: 1038: 1031: 1001: 1000: 991: 945: 944: 940: 894: 893: 882: 836: 835: 824: 802: 801: 797: 769: 768: 764: 736: 735: 728: 684: 683: 676: 640: 639: 635: 591: 590: 586: 564: 563: 556: 512: 511: 507: 502: 458: 376: 320: 314: 288:alpha-synuclein 230: 203: 163:Alpha-synuclein 143:, areas of the 110:alpha-synuclein 94: 17: 12: 11: 5: 1591: 1589: 1581: 1580: 1575: 1565: 1564: 1559: 1558: 1531: 1480: 1469:(1): 123–132. 1450: 1401: 1390:(2): 607–648. 1374: 1322: 1270: 1257:(2): 178–201. 1237: 1208:(6): 918–934. 1185: 1140: 1113: 1059: 1029: 989: 958:(5): 795–803. 938: 907:(2): 257–273. 880: 822: 795: 762: 726: 674: 633: 604:(2): a009399. 584: 573:(3): 583–603. 554: 525:(3): 510–518. 504: 503: 501: 498: 457: 454: 427:formation via 420:VEGF receptors 412:cell receptors 375: 372: 319: 316: 229: 226: 202: 199: 129:olfactory bulb 108:. The protein 93: 90: 38: 37: 33: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1590: 1579: 1576: 1574: 1571: 1570: 1568: 1554: 1550: 1546: 1542: 1535: 1532: 1527: 1523: 1518: 1513: 1508: 1503: 1499: 1495: 1491: 1484: 1481: 1476: 1472: 1468: 1464: 1457: 1455: 1451: 1446: 1442: 1437: 1432: 1428: 1424: 1420: 1416: 1412: 1405: 1402: 1397: 1393: 1389: 1385: 1378: 1375: 1370: 1366: 1361: 1356: 1352: 1348: 1344: 1340: 1336: 1329: 1327: 1323: 1318: 1314: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1275: 1271: 1265: 1260: 1256: 1252: 1248: 1241: 1238: 1233: 1229: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1192: 1190: 1186: 1181: 1177: 1172: 1167: 1163: 1159: 1156:(5): 919–34. 1155: 1151: 1144: 1141: 1136: 1132: 1128: 1124: 1117: 1114: 1109: 1105: 1100: 1095: 1090: 1085: 1081: 1077: 1073: 1066: 1064: 1060: 1055: 1051: 1047: 1043: 1036: 1034: 1030: 1025: 1021: 1017: 1013: 1009: 1005: 998: 996: 994: 990: 985: 981: 976: 971: 966: 961: 957: 953: 949: 942: 939: 934: 930: 925: 920: 915: 910: 906: 902: 898: 891: 889: 887: 885: 881: 876: 872: 867: 862: 857: 852: 848: 844: 840: 833: 831: 829: 827: 823: 818: 814: 810: 806: 799: 796: 790: 785: 781: 777: 773: 766: 763: 757: 752: 748: 744: 740: 733: 731: 727: 722: 718: 713: 708: 704: 700: 696: 692: 688: 681: 679: 675: 670: 666: 661: 656: 652: 648: 644: 637: 634: 629: 625: 620: 615: 611: 607: 603: 599: 595: 588: 585: 580: 576: 572: 568: 561: 559: 555: 550: 546: 541: 536: 532: 528: 524: 520: 516: 509: 506: 499: 497: 495: 491: 487: 483: 482:motor neurons 479: 475: 471: 462: 455: 453: 451: 446: 441: 440:Gap junctions 436: 434: 430: 426: 421: 417: 413: 409: 405: 401: 397: 393: 389: 380: 374:BBB breakdown 373: 371: 369: 364: 360: 356: 353:In addition, 351: 349: 345: 341: 337: 333: 324: 317: 315: 312: 310: 306: 301: 297: 293: 289: 285: 281: 276: 273: 269: 264: 262: 258: 254: 250: 245: 243: 242:mitochondrion 234: 227: 225: 223: 218: 216: 207: 200: 198: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 154: 151:, and in the 150: 146: 142: 138: 134: 130: 125: 123: 119: 115: 111: 107: 98: 91: 89: 87: 83: 79: 78:mitochondrial 75: 71: 67: 64: 60: 56: 53: 49: 45: 34: 30: 25: 20: 1547:(3): 192–7. 1544: 1541:Pract Neurol 1540: 1534: 1497: 1493: 1483: 1466: 1462: 1418: 1414: 1404: 1387: 1383: 1377: 1342: 1338: 1290: 1286: 1254: 1250: 1240: 1205: 1201: 1153: 1149: 1143: 1129:(6): 920–4. 1126: 1122: 1116: 1079: 1075: 1045: 1041: 1007: 1003: 955: 951: 941: 904: 900: 846: 842: 808: 804: 798: 779: 775: 765: 746: 742: 697:(1): 10919. 694: 690: 650: 646: 636: 601: 597: 587: 570: 566: 522: 518: 508: 467: 437: 429:angiogenesis 385: 352: 329: 313: 280:mitochondria 277: 265: 246: 239: 219: 212: 161: 157: 126: 122:pathological 103: 52:dopaminergic 43: 41: 1345:: 421–431. 1123:Ann. Neurol 418:(VEGF) and 408:hippocampus 187:Lewy bodies 118:Lewy bodies 70:Lewy bodies 1567:Categories 653:: 102669. 500:References 400:astrocytes 261:morphology 175:DNA damage 167:DNA repair 147:and basal 114:aggregates 80:function, 1500:(1): 20. 1171:2324/8296 1082:(1): 53. 1076:Mol Brain 782:: 24–49. 743:Autophagy 450:apoptotic 425:capillary 396:pericytes 355:microglia 336:microglia 257:mitophagy 215:autophagy 153:neocortex 149:forebrain 74:autophagy 1553:17515599 1526:19419557 1445:18258663 1369:23732519 1317:22048062 1232:20303880 1180:17279544 1135:10589547 1108:29183391 1024:17051205 984:19029340 933:25611507 875:19808793 721:31358782 691:Sci. Rep 669:31331820 628:22355802 549:19913097 474:Dopamine 292:dopamine 282:and the 145:midbrain 116:to form 106:proteins 63:neuronal 1517:2689218 1436:2375735 1360:3756493 1308:4036520 1223:2873093 1099:5706368 975:2592826 924:4764997 866:2758711 712:6662836 619:3281589 540:2823829 484:in the 342:of the 275:death. 270:(ROS). 195:neurons 55:neurons 1551:  1524:  1514:  1443:  1433:  1367:  1357:  1315:  1305:  1251:Neuron 1230:  1220:  1178:  1133:  1106:  1096:  1022:  1004:Nature 982:  972:  931:  921:  901:Neuron 873:  863:  719:  709:  667:  626:  616:  547:  537:  398:, and 253:Parkin 179:kinase 135:, and 84:, and 476:is a 249:PINK1 66:death 48:death 1549:PMID 1522:PMID 1441:PMID 1365:PMID 1313:PMID 1228:PMID 1202:Cell 1176:PMID 1131:PMID 1104:PMID 1020:PMID 980:PMID 929:PMID 871:PMID 717:PMID 665:PMID 624:PMID 545:PMID 290:and 251:and 42:The 1512:PMC 1502:doi 1471:doi 1467:208 1431:PMC 1423:doi 1419:586 1392:doi 1355:PMC 1347:doi 1303:PMC 1295:doi 1259:doi 1218:PMC 1210:doi 1206:140 1166:hdl 1158:doi 1094:PMC 1084:doi 1050:doi 1046:345 1012:doi 1008:443 970:PMC 960:doi 956:183 919:PMC 909:doi 861:PMC 851:doi 813:doi 784:doi 780:112 751:doi 707:PMC 699:doi 655:doi 614:PMC 606:doi 575:doi 535:PMC 527:doi 272:ROS 193:of 50:of 46:is 1569:: 1543:. 1520:. 1510:. 1496:. 1492:. 1465:. 1453:^ 1439:. 1429:. 1417:. 1413:. 1388:89 1386:. 1363:. 1353:. 1343:63 1341:. 1337:. 1325:^ 1311:. 1301:. 1291:12 1289:. 1285:. 1273:^ 1255:57 1253:. 1249:. 1226:. 1216:. 1204:. 1200:. 1188:^ 1174:. 1164:. 1154:85 1152:. 1127:46 1125:. 1102:. 1092:. 1080:10 1078:. 1074:. 1062:^ 1044:. 1032:^ 1018:. 1006:. 992:^ 978:. 968:. 954:. 950:. 927:. 917:. 905:85 903:. 899:. 883:^ 869:. 859:. 847:18 845:. 841:. 825:^ 809:52 807:. 778:. 774:. 745:. 741:. 729:^ 715:. 705:. 693:. 689:. 677:^ 663:. 651:81 649:. 645:. 622:. 612:. 600:. 596:. 571:27 569:. 557:^ 543:. 533:. 523:37 521:. 517:. 435:. 394:, 286:, 224:. 197:. 155:. 131:, 1555:. 1545:7 1528:. 1504:: 1498:4 1477:. 1473:: 1447:. 1425:: 1398:. 1394:: 1371:. 1349:: 1319:. 1297:: 1267:. 1261:: 1234:. 1212:: 1182:. 1168:: 1160:: 1137:. 1110:. 1086:: 1056:. 1052:: 1026:. 1014:: 986:. 962:: 935:. 911:: 877:. 853:: 819:. 815:: 792:. 786:: 759:. 753:: 747:4 723:. 701:: 695:9 671:. 657:: 630:. 608:: 602:4 581:. 577:: 551:. 529::

Index


death
dopaminergic
neurons
Parkinson's disease
neuronal
death
Lewy bodies
autophagy
mitochondrial
neuroinflammation
blood–brain barrier
A brain tissue with Lewy bodies.
proteins
alpha-synuclein
aggregates
Lewy bodies
pathological
olfactory bulb
medulla oblongata
pontine tegmentum
substantia nigra
midbrain
forebrain
neocortex
Alpha-synuclein
DNA repair
ataxia-telangiectasia
DNA damage
kinase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑