Knowledge

Pentagram map

Source 📝

3394: 1369:. Most of the results in this article have to do with establishing that the pentagram map is an integrable system, that these tori really exist. The monodromy invariants, discussed below, turn out to be the equations for the tori. The Poisson bracket, discussed below, is a more sophisticated math gadget that sort of encodes the local geometry of the tori. What is nice is that the various objects fit together exactly, and together add up to a proof that this torus motion really exists. 5828: 2750: 3445: 6221:, namely, a decomposition into the common level sets of the remaining monodromy functions. The Hamiltonian vector fields associated to the remaining monodromy invariants generically span the tangent distribution to the iso-monodromy foliation. The fact that the monodromy invariants Poisson-commute means that these vector fields define commuting flows. These flows in turn define local 1730: 881: 5512: 6702: 1723: 6526: 343: 3389:{\displaystyle {\begin{aligned}a_{2k-1}&={\frac {(1-x_{2k+1}x_{2k+2})}{(1-x_{2k-3}x_{2k-2})}}x_{2k+0}\\a_{2k+0}&={\frac {(1-x_{2k-3}x_{2k-2})}{(1-x_{2k+1}x_{2k+2})}}x_{2k-1}\\b_{2k+1}&={\frac {(1-x_{2k-2}x_{2k-1})}{(1-x_{2k+2}x_{2k+3})}}x_{2k+0}\\b_{2k+0}&={\frac {(1-x_{2k+2}x_{2k+3})}{(1-x_{2k-2}x_{2k-1})}}x_{2k-1}\end{aligned}}} 510: 4302:. This is to say that, modulo projective transformations, one typically sees nearly the same shape, over and over again, as one iterates the pentagram map. (One is considering the projective equivalence classes of convex polygons. The fact that the pentagram map visibly shrinks a convex polygon is irrelevant.) 5823:{\displaystyle H(f)=\left(x_{i+1}{\frac {\partial f}{\partial x_{i+1}}}-x_{i-1}{\frac {\partial f}{\partial x_{i-1}}}\right)x_{i}{\frac {\partial }{\partial x_{i}}}+\left(y_{i-1}{\frac {\partial f}{\partial y_{i-1}}}-y_{i+1}{\frac {\partial f}{\partial y_{i+1}}}\right)y_{i}{\frac {\partial }{\partial y_{i}}}} 1246:
so as to try to get yet a better view of these polygons. If you do this process as systematically as possible, you find that you are simply looking at what happens to points in the moduli space. The attempts to zoom in to the picture in the most perceptive possible way lead to the introduction of the
3648:
to the ones shown in the figure. In other words, the figures involved in the relations can be in all possible positions and orientations. The labels on the horizontal edges are simply auxiliary variables introduced to make the formulas simpler. Once a single row of non-horizontal edges is provided,
7045:
under the Boussinesq equation. This geometric description makes it fairly obvious that the B-equation is the continuous limit of the pentagram map. At the same time, the pentagram invariant bracket is a discretization of a well known invariant Poisson bracket associated to the Boussinesq equation.
4324:
With a view towards defining the monodromy invariants, say that a block is either a single integer or a triple of consecutive integers, for instance 1 and 567. Say that a block is odd if it starts with an odd integer. Say that two blocks are well-separated if they have at least 3 integers between
1225:
moduli space. The moduli space relevant to the pentagram map is the moduli space of projective equivalence classes of polygons. Each point in this space corresponds to a polygon, except that two polygons which are different views of each other are considered the same. Since the pentagram map is
1039:
looks like a straight line from any perspective. The straight lines are the building blocks for the subject. The pentagram map is defined entirely in terms of points and straight lines. This makes it adapted to projective geometry. If you look at the pentagram map from another point of view
1289:
One can do experiments with the pentagram map, where one looks at how this mapping acts on the moduli space of polygons. One starts with a point and just traces what happens to it as the map is applied over and over again. One sees a surprising thing: These points seem to line up along
2465:
Here is a formula for the pentagram map, expressed in corner coordinates. The equations work more gracefully when one considers the second iterate of the pentagram map, thanks to the canonical labelling scheme discussed above. The second iterate of the pentagram map is the
505:
There is a perfectly natural way to label the vertices of the second iterate of the pentagram map by consecutive integers. For this reason, the second iterate of the pentagram map is more naturally considered as an iteration defined on labeled polygons. See the figure.
4325:
them. For instance 123 and 567 are not well separated but 123 and 789 are well separated. Say that an odd admissible sequence is a finite sequence of integers that decomposes into well separated odd blocks. When we take these sequences from the set 1, ..., 2
3455:
of triangular grid, as shown in the figure. In this interpretation, the corner invariants of a polygon P label the non-horizontal edges of a single row, and then the non-horizontal edges of subsequent rows are labeled by the corner invariants of
1290:
multi-dimensional tori. These invisible tori fill up the moduli space somewhat like the way the layers of an onion fill up the onion itself, or how the individual cards in a deck fill up the deck. The technical statement is that the tori make a
436:-vertices are naturally even integers. A more conventional approach to the labeling would be to label the vertices of P and Q by integers of the same parity. One can arrange this either by adding or subtracting 1 from each of the indices of the 4635:
The monodromy invariants are defined on the space of twisted polygons, and restrict to give invariants on the space of closed polygons. They have the following geometric interpretation. The monodromy M of a twisted polygon is a certain
1642:
is called the inverse cross ratio. The inverse cross ratio is invariant under projective transformations and thus makes sense for points in the projective line. However, the formula above only makes sense for points in the affine line.
1654:
and then uses the formula above. The result is independent of any choices made in the identification. The inverse cross ratio is used in order to define a coordinate system on the moduli space of polygons, both ordinary and twisted.
6225:
on each iso-monodromy level such that the transition maps are Euclidean translations. That is, the Hamiltonian vector fields impart a flat Euclidean structure on the iso-monodromy levels, forcing them to be flat tori when they are
6269:. The spectral curve is determined by the monodromy invariants, and the divisor corresponds to a point on a torus—the Jacobi variety of the spectral curve. The algebraic-geometric methods guarantee that the pentagram map exhibits 1286:. So, too, with manifolds like the torus. There are higher-dimensional tori as well. You could imagine playing Asteroids in your room, where you can freely go through the walls and ceiling/floor, popping out on the opposite side. 3956: 4088: 1625: 6264:
with a spectral parameter, and proved its algebraic-geometric integrability. This means that the space of polygons (either twisted or ordinary) is parametrized in terms of a spectral curve with marked points and a
2755: 5446: 4906: 2739: 2639: 2138:-gon having this list of corner invariants. Such a list will not always give rise to an ordinary polygon; there are an additional 8 equations which the list must satisfy for it to give rise to an ordinary 1233:
The reason for considering what the pentagram map does to the moduli space is that it gives more salient features of the map. If you just watch, geometrically, what happens to an individual polygon, say a
6237:. This happens for almost every level set. Since everything in sight is pentagram-invariant, the pentagram map, restricted to an iso-monodromy leaf, must be a translation. This kind of motion is known as 2356: 4991: 2054: 5329: 5077: 6374: 5243: 5160: 2218: 6290:
The octahedral recurrence is a dynamical system defined on the vertices of the octahedral tiling of space. Each octahedron has 6 vertices, and these vertices are labelled in such a way that
4484: 3735: 2431: 1978: 6806:
The continuous limit of a convex polygon is a parametrized convex curve in the plane. When the time parameter is suitably chosen, the continuous limit of the pentagram map is the classical
3802: 1217:
are coordinates for the moduli space of scale equivalence classes of triangles. If you want to index all possible quadrilaterals, either up to scale or not, you would need some additional
1044:, you tilt the paper on which it is drawn) then you are still looking at the pentagram map. This explains the statement that the pentagram map commutes with projective transformations. 6151: 224: 157: 6497: 6071: 6017: 1857: 1469: 995:
which depend on the initial polygon. Here we are taking about the geometric action on the polygons themselves, not on the moduli space of projective equivalence classes of polygons.
4402: 1906: 1791: 4789:
on the space of twisted polygons which is invariant under the pentagram map. They also showed that monodromy invariants commute with respect to this bracket. This is to say that
7057:
The pentagram map and the Boussinesq equation are examples of projectively natural geometric evolution equations. Such equations arise in diverse fields of mathematics, such as
6277:(i.e., the variables that determine the polygon as explicit functions of time). Soloviev also obtains the invariant Poisson bracket from the Krichever–Phong universal formula. 4775: 4723: 1238:, then repeated application shrinks the polygon to a point. To see things more clearly, you might dilate the shrinking family of polygons so that they all have, say, the same 6589: 5884: 1230:
on this particular moduli space. That is, given any point in the moduli space, you can apply the pentagram map to the corresponding polygon and see what new point you get.
502:
or just counterclockwise. In most papers on the subject, some choice is made once and for all at the beginning of the paper and then the formulas are tuned to that choice.
6861: 4273: 4199: 337: 294: 993: 3568: 1361:
of the moduli space. They are only revealed when one does the pentagram map and watches a point move round and round, filling up one of the tori. Roughly speaking, when
1139: 1027:
convert between the various shapes one can see when looking at same object from different points of view. This is why it plays such an important role in old topics like
6672: 7043: 7007: 6971: 2493: 772: 6789: 3521: 1215: 1177: 855: 801: 598: 7049:
Recently, there has been some work on higher-dimensional generalizations of the pentagram map and its connections to Boussinesq-type partial differential equations
6935: 6900: 3606: 3435: 2132: 2094: 961: 935: 426: 6431: 6404: 6212: 6185: 4630: 4603: 4545: 4518: 4149: 4122: 3639: 2245: 1101: 708: 565: 500: 473: 251: 5940: 5475: 3483: 830: 7207: 6746: 6726: 6692: 6633: 6613: 6550: 5911: 5501: 2533: 2513: 1352: 1332: 1312: 875: 736: 3824: 3962: 1480: 2058:
The corner invariants make sense on the moduli space of twisted polygons. When one defines the corner invariants of a twisted polygon, one obtains a 2
5959:
The monodromy invariants and the invariant bracket combine to establish Arnold–Liouville integrability of the pentagram map on the space of twisted
3807:
are invariant under the pentagram map. This observation is closely related to the 1991 paper of Joseph Zaks concerning the diagonals of a polygon.
4648:. There is also a description of the monodromy invariants in terms of the (ab) coordinates. In these coordinates, the invariants arise as certain 887:
The action of the pentagram map on pentagons and hexagons is similar in spirit to classical configuration theorems in projective geometry such as
7750: 6807: 1262:
video game. Yet another way to describe the torus is to say that it is a computer screen with wrap, both left-to-right and up-to-down. The
718:
is the second iterate of the pentagram map, which acts naturally on labeled hexagons, as described above. This is to say that the hexagons
55:
introduced the pentagram map for a general polygon in a 1992 paper though it seems that the special case, in which the map is defined for
7493: 7456: 5335: 4795: 7134: 6499:
always lie in a central horizontal plane and a_1,b_1 are the top and bottom vertices. The octahedral recurrence is closely related to
1003:
This section is meant to give a non-technical overview for much of the remainder of the article. The context for the pentagram map is
2645: 2545: 6273:
on a torus (both in the twisted and the ordinary case), and they allow one to construct explicit solutions formulas using Riemann
6507:. Typically one labels two horizontal layers of the tiling and then uses the basic rule to let the labels propagate dynamically. 52: 7664:
Bruckstein, Alfred M.; Shaked, Doron (1997). "On Projective Invariant Smoothing and Evolutions of Planar Curves and Polygons".
2445: 1908:
to an n-gon. If two n-gons are related by a projective transformation, they get the same coordinates. Sometimes the variables
2257: 4287: 877:
by shifting the labels by 3. See the figure. It seems entirely possible that this fact was also known in the 19th century.
6814: 4778: 4520:
is defined as the sum of all monomials coming from odd admissible sequences composed of k blocks. The monodromy invariant
7823: 6266: 4920: 1983: 5249: 4997: 3451:
The formula for the pentagram map has a convenient interpretation as a certain compatibility rule for labelings on the
6674:
get the same numerical label. The octahedral recurrence applied to an adapted labeling is the same as a recurrence on
6296: 5942:. In practical terms, the fact that the monodromy invariants Poisson-commute means that the corresponding Hamiltonian 5166: 5083: 2161: 6798:
to the two shown. When this labeling is done, the edge-labeling of G satisfies the relations for the pentagram map.
4409: 3668: 2364: 1911: 1242:. If you do this, then typically you will see that the family of polygons gets long and thin. Now you can change the 3662:
It follows directly from the formula for the pentagram map, in terms of corner coordinates, that the two quantities
907:
exponentially fast to a point. This is to say that the diameter of the nth iterate of a convex polygon is less than
7828: 3741: 1024: 379: 440:-vertices. Either choice is equally canonical. An even more conventional choice would be to label the vertices of 1651: 1399: 775: 677: 533: 7091: 6532:
Alternatively, the following construction relates the octahedral recurrence directly to the pentagram map. Let
6086: 5504: 170: 103: 7454:
Schwartz, Richard Evan; Tabachnikov, Sergei (October 2009). "The pentagram integrals for inscribed polygons".
6436: 6023: 5969: 1796: 1408: 1294:
of the moduli space. The tori have half the dimension of the moduli space. For instance, the moduli space of
6794:
to every edge. This rule refers to the figure at right and is meant to apply to every configuration that is
6515: 3407:. The 0 is added to align the formulas.) In these coordinates, the pentagram map is a birational mapping of 2444:
The (ab) coordinates bring out the close analogy between twisted polygons and solutions of 3rd order linear
4347: 4093:
are likewise seen, directly from the formula, to be invariant functions. All these products turn out to be
448:
by consecutive integers, but again there are two natural choices for how to align these labellings: Either
5890: 4641: 4314: 1862: 1747: 1259: 892: 643:-gons are equivalent if a projective transformation carries one to the other. The moduli space of twisted 6270: 6238: 4213: 1646:
In the slightly more general set-up below, the cross ratio makes sense for any four collinear points in
4748: 4670: 358:. From a more sophisticated point of view, the pentagram map is defined for a polygon contained in the 68: 7796: 1007:. Projective geometry is the geometry of our vision. When one looks at the top of a glass, which is a 7772: 7471: 7383: 6555: 4653: 4490: 2467: 375: 72: 6694:
in which the same rule as for the octahedral recurrence is applied to every configuration of points
7241: 7058: 6245: 5839: 2062:-periodic bi-infinite sequence of numbers. Taking one period of this sequence identifies a twisted 1715:, as shown in the figure. In this figure, a flag is represented by a thick arrow. Thus, there are 2 1398:. Any finite list of points in the projective line can be moved into the affine line by a suitable 1028: 1004: 888: 391: 363: 6827: 4632:
are counted as monodromy invariants, even though they are not produced by the above construction.
4235: 4161: 1663:
The corner invariants are basic coordinates on the space of twisted polygons. Suppose that P is a
1179:, satisfying the constraints just mentioned, indexes a triangle (up to scale). One might say that 299: 256: 7788: 7762: 7681: 7602: 7579: 7561: 7516: 7461: 7429: 7425: 7399: 7373: 7320: 7302: 7293:
Schwartz, Richard Evan (2008). "Discrete monodromy, pentagrams, and the method of condensation".
7258: 7177: 6261: 4640:
in the corner coordinates. The monodromy invariants are essentially the homogeneous parts of the
2536: 2151: 1222: 1060: 966: 7731: 3526: 1106: 76: 6642: 4097:
with respect to the invariant Poisson bracket discussed below. At the same time, the functions
7524: 7012: 6976: 6940: 6592: 6222: 6077: 4637: 4094: 2472: 1366: 1362: 1250:
To explain how the pentagram map acts on the moduli space, one must say a few words about the
1227: 1048: 741: 383: 367: 93: 6754: 3488: 1182: 1144: 570: 7780: 7708: 7673: 7638: 7571: 7508: 7391: 7312: 7250: 7216: 7198: 7169: 6905: 6870: 6864: 6615:
to the configuration of 6 points shown in the first figure. Say that an adapted labeling of
6519: 3576: 3410: 2155: 2150:
There is a second set of coordinates for the moduli space of twisted polygons, developed by
2107: 2069: 1647: 1283: 1278:
is another example of a manifold. This is why it took people so long to figure out that the
940: 910: 405: 371: 359: 355: 64: 40: 28: 7701:"Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach" 7650: 6409: 6382: 6190: 6163: 4608: 4581: 4523: 4496: 4127: 4100: 3612: 2223: 1074: 686: 543: 478: 451: 229: 7646: 7074: 7062: 6511: 6274: 6249: 6227: 5916: 5480:
There is also a description in terms of the (ab) coordinates, but it is more complicated.
5451: 4786: 4782: 4738: 3459: 3452: 1668: 1650:
One just identifies the line containing the points with the projective line by a suitable
1395: 1271: 1036: 1032: 806: 4785:. In a 2010 paper, Valentin Ovsienko, Richard Schwartz and Sergei Tabachnikov produced a 4305:
The recurrence result is subsumed by the complete integrability results discussed below.
7776: 7623: 7475: 7387: 6728:
which obeys the planar octahedral recurrence, one can create a labeling of the edges of
835: 781: 7358: 6821: 6731: 6711: 6677: 6618: 6598: 6535: 5896: 5486: 4578:/2, one recovers the product invariants discussed above. In both cases, the invariants 4206: 2518: 2498: 2248: 2101: 1337: 1317: 1297: 1254:. One way to roughly define the torus is to say that it is the surface of an idealized 1235: 904: 860: 721: 60: 6698:
to the configuration in the first figure. Call this the planar octahedral recurrence.
7817: 7583: 7262: 7181: 7086: 6636: 6500: 6231: 5963:-gons. The situation is easier to describe for N odd. In this case, the two products 4664: 4276: 4210: 4202: 1020: 7792: 7700: 7324: 7221: 7202: 3951:{\displaystyle O_{k}=x_{1}x_{5}x_{9}\cdots x_{2N-3}+x_{3}x_{7}x_{11}\cdots x_{2N-1}} 7685: 7520: 7512: 7403: 6504: 5943: 4649: 4318: 4083:{\displaystyle E_{k}=x_{2}x_{6}x_{10}\cdots x_{2N-2}+x_{4}x_{8}x_{12}\cdots x_{2N}} 1620:{\displaystyle X={\frac {(t_{1}-t_{2})(t_{3}-t_{4})}{(t_{1}-t_{3})(t_{2}-t_{4})}}.} 1243: 1056: 387: 32: 6820:
Here is a description of the geometric action of the Boussinesq equation. Given a
4914:
Here is a description of the invariant Poisson bracket in terms of the variables.
7712: 7239:
Zaks, Joseph (1996). "On the products of cross-ratios on diagonals of polygons".
16:
Discrete dynamical system on the moduli space of polygons in the projective plane
7129: 4229: 1635: 1472: 1387: 1016: 350:
On a basic level, one can think of the pentagram map as an operation defined on
20: 7073:
In a 2010 paper Max Glick identified the pentagram map as a special case of a
3444: 342: 7677: 7642: 7395: 7316: 6811: 5483:
Here is an alternate description of the invariant bracket. Given any function
4493:
of the number of single-digit blocks in the sequence. The monodromy invariant
4279: 1218: 351: 7707:. Computational Imaging and Vision. Vol. 1. Springer. pp. 255–306. 7575: 6514:
formalism to find formulas for the iterates of the pentagram map in terms of
6234: 6218: 6157: 4155: 2449: 1291: 1282:
was not flat; on small scales one cannot easily distinguish a sphere from a
609: 56: 44: 4329:, the notion of well separation is meant in the cyclic sense. Thus, 1 and 2 1729: 880: 521:
The pentagram map is also defined on the larger space of twisted polygons.
7784: 4294:
is recurrent: The orbit of almost any equivalence class of convex polygon
6795: 6695: 4337: 3645: 1267: 1068: 1064: 1052: 673: 528:-gon is a bi-infinite sequence of points in the projective plane that is 67:. The pentagram map is similar in spirit to the constructions underlying 48: 36: 6701: 6160:
is the set of all points in the space having a specified value for both
1722: 1059:
is an auxiliary space whose points index other objects. For example, in
7749:
Ovsienko, Valentin; Schwartz, Richard Evan; Tabachnikov, Serge (2009).
7624:"On generalizations of the pentagram map: discretizations of AGD flows" 7357:
Ovsienko, Valentin; Schwartz, Richard Evan; Tabachnikov, Serge (2010).
7254: 7203:"The pentagon in the projective plane, with a comment on Napier's rule" 7173: 6525: 6260:
In a 2011 preprint, Fedor Soloviev showed that the pentagram map has a
3649:
the remaining rows are uniquely determined by the compatibility rules.
2100:
is the underlying field. Conversely, given almost any (in the sense of
1664: 1012: 711: 97: 51:
of the polygon, and constructs a new polygon from these intersections.
75:. It echoes the rationale and construction underlying a conjecture of 4742: 4151:
are the simplest examples of the monodromy invariants defined below.
1358: 1275: 1008: 628:-gon whose vertices have been listed out repeatedly. Thus, a twisted 7607: 7157: 4547:
is defined the same way, with even replacing odd in the definition.
4209:. Hence, each orbit of the pentagram map acting on this space has a 1793:
To each flag F, we associate the inverse cross ratio of the points
47:
map takes a given polygon, finds the intersections of the shortest
7767: 7566: 7466: 7434: 7378: 7307: 6433:
are the labels of antipodal vertices. A common convention is that
1279: 1263: 1255: 1251: 509: 7699:
Olver, Peter J.; Sapiro, Guillermo; Tannenbaum, Allen R. (1994).
6522:
and Harold Rumsey for the iterates of the octahedral recurrence.
5441:{\displaystyle \{x_{i},x_{j}\}=\{y_{i},y_{j}\}=\{x_{i},y_{j}\}=0} 4901:{\displaystyle \{O_{i},O_{j}\}=\{O_{i},E_{j}\}=\{E_{i},E_{j}\}=0} 4566:
is even, the allowable values of k are 1, 2, ..., 
1859:
shown in the figure at left. In this way, one associates numbers
1226:
adapted to projective geometry, as mentioned above, it induces a
6518:. These formulas are similar in spirit to the formulas found by 5833:
where a summation over the repeated indices is understood. Then
1239: 7428:(October 2009). "Elementary Surprises in Projective Geometry". 7009:
is a good model for the time t evolution of the original curve
3644:
These rules are meant to hold for all configurations which are
1035:. Projective geometry is built around the fact that a straight 7552:
Soloviev, Fedor (2011). "Integrability of the Pentagram Map".
4340:
in the corner invariants. This is best illustrated by example
2734:{\displaystyle B(x_{1},\ldots ,x_{2N})=(b_{1},\ldots ,b_{2N})} 2634:{\displaystyle A(x_{1},\ldots ,x_{2N})=(a_{1},\ldots ,a_{2N})} 428:
is slightly problematic, in the sense that the indices of the
1274:
at each point, but somehow is hooked together differently. A
6700: 6524: 3443: 1728: 1721: 1266:
is a classical example of what is known in mathematics as a
879: 508: 432:-vertices are naturally odd integers whereas the indices of 341: 4232:. At the same time, as was already mentioned, the function 7755:
Electronic Research Announcements in Mathematical Sciences
680:
carrying a pentagon to its image under the pentagram map.
672:
The pentagram map is the identity on the moduli space of
7601:
Glick, Max (2010). "The Pentagram Map and Y-Patterns".
4313:
The so-called monodromy invariants are a collection of
2351:{\displaystyle V_{i+3}=a_{i}V_{i+2}+b_{i}V_{i+1}+V_{i}} 2154:
and Valentin Ovsienko. One describes a polygon in the
1258:. Another way is that it is the playing field for the 7295:
Journal of Fixed Point Theory and Applications (2008)
7015: 6979: 6943: 6908: 6873: 6830: 6757: 6734: 6714: 6680: 6645: 6621: 6601: 6558: 6538: 6439: 6412: 6385: 6299: 6193: 6166: 6089: 6026: 5972: 5919: 5899: 5842: 5515: 5489: 5454: 5338: 5252: 5169: 5086: 5000: 4923: 4798: 4751: 4673: 4611: 4584: 4526: 4499: 4412: 4350: 4238: 4164: 4130: 4103: 3965: 3827: 3744: 3671: 3615: 3579: 3529: 3491: 3462: 3413: 2753: 2648: 2548: 2521: 2501: 2475: 2433:
serve as coordinates for the moduli space of twisted
2367: 2260: 2226: 2164: 2110: 2072: 1986: 1914: 1865: 1799: 1750: 1483: 1411: 1340: 1320: 1300: 1185: 1147: 1109: 1077: 969: 943: 913: 863: 838: 809: 784: 744: 724: 689: 573: 546: 481: 454: 408: 302: 259: 232: 173: 106: 7732:"Discrete integrable systems in projective geometry" 6241:. This explains the Arnold-Liouville integrability. 1703:
is involved in two flags, and likewise each edge of
1270:. This is a space that looks somewhat like ordinary 6635:is a labeling so that all points in the (infinite) 4224:The pentagram map, when acting on the moduli space 4205:, when f is restricted to the moduli space of real 2247:so that each consecutive triple of vectors spans a 1382:When the field underlying all the constructions is 647:-gons is the set of equivalence classes of twisted 7037: 7001: 6965: 6937:. The envelope of all these chords is a new curve 6929: 6894: 6855: 6783: 6740: 6720: 6686: 6666: 6627: 6607: 6583: 6544: 6491: 6425: 6398: 6368: 6206: 6179: 6145: 6065: 6011: 5934: 5905: 5878: 5822: 5495: 5469: 5440: 5323: 5237: 5154: 5071: 4986:{\displaystyle x_{1},y_{1},x_{2},y_{2},\ldots \,.} 4985: 4900: 4769: 4717: 4624: 4597: 4539: 4512: 4478: 4396: 4298:returns infinitely often to every neighborhood of 4267: 4193: 4143: 4116: 4082: 3950: 3796: 3729: 3633: 3600: 3562: 3515: 3477: 3429: 3388: 2733: 2633: 2527: 2507: 2487: 2425: 2350: 2239: 2212: 2126: 2088: 2049:{\displaystyle x_{1},x_{2},x_{3},x_{4},\ldots \,.} 2048: 1972: 1900: 1851: 1785: 1619: 1463: 1346: 1326: 1306: 1209: 1171: 1133: 1095: 987: 955: 929: 869: 849: 824: 795: 766: 730: 702: 592: 559: 494: 467: 420: 331: 288: 245: 218: 151: 7359:"The Pentagram Map, A Discrete Integrable System" 5324:{\displaystyle \{y_{i},y_{i-1}\}=-y_{i}\,y_{i-1}} 5072:{\displaystyle \{x_{i},x_{i+1}\}=-x_{i}\,x_{i+1}} 4290:to imply that the action of the pentagram map on 6369:{\displaystyle a_{1}b_{1}+a_{2}b_{2}=a_{3}b_{3}} 6080:for the bracket, meaning (in this context) that 5238:{\displaystyle \{y_{i},y_{i+1}\}=y_{i}\,y_{i+1}} 5155:{\displaystyle \{x_{i},x_{i-1}\}=x_{i}\,x_{i-1}} 2213:{\displaystyle \ldots V_{1},V_{2},V_{3},\ldots } 1047:The pentagram map is fruitfully considered as a 7730:Ovsienko, Valentin; Tabachnikov, Serge (2008). 4479:{\displaystyle +x_{1}x_{2}x_{3}x_{7}x_{8}x_{9}} 3730:{\displaystyle O_{N}=x_{1}x_{3}\cdots x_{2N-1}} 2426:{\displaystyle a_{1},b_{1},a_{2},b_{2},\ldots } 2251:having unit volume. This leads to the relation 1973:{\displaystyle x_{1},y_{1},x_{2},y_{2},\ldots } 4777:on the space of functions which satisfies the 7208:Bulletin of the American Mathematical Society 6810:. This equation is a classical example of an 4336:Each odd admissible sequence gives rise to a 3797:{\displaystyle E_{N}=x_{2}x_{4}\cdots x_{2N}} 1471:in the affine line one defines the (inverse) 903:The iterates of the pentagram map shrink any 8: 7751:"Quasiperiodic Motion for the Pentagram Map" 7705:Geometry-Driven Diffusion in Computer Vision 6863:, and real numbers x and t, we consider the 6217:Each Casimir level set has an iso-monodromy 6134: 6115: 6109: 6090: 5873: 5861: 5429: 5403: 5397: 5371: 5365: 5339: 5285: 5253: 5202: 5170: 5119: 5087: 5033: 5001: 4889: 4863: 4857: 4831: 4825: 4799: 4764: 4752: 4321:that are invariant under the pentagram map. 3570:, and so forth. the compatibility rules are 1711:are ordered according to the orientation of 1071:(up to scale) by giving 3 positive numbers, 5503:on the moduli space, we have the so-called 2539:of order 2, and have the following action. 1365:have these invariant tori, they are called 1019:door, one sees a typically non-rectangular 7666:Journal of Mathematical Imaging and Vision 1334:dimensional and the tori in this case are 659:-gons as a sub-variety of co-dimension 8. 7766: 7606: 7565: 7465: 7433: 7377: 7306: 7220: 7020: 7014: 6984: 6978: 6948: 6942: 6907: 6872: 6847: 6829: 6770: 6756: 6733: 6713: 6679: 6644: 6620: 6600: 6575: 6557: 6537: 6483: 6470: 6457: 6444: 6438: 6417: 6411: 6390: 6384: 6360: 6350: 6337: 6327: 6314: 6304: 6298: 6198: 6192: 6171: 6165: 6146:{\displaystyle \{O_{n},f\}=\{E_{n},f\}=0} 6122: 6097: 6088: 6057: 6044: 6031: 6025: 6003: 5990: 5977: 5971: 5918: 5898: 5841: 5811: 5798: 5792: 5768: 5750: 5738: 5716: 5698: 5686: 5665: 5652: 5646: 5622: 5604: 5592: 5570: 5552: 5540: 5514: 5488: 5453: 5423: 5410: 5391: 5378: 5359: 5346: 5337: 5309: 5304: 5298: 5273: 5260: 5251: 5223: 5218: 5212: 5190: 5177: 5168: 5140: 5135: 5129: 5107: 5094: 5085: 5057: 5052: 5046: 5021: 5008: 4999: 4979: 4967: 4954: 4941: 4928: 4922: 4883: 4870: 4851: 4838: 4819: 4806: 4797: 4750: 4700: 4678: 4672: 4616: 4610: 4589: 4583: 4531: 4525: 4504: 4498: 4470: 4460: 4450: 4440: 4430: 4420: 4411: 4388: 4378: 4368: 4358: 4349: 4259: 4249: 4237: 4185: 4175: 4163: 4135: 4129: 4108: 4102: 4071: 4058: 4048: 4038: 4016: 4003: 3993: 3983: 3970: 3964: 3933: 3920: 3910: 3900: 3878: 3865: 3855: 3845: 3832: 3826: 3785: 3772: 3762: 3749: 3743: 3712: 3699: 3689: 3676: 3670: 3614: 3578: 3528: 3490: 3461: 3418: 3412: 3367: 3342: 3323: 3290: 3271: 3255: 3233: 3210: 3185: 3166: 3133: 3114: 3098: 3076: 3053: 3028: 3009: 2976: 2957: 2941: 2919: 2896: 2871: 2852: 2819: 2800: 2784: 2762: 2754: 2752: 2719: 2700: 2678: 2659: 2647: 2619: 2600: 2578: 2559: 2547: 2520: 2500: 2474: 2411: 2398: 2385: 2372: 2366: 2342: 2323: 2313: 2294: 2284: 2265: 2259: 2231: 2225: 2198: 2185: 2172: 2163: 2115: 2109: 2077: 2071: 2042: 2030: 2017: 2004: 1991: 1985: 1958: 1945: 1932: 1919: 1913: 1889: 1870: 1864: 1843: 1830: 1817: 1804: 1798: 1774: 1755: 1749: 1602: 1589: 1573: 1560: 1542: 1529: 1513: 1500: 1490: 1482: 1455: 1442: 1429: 1416: 1410: 1339: 1319: 1299: 1184: 1146: 1108: 1076: 1067:is always 180 degrees. You can specify a 968: 942: 921: 912: 862: 837: 808: 783: 749: 743: 723: 694: 688: 578: 572: 551: 545: 486: 480: 459: 453: 407: 320: 310: 301: 277: 267: 258: 237: 231: 219:{\displaystyle Q_{2},Q_{4},Q_{6},\ldots } 204: 191: 178: 172: 152:{\displaystyle P_{1},P_{3},P_{5},\ldots } 137: 124: 111: 105: 4286:. These two properties combine with the 710:is the identity on the space of labeled 676:. This is to say that there is always a 632:-gon is a generalization of an ordinary 536:That is, some projective transformation 7103: 6973:. When t is extremely small, the curve 6492:{\displaystyle a_{2},b_{2},a_{3},b_{3}} 6066:{\displaystyle E_{n}=y_{1}\cdots y_{n}} 6012:{\displaystyle O_{n}=x_{1}\cdots x_{n}} 4333: − 1 are not well separated. 1852:{\displaystyle t_{1},t_{2},t_{3},t_{4}} 1707:is involved in two flags. The flags of 1464:{\displaystyle t_{1},t_{2},t_{3},t_{4}} 624:-gon can be interpreted as an ordinary 163:under the pentagram map is the polygon 79:concerning the diagonals of a polygon. 7737:. Banff International Research Station 7595: 7593: 7547: 7545: 7487: 7485: 7352: 7350: 7348: 7346: 7344: 7342: 7340: 7338: 7336: 7334: 7288: 7286: 7284: 7282: 7280: 7278: 7276: 7274: 7272: 7123: 7121: 7119: 7117: 7115: 7113: 7111: 7109: 7107: 6248:, the Poisson bracket gives rise to a 7703:. In Romeny, Bart M. ter Haar (ed.). 7449: 7447: 7445: 7234: 7232: 7193: 7191: 7151: 7149: 6503:method of condensation for computing 5913:in the direction of the vector field 4397:{\displaystyle -x_{1}x_{5}x_{6}x_{7}} 4228:of convex polygons, has an invariant 1394:. The affine line is a subset of the 857:is the labeled hexagon obtained from 774:are equivalent by a label-preserving 655:-gons contains the space of ordinary 253:is the intersection of the diagonals 7: 1901:{\displaystyle x_{1},\ldots ,x_{2n}} 1786:{\displaystyle F_{1},\ldots ,F_{2N}} 59:only, goes back to an 1871 paper of 7457:Electronic Journal of Combinatorics 832:are projectively equivalent, where 5804: 5800: 5761: 5753: 5709: 5701: 5658: 5654: 5615: 5607: 5563: 5555: 14: 7494:"Recurrence of the Pentagram Map" 4770:{\displaystyle \{\cdot ,\cdot \}} 4718:{\displaystyle O_{k}(P)=E_{k}(P)} 4554:is odd, the allowable values of 1373:Coordinates for the moduli space 668:Action on pentagons and hexagons 7492:Schwartz, Richard Evan (2001). 7222:10.1090/S0002-9904-1945-08488-2 7128:Schwartz, Richard Evan (1992). 6584:{\displaystyle \pi :T\to R^{2}} 6256:Algebro-geometric integrability 6156:for all functions f. A Casimir 4558:are 1, 2, ..., ( 3440:As grid compatibility relations 2446:ordinary differential equations 778:. More precisely, the hexagons 7513:10.1080/10586458.2001.10504671 7053:Projectively natural evolution 7032: 7026: 6996: 6990: 6960: 6954: 6924: 6912: 6889: 6877: 6840: 6661: 6655: 6595:which maps each octahedron in 6568: 6552:be the octahedral tiling. Let 5955:Arnold–Liouville integrability 5929: 5923: 5852: 5846: 5525: 5519: 4712: 4706: 4690: 4684: 4562: − 1)/2. When 4489:The sign is determined by the 3557: 3554: 3551: 3545: 3539: 3533: 3510: 3507: 3501: 3495: 3472: 3466: 3357: 3310: 3305: 3258: 3200: 3153: 3148: 3101: 3043: 2996: 2991: 2944: 2886: 2839: 2834: 2787: 2728: 2693: 2687: 2652: 2628: 2593: 2587: 2552: 1719:flags associated to an N-gon. 1608: 1582: 1579: 1553: 1548: 1522: 1519: 1493: 1204: 1186: 1166: 1148: 819: 813: 761: 755: 412: 326: 303: 283: 260: 1: 6815:partial differential equation 5879:{\displaystyle H(f)g=\{f,g\}} 3403: + 0 is just 2 2456:Formula for the pentagram map 1063:, the sum of the angles of a 226:as shown in the figure. Here 7713:10.1007/978-94-017-1699-4_11 7631:Journal of Nonlinear Science 6856:{\displaystyle C:R\to R^{2}} 5889:The first expression is the 4268:{\displaystyle f=O_{N}E_{N}} 4194:{\displaystyle f=O_{N}E_{N}} 2441:is not divisible by 3. 2134:one can construct a twisted 651:-gons. The space of twisted 332:{\displaystyle (P_{3}P_{7})} 289:{\displaystyle (P_{1}P_{5})} 7622:Marí Beffa, Gloria (2013). 6281:Connections to other topics 6252:on each Casimir level set. 4667:(such as a circle) one has 4288:Poincaré recurrence theorem 988:{\displaystyle 0<a<1} 620:is the identity, a twisted 7845: 6244:From the point of view of 4663:has all its vertices on a 3658:Corner coordinate products 3563:{\displaystyle A(B(A(P)))} 2448:, normalized to have unit 1134:{\displaystyle x+y+z=180.} 1025:Projective transformations 380:projective transformations 7643:10.1007/s00332-012-9152-3 7554:Duke Mathematical Journal 7396:10.1007/s00220-010-1075-y 7317:10.1007/s11784-008-0079-0 7158:"Ueber das ebene Funfeck" 6667:{\displaystyle G=\pi (T)} 6516:alternating sign matrices 6286:The Octahedral recurrence 2158:by a sequence of vectors 1652:projective transformation 1400:projective transformation 776:projective transformation 678:projective transformation 534:projective transformation 7576:10.1215/00127094-2382228 7424:Schwartz, Richard Evan; 7092:Periodic table of shapes 7038:{\displaystyle C_{0}(x)} 7002:{\displaystyle C_{t}(x)} 6966:{\displaystyle C_{t}(x)} 5946:define commuting flows. 5505:Hamiltonian vector field 2488:{\displaystyle B\circ A} 1630:Most authors consider 1/ 1011:, one typically sees an 767:{\displaystyle T^{2}(H)} 7678:10.1023/A:1008226427785 6802:The Boussinesq equation 6784:{\displaystyle v=AD/BC} 3818:is even, the functions 3516:{\displaystyle B(A(P))} 2461:As a birational mapping 1695:is an adjacent line of 1357:The tori are invisible 1221:. This would lead to a 1210:{\displaystyle (x,y,z)} 1172:{\displaystyle (x,y,z)} 1051:on the moduli space of 593:{\displaystyle P_{N+k}} 475:is just clockwise from 7039: 7003: 6967: 6931: 6930:{\displaystyle C(x+t)} 6896: 6895:{\displaystyle C(x-t)} 6857: 6785: 6742: 6722: 6705: 6688: 6668: 6629: 6609: 6585: 6546: 6529: 6493: 6427: 6400: 6370: 6208: 6181: 6147: 6067: 6013: 5950:Complete integrability 5936: 5907: 5891:directional derivative 5880: 5824: 5497: 5471: 5442: 5325: 5239: 5156: 5073: 4987: 4902: 4771: 4719: 4626: 4599: 4541: 4514: 4480: 4398: 4269: 4195: 4145: 4118: 4084: 3952: 3798: 3731: 3635: 3602: 3601:{\displaystyle c=1-ab} 3564: 3517: 3479: 3448: 3431: 3430:{\displaystyle F^{2N}} 3390: 2735: 2635: 2529: 2509: 2489: 2427: 2352: 2241: 2214: 2128: 2127:{\displaystyle F^{2N}} 2090: 2089:{\displaystyle F^{2N}} 2050: 1974: 1902: 1853: 1787: 1733: 1726: 1659:The corner coordinates 1621: 1465: 1405:Given the four points 1348: 1328: 1308: 1211: 1173: 1135: 1097: 1015:. When one looks at a 989: 957: 956:{\displaystyle K>0} 931: 930:{\displaystyle Ka^{n}} 884: 871: 851: 826: 797: 768: 732: 704: 594: 561: 513: 496: 469: 422: 421:{\displaystyle P\to Q} 382:and thereby induces a 347: 333: 290: 247: 220: 153: 7785:10.3934/era.2009.16.1 7530:on September 27, 2011 7162:Mathematische Annalen 7040: 7004: 6968: 6932: 6897: 6858: 6786: 6748:by applying the rule 6743: 6723: 6704: 6689: 6669: 6630: 6610: 6586: 6547: 6528: 6494: 6428: 6426:{\displaystyle b_{i}} 6401: 6399:{\displaystyle a_{i}} 6371: 6271:quasi-periodic motion 6239:quasi-periodic motion 6209: 6207:{\displaystyle E_{n}} 6182: 6180:{\displaystyle O_{n}} 6148: 6068: 6014: 5937: 5908: 5881: 5825: 5498: 5472: 5443: 5326: 5240: 5157: 5074: 4988: 4903: 4772: 4741:is an anti-symmetric 4720: 4627: 4625:{\displaystyle E_{N}} 4600: 4598:{\displaystyle O_{N}} 4542: 4540:{\displaystyle E_{k}} 4515: 4513:{\displaystyle O_{k}} 4481: 4406:123789 gives rise to 4399: 4270: 4196: 4146: 4144:{\displaystyle E_{k}} 4119: 4117:{\displaystyle O_{k}} 4085: 3953: 3799: 3732: 3636: 3634:{\displaystyle wx=yz} 3603: 3565: 3518: 3480: 3447: 3432: 3391: 2736: 2636: 2530: 2510: 2490: 2428: 2353: 2242: 2240:{\displaystyle R^{3}} 2215: 2129: 2091: 2066:-gon with a point in 2051: 1980:are used in place of 1975: 1903: 1854: 1788: 1732: 1725: 1622: 1466: 1349: 1329: 1309: 1212: 1174: 1136: 1098: 1096:{\displaystyle x,y,z} 999:Motivating discussion 990: 958: 932: 899:Exponential shrinking 883: 872: 852: 827: 798: 769: 733: 705: 703:{\displaystyle T^{2}} 663:Elementary properties 595: 562: 560:{\displaystyle P_{k}} 512: 497: 495:{\displaystyle P_{k}} 470: 468:{\displaystyle Q_{k}} 423: 345: 334: 291: 248: 246:{\displaystyle Q_{4}} 221: 154: 83:Definition of the map 7013: 6977: 6941: 6906: 6871: 6828: 6755: 6732: 6712: 6708:Given a labeling of 6678: 6643: 6619: 6599: 6556: 6536: 6437: 6410: 6383: 6297: 6191: 6164: 6087: 6024: 5970: 5935:{\displaystyle H(f)} 5917: 5897: 5840: 5513: 5487: 5470:{\displaystyle i,j.} 5452: 5336: 5250: 5167: 5084: 4998: 4921: 4796: 4749: 4671: 4609: 4582: 4524: 4497: 4410: 4348: 4309:Monodromy invariants 4236: 4162: 4128: 4101: 3963: 3825: 3742: 3669: 3653:Invariant structures 3613: 3577: 3527: 3489: 3478:{\displaystyle A(P)} 3460: 3411: 2751: 2646: 2546: 2519: 2499: 2473: 2365: 2258: 2224: 2162: 2108: 2070: 1984: 1912: 1863: 1797: 1748: 1481: 1409: 1338: 1318: 1298: 1183: 1145: 1107: 1075: 967: 941: 911: 861: 836: 825:{\displaystyle T(H)} 807: 782: 742: 722: 687: 571: 544: 479: 452: 406: 398:Labeling conventions 374:. The pentagram map 370:are in sufficiently 300: 257: 230: 171: 104: 63:and a 1945 paper of 7824:Projective geometry 7777:2009arXiv0901.1585O 7476:2010arXiv1004.4311S 7388:2010CMaPh.299..409O 7242:Geometriae Dedicata 7156:A. Clebsch (1871). 7130:"The Pentagram Map" 7059:projective geometry 6808:Boussinesq equation 6510:Max Glick used the 6246:symplectic geometry 4344:1567 gives rise to 2537:birational mappings 1029:perspective drawing 1005:projective geometry 893:Desargues's theorem 532:-periodic modulo a 392:equivalence classes 7426:Tabachnikov, Serge 7255:10.1007/BF00160619 7174:10.1007/bf01455078 7035: 6999: 6963: 6927: 6892: 6853: 6781: 6738: 6718: 6706: 6684: 6664: 6625: 6605: 6581: 6542: 6530: 6489: 6423: 6396: 6366: 6262:Lax representation 6204: 6177: 6143: 6078:Casimir invariants 6063: 6009: 5932: 5903: 5876: 5820: 5493: 5467: 5438: 5321: 5235: 5152: 5069: 4983: 4898: 4767: 4715: 4622: 4595: 4537: 4510: 4476: 4394: 4265: 4191: 4141: 4114: 4095:Casimir invariants 4080: 3948: 3794: 3727: 3631: 3598: 3560: 3513: 3475: 3449: 3427: 3399:(Note: the index 2 3386: 3384: 2731: 2631: 2525: 2505: 2485: 2423: 2348: 2237: 2210: 2152:Sergei Tabachnikov 2124: 2086: 2046: 1970: 1898: 1849: 1783: 1734: 1727: 1638:, and that is why 1617: 1461: 1390:is just a copy of 1367:integrable systems 1344: 1324: 1304: 1223:higher-dimensional 1207: 1169: 1131: 1093: 1061:Euclidean geometry 1031:and new ones like 985: 953: 927: 885: 867: 850:{\displaystyle H'} 847: 822: 796:{\displaystyle H'} 793: 764: 728: 700: 590: 557: 514: 492: 465: 418: 366:provided that the 348: 329: 286: 243: 216: 149: 88:Basic construction 69:Desargues' theorem 7829:Dynamical systems 7560:(15): 2815–2853. 7501:Experimental Math 7135:Experimental Math 6741:{\displaystyle G} 6721:{\displaystyle G} 6687:{\displaystyle G} 6628:{\displaystyle T} 6608:{\displaystyle T} 6593:linear projection 6545:{\displaystyle T} 6223:coordinate charts 5906:{\displaystyle g} 5818: 5781: 5729: 5672: 5635: 5583: 5496:{\displaystyle f} 4911:for all indices. 4638:rational function 3361: 3204: 3047: 2890: 2528:{\displaystyle B} 2508:{\displaystyle A} 2437:-gons as long as 1744:-gon, with flags 1699:. Each vertex of 1612: 1363:dynamical systems 1347:{\displaystyle 3} 1327:{\displaystyle 6} 1307:{\displaystyle 7} 870:{\displaystyle H} 731:{\displaystyle H} 92:Suppose that the 73:Poncelet's porism 7836: 7810: 7808: 7807: 7801: 7795:. Archived from 7770: 7745: 7743: 7742: 7736: 7717: 7716: 7696: 7690: 7689: 7661: 7655: 7654: 7628: 7619: 7613: 7612: 7610: 7597: 7588: 7587: 7569: 7549: 7540: 7539: 7537: 7535: 7529: 7523:. Archived from 7498: 7489: 7480: 7479: 7469: 7451: 7440: 7439: 7437: 7421: 7415: 7414: 7412: 7410: 7381: 7366:Comm. Math. Phys 7363: 7354: 7329: 7328: 7310: 7290: 7267: 7266: 7236: 7227: 7226: 7224: 7195: 7186: 7185: 7153: 7144: 7143: 7125: 7069:Cluster algebras 7044: 7042: 7041: 7036: 7025: 7024: 7008: 7006: 7005: 7000: 6989: 6988: 6972: 6970: 6969: 6964: 6953: 6952: 6936: 6934: 6933: 6928: 6901: 6899: 6898: 6893: 6862: 6860: 6859: 6854: 6852: 6851: 6790: 6788: 6787: 6782: 6774: 6747: 6745: 6744: 6739: 6727: 6725: 6724: 6719: 6693: 6691: 6690: 6685: 6673: 6671: 6670: 6665: 6639:of any point in 6634: 6632: 6631: 6626: 6614: 6612: 6611: 6606: 6590: 6588: 6587: 6582: 6580: 6579: 6551: 6549: 6548: 6543: 6520:David P. Robbins 6498: 6496: 6495: 6490: 6488: 6487: 6475: 6474: 6462: 6461: 6449: 6448: 6432: 6430: 6429: 6424: 6422: 6421: 6405: 6403: 6402: 6397: 6395: 6394: 6375: 6373: 6372: 6367: 6365: 6364: 6355: 6354: 6342: 6341: 6332: 6331: 6319: 6318: 6309: 6308: 6213: 6211: 6210: 6205: 6203: 6202: 6186: 6184: 6183: 6178: 6176: 6175: 6152: 6150: 6149: 6144: 6127: 6126: 6102: 6101: 6072: 6070: 6069: 6064: 6062: 6061: 6049: 6048: 6036: 6035: 6018: 6016: 6015: 6010: 6008: 6007: 5995: 5994: 5982: 5981: 5941: 5939: 5938: 5933: 5912: 5910: 5909: 5904: 5885: 5883: 5882: 5877: 5829: 5827: 5826: 5821: 5819: 5817: 5816: 5815: 5799: 5797: 5796: 5787: 5783: 5782: 5780: 5779: 5778: 5759: 5751: 5749: 5748: 5730: 5728: 5727: 5726: 5707: 5699: 5697: 5696: 5673: 5671: 5670: 5669: 5653: 5651: 5650: 5641: 5637: 5636: 5634: 5633: 5632: 5613: 5605: 5603: 5602: 5584: 5582: 5581: 5580: 5561: 5553: 5551: 5550: 5502: 5500: 5499: 5494: 5476: 5474: 5473: 5468: 5447: 5445: 5444: 5439: 5428: 5427: 5415: 5414: 5396: 5395: 5383: 5382: 5364: 5363: 5351: 5350: 5330: 5328: 5327: 5322: 5320: 5319: 5303: 5302: 5284: 5283: 5265: 5264: 5244: 5242: 5241: 5236: 5234: 5233: 5217: 5216: 5201: 5200: 5182: 5181: 5161: 5159: 5158: 5153: 5151: 5150: 5134: 5133: 5118: 5117: 5099: 5098: 5078: 5076: 5075: 5070: 5068: 5067: 5051: 5050: 5032: 5031: 5013: 5012: 4992: 4990: 4989: 4984: 4972: 4971: 4959: 4958: 4946: 4945: 4933: 4932: 4907: 4905: 4904: 4899: 4888: 4887: 4875: 4874: 4856: 4855: 4843: 4842: 4824: 4823: 4811: 4810: 4779:Leibniz Identity 4776: 4774: 4773: 4768: 4724: 4722: 4721: 4716: 4705: 4704: 4683: 4682: 4631: 4629: 4628: 4623: 4621: 4620: 4604: 4602: 4601: 4596: 4594: 4593: 4546: 4544: 4543: 4538: 4536: 4535: 4519: 4517: 4516: 4511: 4509: 4508: 4485: 4483: 4482: 4477: 4475: 4474: 4465: 4464: 4455: 4454: 4445: 4444: 4435: 4434: 4425: 4424: 4403: 4401: 4400: 4395: 4393: 4392: 4383: 4382: 4373: 4372: 4363: 4362: 4274: 4272: 4271: 4266: 4264: 4263: 4254: 4253: 4200: 4198: 4197: 4192: 4190: 4189: 4180: 4179: 4158:of the function 4150: 4148: 4147: 4142: 4140: 4139: 4123: 4121: 4120: 4115: 4113: 4112: 4089: 4087: 4086: 4081: 4079: 4078: 4063: 4062: 4053: 4052: 4043: 4042: 4030: 4029: 4008: 4007: 3998: 3997: 3988: 3987: 3975: 3974: 3957: 3955: 3954: 3949: 3947: 3946: 3925: 3924: 3915: 3914: 3905: 3904: 3892: 3891: 3870: 3869: 3860: 3859: 3850: 3849: 3837: 3836: 3803: 3801: 3800: 3795: 3793: 3792: 3777: 3776: 3767: 3766: 3754: 3753: 3736: 3734: 3733: 3728: 3726: 3725: 3704: 3703: 3694: 3693: 3681: 3680: 3640: 3638: 3637: 3632: 3607: 3605: 3604: 3599: 3569: 3567: 3566: 3561: 3522: 3520: 3519: 3514: 3484: 3482: 3481: 3476: 3436: 3434: 3433: 3428: 3426: 3425: 3395: 3393: 3392: 3387: 3385: 3381: 3380: 3362: 3360: 3356: 3355: 3337: 3336: 3308: 3304: 3303: 3285: 3284: 3256: 3247: 3246: 3224: 3223: 3205: 3203: 3199: 3198: 3180: 3179: 3151: 3147: 3146: 3128: 3127: 3099: 3090: 3089: 3067: 3066: 3048: 3046: 3042: 3041: 3023: 3022: 2994: 2990: 2989: 2971: 2970: 2942: 2933: 2932: 2910: 2909: 2891: 2889: 2885: 2884: 2866: 2865: 2837: 2833: 2832: 2814: 2813: 2785: 2776: 2775: 2740: 2738: 2737: 2732: 2727: 2726: 2705: 2704: 2686: 2685: 2664: 2663: 2640: 2638: 2637: 2632: 2627: 2626: 2605: 2604: 2586: 2585: 2564: 2563: 2534: 2532: 2531: 2526: 2514: 2512: 2511: 2506: 2494: 2492: 2491: 2486: 2432: 2430: 2429: 2424: 2416: 2415: 2403: 2402: 2390: 2389: 2377: 2376: 2361:The coordinates 2357: 2355: 2354: 2349: 2347: 2346: 2334: 2333: 2318: 2317: 2305: 2304: 2289: 2288: 2276: 2275: 2246: 2244: 2243: 2238: 2236: 2235: 2219: 2217: 2216: 2211: 2203: 2202: 2190: 2189: 2177: 2176: 2156:projective plane 2146:(ab) coordinates 2133: 2131: 2130: 2125: 2123: 2122: 2095: 2093: 2092: 2087: 2085: 2084: 2055: 2053: 2052: 2047: 2035: 2034: 2022: 2021: 2009: 2008: 1996: 1995: 1979: 1977: 1976: 1971: 1963: 1962: 1950: 1949: 1937: 1936: 1924: 1923: 1907: 1905: 1904: 1899: 1897: 1896: 1875: 1874: 1858: 1856: 1855: 1850: 1848: 1847: 1835: 1834: 1822: 1821: 1809: 1808: 1792: 1790: 1789: 1784: 1782: 1781: 1760: 1759: 1648:projective space 1626: 1624: 1623: 1618: 1613: 1611: 1607: 1606: 1594: 1593: 1578: 1577: 1565: 1564: 1551: 1547: 1546: 1534: 1533: 1518: 1517: 1505: 1504: 1491: 1470: 1468: 1467: 1462: 1460: 1459: 1447: 1446: 1434: 1433: 1421: 1420: 1353: 1351: 1350: 1345: 1333: 1331: 1330: 1325: 1313: 1311: 1310: 1305: 1216: 1214: 1213: 1208: 1178: 1176: 1175: 1170: 1140: 1138: 1137: 1132: 1102: 1100: 1099: 1094: 994: 992: 991: 986: 962: 960: 959: 954: 936: 934: 933: 928: 926: 925: 889:Pascal's theorem 876: 874: 873: 868: 856: 854: 853: 848: 846: 831: 829: 828: 823: 802: 800: 799: 794: 792: 773: 771: 770: 765: 754: 753: 737: 735: 734: 729: 709: 707: 706: 701: 699: 698: 599: 597: 596: 591: 589: 588: 566: 564: 563: 558: 556: 555: 517:Twisted polygons 501: 499: 498: 493: 491: 490: 474: 472: 471: 466: 464: 463: 427: 425: 424: 419: 372:general position 360:projective plane 354:polygons in the 338: 336: 335: 330: 325: 324: 315: 314: 295: 293: 292: 287: 282: 281: 272: 271: 252: 250: 249: 244: 242: 241: 225: 223: 222: 217: 209: 208: 196: 195: 183: 182: 158: 156: 155: 150: 142: 141: 129: 128: 116: 115: 65:Theodore Motzkin 53:Richard Schwartz 41:projective plane 29:dynamical system 7844: 7843: 7839: 7838: 7837: 7835: 7834: 7833: 7814: 7813: 7805: 7803: 7799: 7748: 7740: 7738: 7734: 7729: 7726: 7724:Further reading 7721: 7720: 7698: 7697: 7693: 7663: 7662: 7658: 7626: 7621: 7620: 7616: 7600: 7598: 7591: 7551: 7550: 7543: 7533: 7531: 7527: 7496: 7491: 7490: 7483: 7453: 7452: 7443: 7423: 7422: 7418: 7408: 7406: 7361: 7356: 7355: 7332: 7292: 7291: 7270: 7238: 7237: 7230: 7215:(12): 985–989. 7197: 7196: 7189: 7155: 7154: 7147: 7127: 7126: 7105: 7100: 7083: 7075:cluster algebra 7071: 7063:computer vision 7055: 7016: 7011: 7010: 6980: 6975: 6974: 6944: 6939: 6938: 6904: 6903: 6869: 6868: 6843: 6826: 6825: 6804: 6753: 6752: 6730: 6729: 6710: 6709: 6676: 6675: 6641: 6640: 6617: 6616: 6597: 6596: 6571: 6554: 6553: 6534: 6533: 6512:cluster algebra 6501:C. L. Dodgson's 6479: 6466: 6453: 6440: 6435: 6434: 6413: 6408: 6407: 6386: 6381: 6380: 6356: 6346: 6333: 6323: 6310: 6300: 6295: 6294: 6288: 6283: 6275:theta functions 6258: 6250:symplectic form 6194: 6189: 6188: 6167: 6162: 6161: 6118: 6093: 6085: 6084: 6053: 6040: 6027: 6022: 6021: 5999: 5986: 5973: 5968: 5967: 5957: 5952: 5915: 5914: 5895: 5894: 5838: 5837: 5807: 5803: 5788: 5764: 5760: 5752: 5734: 5712: 5708: 5700: 5682: 5681: 5677: 5661: 5657: 5642: 5618: 5614: 5606: 5588: 5566: 5562: 5554: 5536: 5535: 5531: 5511: 5510: 5485: 5484: 5450: 5449: 5419: 5406: 5387: 5374: 5355: 5342: 5334: 5333: 5305: 5294: 5269: 5256: 5248: 5247: 5219: 5208: 5186: 5173: 5165: 5164: 5136: 5125: 5103: 5090: 5082: 5081: 5053: 5042: 5017: 5004: 4996: 4995: 4963: 4950: 4937: 4924: 4919: 4918: 4879: 4866: 4847: 4834: 4815: 4802: 4794: 4793: 4787:Poisson bracket 4783:Jacobi identity 4747: 4746: 4739:Poisson bracket 4735: 4733:Poisson bracket 4696: 4674: 4669: 4668: 4612: 4607: 4606: 4585: 4580: 4579: 4527: 4522: 4521: 4500: 4495: 4494: 4466: 4456: 4446: 4436: 4426: 4416: 4408: 4407: 4384: 4374: 4364: 4354: 4346: 4345: 4311: 4255: 4245: 4234: 4233: 4222: 4207:convex polygons 4181: 4171: 4160: 4159: 4131: 4126: 4125: 4104: 4099: 4098: 4067: 4054: 4044: 4034: 4012: 3999: 3989: 3979: 3966: 3961: 3960: 3929: 3916: 3906: 3896: 3874: 3861: 3851: 3841: 3828: 3823: 3822: 3781: 3768: 3758: 3745: 3740: 3739: 3708: 3695: 3685: 3672: 3667: 3666: 3660: 3655: 3611: 3610: 3575: 3574: 3525: 3524: 3487: 3486: 3458: 3457: 3442: 3414: 3409: 3408: 3383: 3382: 3363: 3338: 3319: 3309: 3286: 3267: 3257: 3248: 3229: 3226: 3225: 3206: 3181: 3162: 3152: 3129: 3110: 3100: 3091: 3072: 3069: 3068: 3049: 3024: 3005: 2995: 2972: 2953: 2943: 2934: 2915: 2912: 2911: 2892: 2867: 2848: 2838: 2815: 2796: 2786: 2777: 2758: 2749: 2748: 2715: 2696: 2674: 2655: 2644: 2643: 2615: 2596: 2574: 2555: 2544: 2543: 2517: 2516: 2497: 2496: 2471: 2470: 2463: 2458: 2407: 2394: 2381: 2368: 2363: 2362: 2338: 2319: 2309: 2290: 2280: 2261: 2256: 2255: 2227: 2222: 2221: 2194: 2181: 2168: 2160: 2159: 2148: 2111: 2106: 2105: 2073: 2068: 2067: 2026: 2013: 2000: 1987: 1982: 1981: 1954: 1941: 1928: 1915: 1910: 1909: 1885: 1866: 1861: 1860: 1839: 1826: 1813: 1800: 1795: 1794: 1770: 1751: 1746: 1745: 1687:is a vertex of 1661: 1598: 1585: 1569: 1556: 1552: 1538: 1525: 1509: 1496: 1492: 1479: 1478: 1451: 1438: 1425: 1412: 1407: 1406: 1396:projective line 1380: 1375: 1336: 1335: 1316: 1315: 1296: 1295: 1272:Euclidean space 1181: 1180: 1143: 1142: 1141:So, each point 1105: 1104: 1073: 1072: 1033:computer vision 1001: 965: 964: 939: 938: 917: 909: 908: 901: 859: 858: 839: 834: 833: 805: 804: 785: 780: 779: 745: 740: 739: 720: 719: 690: 685: 684: 670: 665: 612:of the twisted 574: 569: 568: 547: 542: 541: 519: 482: 477: 476: 455: 450: 449: 404: 403: 400: 316: 306: 298: 297: 273: 263: 255: 254: 233: 228: 227: 200: 187: 174: 169: 168: 133: 120: 107: 102: 101: 100:P are given by 90: 85: 77:Branko Grünbaum 17: 12: 11: 5: 7842: 7840: 7832: 7831: 7826: 7816: 7815: 7812: 7811: 7746: 7725: 7722: 7719: 7718: 7691: 7672:(3): 225–240. 7656: 7637:(2): 303–334. 7614: 7589: 7541: 7507:(4): 519–528. 7481: 7441: 7416: 7372:(2): 409–446. 7330: 7301:(2): 379–409. 7268: 7249:(2): 145–151. 7228: 7187: 7168:(3): 476–489. 7145: 7102: 7101: 7099: 7096: 7095: 7094: 7089: 7082: 7079: 7070: 7067: 7054: 7051: 7034: 7031: 7028: 7023: 7019: 6998: 6995: 6992: 6987: 6983: 6962: 6959: 6956: 6951: 6947: 6926: 6923: 6920: 6917: 6914: 6911: 6891: 6888: 6885: 6882: 6879: 6876: 6850: 6846: 6842: 6839: 6836: 6833: 6822:locally convex 6803: 6800: 6792: 6791: 6780: 6777: 6773: 6769: 6766: 6763: 6760: 6737: 6717: 6683: 6663: 6660: 6657: 6654: 6651: 6648: 6624: 6604: 6578: 6574: 6570: 6567: 6564: 6561: 6541: 6486: 6482: 6478: 6473: 6469: 6465: 6460: 6456: 6452: 6447: 6443: 6420: 6416: 6393: 6389: 6377: 6376: 6363: 6359: 6353: 6349: 6345: 6340: 6336: 6330: 6326: 6322: 6317: 6313: 6307: 6303: 6287: 6284: 6282: 6279: 6257: 6254: 6201: 6197: 6174: 6170: 6154: 6153: 6142: 6139: 6136: 6133: 6130: 6125: 6121: 6117: 6114: 6111: 6108: 6105: 6100: 6096: 6092: 6074: 6073: 6060: 6056: 6052: 6047: 6043: 6039: 6034: 6030: 6019: 6006: 6002: 5998: 5993: 5989: 5985: 5980: 5976: 5956: 5953: 5951: 5948: 5931: 5928: 5925: 5922: 5902: 5887: 5886: 5875: 5872: 5869: 5866: 5863: 5860: 5857: 5854: 5851: 5848: 5845: 5831: 5830: 5814: 5810: 5806: 5802: 5795: 5791: 5786: 5777: 5774: 5771: 5767: 5763: 5758: 5755: 5747: 5744: 5741: 5737: 5733: 5725: 5722: 5719: 5715: 5711: 5706: 5703: 5695: 5692: 5689: 5685: 5680: 5676: 5668: 5664: 5660: 5656: 5649: 5645: 5640: 5631: 5628: 5625: 5621: 5617: 5612: 5609: 5601: 5598: 5595: 5591: 5587: 5579: 5576: 5573: 5569: 5565: 5560: 5557: 5549: 5546: 5543: 5539: 5534: 5530: 5527: 5524: 5521: 5518: 5492: 5478: 5477: 5466: 5463: 5460: 5457: 5448:for all other 5437: 5434: 5431: 5426: 5422: 5418: 5413: 5409: 5405: 5402: 5399: 5394: 5390: 5386: 5381: 5377: 5373: 5370: 5367: 5362: 5358: 5354: 5349: 5345: 5341: 5331: 5318: 5315: 5312: 5308: 5301: 5297: 5293: 5290: 5287: 5282: 5279: 5276: 5272: 5268: 5263: 5259: 5255: 5245: 5232: 5229: 5226: 5222: 5215: 5211: 5207: 5204: 5199: 5196: 5193: 5189: 5185: 5180: 5176: 5172: 5162: 5149: 5146: 5143: 5139: 5132: 5128: 5124: 5121: 5116: 5113: 5110: 5106: 5102: 5097: 5093: 5089: 5079: 5066: 5063: 5060: 5056: 5049: 5045: 5041: 5038: 5035: 5030: 5027: 5024: 5020: 5016: 5011: 5007: 5003: 4993: 4982: 4978: 4975: 4970: 4966: 4962: 4957: 4953: 4949: 4944: 4940: 4936: 4931: 4927: 4909: 4908: 4897: 4894: 4891: 4886: 4882: 4878: 4873: 4869: 4865: 4862: 4859: 4854: 4850: 4846: 4841: 4837: 4833: 4830: 4827: 4822: 4818: 4814: 4809: 4805: 4801: 4766: 4763: 4760: 4757: 4754: 4734: 4731: 4714: 4711: 4708: 4703: 4699: 4695: 4692: 4689: 4686: 4681: 4677: 4652:of 4-diagonal 4619: 4615: 4592: 4588: 4534: 4530: 4507: 4503: 4487: 4486: 4473: 4469: 4463: 4459: 4453: 4449: 4443: 4439: 4433: 4429: 4423: 4419: 4415: 4404: 4391: 4387: 4381: 4377: 4371: 4367: 4361: 4357: 4353: 4310: 4307: 4262: 4258: 4252: 4248: 4244: 4241: 4221: 4218: 4188: 4184: 4178: 4174: 4170: 4167: 4138: 4134: 4111: 4107: 4091: 4090: 4077: 4074: 4070: 4066: 4061: 4057: 4051: 4047: 4041: 4037: 4033: 4028: 4025: 4022: 4019: 4015: 4011: 4006: 4002: 3996: 3992: 3986: 3982: 3978: 3973: 3969: 3958: 3945: 3942: 3939: 3936: 3932: 3928: 3923: 3919: 3913: 3909: 3903: 3899: 3895: 3890: 3887: 3884: 3881: 3877: 3873: 3868: 3864: 3858: 3854: 3848: 3844: 3840: 3835: 3831: 3814: = 2 3805: 3804: 3791: 3788: 3784: 3780: 3775: 3771: 3765: 3761: 3757: 3752: 3748: 3737: 3724: 3721: 3718: 3715: 3711: 3707: 3702: 3698: 3692: 3688: 3684: 3679: 3675: 3659: 3656: 3654: 3651: 3642: 3641: 3630: 3627: 3624: 3621: 3618: 3608: 3597: 3594: 3591: 3588: 3585: 3582: 3559: 3556: 3553: 3550: 3547: 3544: 3541: 3538: 3535: 3532: 3512: 3509: 3506: 3503: 3500: 3497: 3494: 3474: 3471: 3468: 3465: 3441: 3438: 3424: 3421: 3417: 3397: 3396: 3379: 3376: 3373: 3370: 3366: 3359: 3354: 3351: 3348: 3345: 3341: 3335: 3332: 3329: 3326: 3322: 3318: 3315: 3312: 3307: 3302: 3299: 3296: 3293: 3289: 3283: 3280: 3277: 3274: 3270: 3266: 3263: 3260: 3254: 3251: 3249: 3245: 3242: 3239: 3236: 3232: 3228: 3227: 3222: 3219: 3216: 3213: 3209: 3202: 3197: 3194: 3191: 3188: 3184: 3178: 3175: 3172: 3169: 3165: 3161: 3158: 3155: 3150: 3145: 3142: 3139: 3136: 3132: 3126: 3123: 3120: 3117: 3113: 3109: 3106: 3103: 3097: 3094: 3092: 3088: 3085: 3082: 3079: 3075: 3071: 3070: 3065: 3062: 3059: 3056: 3052: 3045: 3040: 3037: 3034: 3031: 3027: 3021: 3018: 3015: 3012: 3008: 3004: 3001: 2998: 2993: 2988: 2985: 2982: 2979: 2975: 2969: 2966: 2963: 2960: 2956: 2952: 2949: 2946: 2940: 2937: 2935: 2931: 2928: 2925: 2922: 2918: 2914: 2913: 2908: 2905: 2902: 2899: 2895: 2888: 2883: 2880: 2877: 2874: 2870: 2864: 2861: 2858: 2855: 2851: 2847: 2844: 2841: 2836: 2831: 2828: 2825: 2822: 2818: 2812: 2809: 2806: 2803: 2799: 2795: 2792: 2789: 2783: 2780: 2778: 2774: 2771: 2768: 2765: 2761: 2757: 2756: 2742: 2741: 2730: 2725: 2722: 2718: 2714: 2711: 2708: 2703: 2699: 2695: 2692: 2689: 2684: 2681: 2677: 2673: 2670: 2667: 2662: 2658: 2654: 2651: 2641: 2630: 2625: 2622: 2618: 2614: 2611: 2608: 2603: 2599: 2595: 2592: 2589: 2584: 2581: 2577: 2573: 2570: 2567: 2562: 2558: 2554: 2551: 2524: 2504: 2484: 2481: 2478: 2462: 2459: 2457: 2454: 2422: 2419: 2414: 2410: 2406: 2401: 2397: 2393: 2388: 2384: 2380: 2375: 2371: 2359: 2358: 2345: 2341: 2337: 2332: 2329: 2326: 2322: 2316: 2312: 2308: 2303: 2300: 2297: 2293: 2287: 2283: 2279: 2274: 2271: 2268: 2264: 2249:parallelepiped 2234: 2230: 2209: 2206: 2201: 2197: 2193: 2188: 2184: 2180: 2175: 2171: 2167: 2147: 2144: 2121: 2118: 2114: 2102:measure theory 2083: 2080: 2076: 2045: 2041: 2038: 2033: 2029: 2025: 2020: 2016: 2012: 2007: 2003: 1999: 1994: 1990: 1969: 1966: 1961: 1957: 1953: 1948: 1944: 1940: 1935: 1931: 1927: 1922: 1918: 1895: 1892: 1888: 1884: 1881: 1878: 1873: 1869: 1846: 1842: 1838: 1833: 1829: 1825: 1820: 1816: 1812: 1807: 1803: 1780: 1777: 1773: 1769: 1766: 1763: 1758: 1754: 1660: 1657: 1628: 1627: 1616: 1610: 1605: 1601: 1597: 1592: 1588: 1584: 1581: 1576: 1572: 1568: 1563: 1559: 1555: 1550: 1545: 1541: 1537: 1532: 1528: 1524: 1521: 1516: 1512: 1508: 1503: 1499: 1495: 1489: 1486: 1458: 1454: 1450: 1445: 1441: 1437: 1432: 1428: 1424: 1419: 1415: 1379: 1376: 1374: 1371: 1343: 1323: 1303: 1247:moduli space. 1236:convex polygon 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1092: 1089: 1086: 1083: 1080: 1000: 997: 984: 981: 978: 975: 972: 952: 949: 946: 937:for constants 924: 920: 916: 905:convex polygon 900: 897: 866: 845: 842: 821: 818: 815: 812: 791: 788: 763: 760: 757: 752: 748: 727: 697: 693: 669: 666: 664: 661: 608:is called the 587: 584: 581: 577: 554: 550: 518: 515: 489: 485: 462: 458: 417: 414: 411: 399: 396: 390:of projective 328: 323: 319: 313: 309: 305: 285: 280: 276: 270: 266: 262: 240: 236: 215: 212: 207: 203: 199: 194: 190: 186: 181: 177: 167:with vertices 148: 145: 140: 136: 132: 127: 123: 119: 114: 110: 89: 86: 84: 81: 61:Alfred Clebsch 27:is a discrete 15: 13: 10: 9: 6: 4: 3: 2: 7841: 7830: 7827: 7825: 7822: 7821: 7819: 7802:on 2011-09-30 7798: 7794: 7790: 7786: 7782: 7778: 7774: 7769: 7764: 7760: 7756: 7752: 7747: 7733: 7728: 7727: 7723: 7714: 7710: 7706: 7702: 7695: 7692: 7687: 7683: 7679: 7675: 7671: 7667: 7660: 7657: 7652: 7648: 7644: 7640: 7636: 7632: 7625: 7618: 7615: 7609: 7604: 7596: 7594: 7590: 7585: 7581: 7577: 7573: 7568: 7563: 7559: 7555: 7548: 7546: 7542: 7526: 7522: 7518: 7514: 7510: 7506: 7502: 7495: 7488: 7486: 7482: 7477: 7473: 7468: 7463: 7459: 7458: 7450: 7448: 7446: 7442: 7436: 7431: 7427: 7420: 7417: 7405: 7401: 7397: 7393: 7389: 7385: 7380: 7375: 7371: 7367: 7360: 7353: 7351: 7349: 7347: 7345: 7343: 7341: 7339: 7337: 7335: 7331: 7326: 7322: 7318: 7314: 7309: 7304: 7300: 7296: 7289: 7287: 7285: 7283: 7281: 7279: 7277: 7275: 7273: 7269: 7264: 7260: 7256: 7252: 7248: 7244: 7243: 7235: 7233: 7229: 7223: 7218: 7214: 7210: 7209: 7204: 7200: 7194: 7192: 7188: 7183: 7179: 7175: 7171: 7167: 7163: 7159: 7152: 7150: 7146: 7141: 7137: 7136: 7131: 7124: 7122: 7120: 7118: 7116: 7114: 7112: 7110: 7108: 7104: 7097: 7093: 7090: 7088: 7087:Combinatorics 7085: 7084: 7080: 7078: 7076: 7068: 7066: 7064: 7060: 7052: 7050: 7047: 7029: 7021: 7017: 6993: 6985: 6981: 6957: 6949: 6945: 6921: 6918: 6915: 6909: 6886: 6883: 6880: 6874: 6866: 6848: 6844: 6837: 6834: 6831: 6823: 6818: 6816: 6813: 6809: 6801: 6799: 6797: 6778: 6775: 6771: 6767: 6764: 6761: 6758: 6751: 6750: 6749: 6735: 6715: 6703: 6699: 6697: 6681: 6658: 6652: 6649: 6646: 6638: 6637:inverse image 6622: 6602: 6594: 6576: 6572: 6565: 6562: 6559: 6539: 6527: 6523: 6521: 6517: 6513: 6508: 6506: 6502: 6484: 6480: 6476: 6471: 6467: 6463: 6458: 6454: 6450: 6445: 6441: 6418: 6414: 6391: 6387: 6361: 6357: 6351: 6347: 6343: 6338: 6334: 6328: 6324: 6320: 6315: 6311: 6305: 6301: 6293: 6292: 6291: 6285: 6280: 6278: 6276: 6272: 6268: 6263: 6255: 6253: 6251: 6247: 6242: 6240: 6236: 6233: 6229: 6224: 6220: 6215: 6199: 6195: 6172: 6168: 6159: 6140: 6137: 6131: 6128: 6123: 6119: 6112: 6106: 6103: 6098: 6094: 6083: 6082: 6081: 6079: 6058: 6054: 6050: 6045: 6041: 6037: 6032: 6028: 6020: 6004: 6000: 5996: 5991: 5987: 5983: 5978: 5974: 5966: 5965: 5964: 5962: 5954: 5949: 5947: 5945: 5944:vector fields 5926: 5920: 5900: 5892: 5870: 5867: 5864: 5858: 5855: 5849: 5843: 5836: 5835: 5834: 5812: 5808: 5793: 5789: 5784: 5775: 5772: 5769: 5765: 5756: 5745: 5742: 5739: 5735: 5731: 5723: 5720: 5717: 5713: 5704: 5693: 5690: 5687: 5683: 5678: 5674: 5666: 5662: 5647: 5643: 5638: 5629: 5626: 5623: 5619: 5610: 5599: 5596: 5593: 5589: 5585: 5577: 5574: 5571: 5567: 5558: 5547: 5544: 5541: 5537: 5532: 5528: 5522: 5516: 5509: 5508: 5507: 5506: 5490: 5481: 5464: 5461: 5458: 5455: 5435: 5432: 5424: 5420: 5416: 5411: 5407: 5400: 5392: 5388: 5384: 5379: 5375: 5368: 5360: 5356: 5352: 5347: 5343: 5332: 5316: 5313: 5310: 5306: 5299: 5295: 5291: 5288: 5280: 5277: 5274: 5270: 5266: 5261: 5257: 5246: 5230: 5227: 5224: 5220: 5213: 5209: 5205: 5197: 5194: 5191: 5187: 5183: 5178: 5174: 5163: 5147: 5144: 5141: 5137: 5130: 5126: 5122: 5114: 5111: 5108: 5104: 5100: 5095: 5091: 5080: 5064: 5061: 5058: 5054: 5047: 5043: 5039: 5036: 5028: 5025: 5022: 5018: 5014: 5009: 5005: 4994: 4980: 4976: 4973: 4968: 4964: 4960: 4955: 4951: 4947: 4942: 4938: 4934: 4929: 4925: 4917: 4916: 4915: 4912: 4895: 4892: 4884: 4880: 4876: 4871: 4867: 4860: 4852: 4848: 4844: 4839: 4835: 4828: 4820: 4816: 4812: 4807: 4803: 4792: 4791: 4790: 4788: 4784: 4780: 4761: 4758: 4755: 4744: 4740: 4732: 4730: 4728: 4725:for all  4709: 4701: 4697: 4693: 4687: 4679: 4675: 4666: 4665:conic section 4662: 4657: 4655: 4651: 4647: 4643: 4639: 4633: 4617: 4613: 4590: 4586: 4577: 4574: =  4573: 4569: 4565: 4561: 4557: 4553: 4548: 4532: 4528: 4505: 4501: 4492: 4471: 4467: 4461: 4457: 4451: 4447: 4441: 4437: 4431: 4427: 4421: 4417: 4413: 4405: 4389: 4385: 4379: 4375: 4369: 4365: 4359: 4355: 4351: 4343: 4342: 4341: 4339: 4334: 4332: 4328: 4322: 4320: 4316: 4308: 4306: 4303: 4301: 4297: 4293: 4289: 4285: 4281: 4278: 4260: 4256: 4250: 4246: 4242: 4239: 4231: 4227: 4219: 4217: 4215: 4212: 4208: 4204: 4186: 4182: 4176: 4172: 4168: 4165: 4157: 4152: 4136: 4132: 4109: 4105: 4096: 4075: 4072: 4068: 4064: 4059: 4055: 4049: 4045: 4039: 4035: 4031: 4026: 4023: 4020: 4017: 4013: 4009: 4004: 4000: 3994: 3990: 3984: 3980: 3976: 3971: 3967: 3959: 3943: 3940: 3937: 3934: 3930: 3926: 3921: 3917: 3911: 3907: 3901: 3897: 3893: 3888: 3885: 3882: 3879: 3875: 3871: 3866: 3862: 3856: 3852: 3846: 3842: 3838: 3833: 3829: 3821: 3820: 3819: 3817: 3813: 3808: 3789: 3786: 3782: 3778: 3773: 3769: 3763: 3759: 3755: 3750: 3746: 3738: 3722: 3719: 3716: 3713: 3709: 3705: 3700: 3696: 3690: 3686: 3682: 3677: 3673: 3665: 3664: 3663: 3657: 3652: 3650: 3647: 3628: 3625: 3622: 3619: 3616: 3609: 3595: 3592: 3589: 3586: 3583: 3580: 3573: 3572: 3571: 3548: 3542: 3536: 3530: 3504: 3498: 3492: 3469: 3463: 3454: 3446: 3439: 3437: 3422: 3419: 3415: 3406: 3402: 3377: 3374: 3371: 3368: 3364: 3352: 3349: 3346: 3343: 3339: 3333: 3330: 3327: 3324: 3320: 3316: 3313: 3300: 3297: 3294: 3291: 3287: 3281: 3278: 3275: 3272: 3268: 3264: 3261: 3252: 3250: 3243: 3240: 3237: 3234: 3230: 3220: 3217: 3214: 3211: 3207: 3195: 3192: 3189: 3186: 3182: 3176: 3173: 3170: 3167: 3163: 3159: 3156: 3143: 3140: 3137: 3134: 3130: 3124: 3121: 3118: 3115: 3111: 3107: 3104: 3095: 3093: 3086: 3083: 3080: 3077: 3073: 3063: 3060: 3057: 3054: 3050: 3038: 3035: 3032: 3029: 3025: 3019: 3016: 3013: 3010: 3006: 3002: 2999: 2986: 2983: 2980: 2977: 2973: 2967: 2964: 2961: 2958: 2954: 2950: 2947: 2938: 2936: 2929: 2926: 2923: 2920: 2916: 2906: 2903: 2900: 2897: 2893: 2881: 2878: 2875: 2872: 2868: 2862: 2859: 2856: 2853: 2849: 2845: 2842: 2829: 2826: 2823: 2820: 2816: 2810: 2807: 2804: 2801: 2797: 2793: 2790: 2781: 2779: 2772: 2769: 2766: 2763: 2759: 2747: 2746: 2745: 2723: 2720: 2716: 2712: 2709: 2706: 2701: 2697: 2690: 2682: 2679: 2675: 2671: 2668: 2665: 2660: 2656: 2649: 2642: 2623: 2620: 2616: 2612: 2609: 2606: 2601: 2597: 2590: 2582: 2579: 2575: 2571: 2568: 2565: 2560: 2556: 2549: 2542: 2541: 2540: 2538: 2522: 2502: 2482: 2479: 2476: 2469: 2460: 2455: 2453: 2451: 2447: 2442: 2440: 2436: 2420: 2417: 2412: 2408: 2404: 2399: 2395: 2391: 2386: 2382: 2378: 2373: 2369: 2343: 2339: 2335: 2330: 2327: 2324: 2320: 2314: 2310: 2306: 2301: 2298: 2295: 2291: 2285: 2281: 2277: 2272: 2269: 2266: 2262: 2254: 2253: 2252: 2250: 2232: 2228: 2207: 2204: 2199: 2195: 2191: 2186: 2182: 2178: 2173: 2169: 2165: 2157: 2153: 2145: 2143: 2141: 2137: 2119: 2116: 2112: 2103: 2099: 2081: 2078: 2074: 2065: 2061: 2056: 2043: 2039: 2036: 2031: 2027: 2023: 2018: 2014: 2010: 2005: 2001: 1997: 1992: 1988: 1967: 1964: 1959: 1955: 1951: 1946: 1942: 1938: 1933: 1929: 1925: 1920: 1916: 1893: 1890: 1886: 1882: 1879: 1876: 1871: 1867: 1844: 1840: 1836: 1831: 1827: 1823: 1818: 1814: 1810: 1805: 1801: 1778: 1775: 1771: 1767: 1764: 1761: 1756: 1752: 1743: 1739: 1731: 1724: 1720: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1658: 1656: 1653: 1649: 1644: 1641: 1637: 1633: 1614: 1603: 1599: 1595: 1590: 1586: 1574: 1570: 1566: 1561: 1557: 1543: 1539: 1535: 1530: 1526: 1514: 1510: 1506: 1501: 1497: 1487: 1484: 1477: 1476: 1475: 1474: 1456: 1452: 1448: 1443: 1439: 1435: 1430: 1426: 1422: 1417: 1413: 1403: 1401: 1397: 1393: 1389: 1385: 1377: 1372: 1370: 1368: 1364: 1360: 1355: 1354:dimensional. 1341: 1321: 1301: 1293: 1287: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1248: 1245: 1241: 1237: 1231: 1229: 1224: 1220: 1201: 1198: 1195: 1192: 1189: 1163: 1160: 1157: 1154: 1151: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1090: 1087: 1084: 1081: 1078: 1070: 1066: 1062: 1058: 1054: 1050: 1045: 1043: 1038: 1034: 1030: 1026: 1022: 1021:quadrilateral 1018: 1014: 1010: 1006: 998: 996: 982: 979: 976: 973: 970: 950: 947: 944: 922: 918: 914: 906: 898: 896: 894: 890: 882: 878: 864: 843: 840: 816: 810: 789: 786: 777: 758: 750: 746: 725: 717: 713: 695: 691: 681: 679: 675: 667: 662: 660: 658: 654: 650: 646: 642: 637: 635: 631: 627: 623: 619: 615: 611: 607: 603: 585: 582: 579: 575: 552: 548: 539: 535: 531: 527: 522: 516: 511: 507: 503: 487: 483: 460: 456: 447: 443: 439: 435: 431: 415: 409: 397: 395: 394:of polygons. 393: 389: 385: 381: 377: 373: 369: 365: 361: 357: 353: 344: 340: 339:, and so on. 321: 317: 311: 307: 278: 274: 268: 264: 238: 234: 213: 210: 205: 201: 197: 192: 188: 184: 179: 175: 166: 162: 159:The image of 146: 143: 138: 134: 130: 125: 121: 117: 112: 108: 99: 95: 87: 82: 80: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 25:pentagram map 22: 7804:. Retrieved 7797:the original 7758: 7754: 7739:. Retrieved 7704: 7694: 7669: 7665: 7659: 7634: 7630: 7617: 7557: 7553: 7532:. Retrieved 7525:the original 7504: 7500: 7455: 7419: 7407:. Retrieved 7369: 7365: 7298: 7294: 7246: 7240: 7212: 7206: 7165: 7161: 7139: 7133: 7072: 7056: 7048: 6819: 6805: 6793: 6707: 6531: 6509: 6505:determinants 6378: 6289: 6259: 6243: 6216: 6155: 6075: 5960: 5958: 5888: 5832: 5482: 5479: 4913: 4910: 4736: 4726: 4660: 4658: 4650:determinants 4645: 4634: 4575: 4571: 4567: 4563: 4559: 4555: 4551: 4549: 4488: 4335: 4330: 4326: 4323: 4319:moduli space 4312: 4304: 4299: 4295: 4291: 4283: 4225: 4223: 4153: 4092: 3815: 3811: 3809: 3806: 3661: 3643: 3450: 3404: 3400: 3398: 2743: 2464: 2443: 2438: 2434: 2360: 2149: 2139: 2135: 2097: 2063: 2059: 2057: 1741: 1737: 1735: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1662: 1645: 1639: 1631: 1629: 1404: 1391: 1383: 1381: 1356: 1288: 1249: 1244:aspect ratio 1232: 1057:moduli space 1046: 1041: 1002: 902: 895:and others. 886: 715: 682: 671: 656: 652: 648: 644: 640: 639:Two twisted 638: 633: 629: 625: 621: 617: 613: 605: 601: 537: 529: 525: 523: 520: 504: 445: 441: 437: 433: 429: 401: 388:moduli space 349: 164: 160: 91: 33:moduli space 24: 18: 7608:1005.0598v2 7199:Th. Motzkin 6867:connecting 4230:volume form 4220:Volume form 2495:. The maps 2468:composition 2104:) point in 1675:is a pair ( 1636:cross-ratio 1473:cross ratio 1388:affine line 1378:Cross-ratio 1017:rectangular 616:-gon. When 21:mathematics 7818:Categories 7806:2011-06-28 7741:2010-02-12 6812:integrable 4280:level sets 4156:level sets 1634:to be the 1219:parameters 1103:such that 604:. The map 524:A twisted 7768:0901.1585 7584:119586878 7567:1106.3950 7467:1004.4311 7435:0910.1952 7379:0810.5605 7308:0709.1264 7263:123626706 7182:122093180 6884:− 6841:→ 6796:congruent 6696:congruent 6653:π 6569:→ 6560:π 6235:manifolds 6219:foliation 6158:level set 6051:⋯ 5997:⋯ 5805:∂ 5801:∂ 5762:∂ 5754:∂ 5732:− 5721:− 5710:∂ 5702:∂ 5691:− 5659:∂ 5655:∂ 5627:− 5616:∂ 5608:∂ 5597:− 5586:− 5564:∂ 5556:∂ 5314:− 5292:− 5278:− 5145:− 5112:− 5040:− 4977:… 4762:⋅ 4756:⋅ 4745:operator 4659:Whenever 4570:/2. When 4352:− 4315:functions 4065:⋯ 4024:− 4010:⋯ 3941:− 3927:⋯ 3886:− 3872:⋯ 3779:⋯ 3720:− 3706:⋯ 3646:congruent 3590:− 3375:− 3350:− 3331:− 3317:− 3265:− 3160:− 3141:− 3122:− 3108:− 3061:− 3003:− 2984:− 2965:− 2951:− 2879:− 2860:− 2846:− 2794:− 2770:− 2710:… 2669:… 2610:… 2569:… 2480:∘ 2450:Wronskian 2421:… 2208:… 2166:… 2040:… 1968:… 1880:… 1765:… 1683:), where 1596:− 1567:− 1536:− 1507:− 1314:-gons is 1292:foliation 1260:Asteroids 674:pentagons 610:monodromy 413:→ 214:… 147:… 57:pentagons 49:diagonals 45:pentagram 7793:10821671 7534:June 30, 7409:June 26, 7325:17099073 7201:(1945). 7142:: 90–95. 7081:See also 4781:and the 4654:matrices 4644:of  4338:monomial 1268:manifold 1069:triangle 1065:triangle 1053:polygons 844:′ 790:′ 712:hexagons 683:The map 600:for all 540:carries 402:The map 376:commutes 368:vertices 94:vertices 37:polygons 7773:Bibcode 7761:: 1–8. 7686:2262433 7651:3041627 7521:4454793 7472:Bibcode 7404:2616239 7384:Bibcode 6591:be the 6267:divisor 6232:compact 4317:on the 4277:compact 4214:closure 4211:compact 4203:compact 1665:polygon 1359:subsets 1228:mapping 1049:mapping 1013:ellipse 714:. Here 386:on the 384:mapping 362:over a 98:polygon 96:of the 39:in the 31:on the 7791:  7684:  7649:  7582:  7519:  7402:  7323:  7261:  7180:  6824:curve 6228:smooth 4743:linear 4491:parity 2744:where 2142:-gon. 2096:where 1740:be an 1386:, the 1276:sphere 1009:circle 636:-gon. 352:convex 43:. The 23:, the 7800:(pdf) 7789:S2CID 7763:arXiv 7735:(PDF) 7682:S2CID 7627:(PDF) 7603:arXiv 7580:S2CID 7562:arXiv 7528:(PDF) 7517:S2CID 7497:(PDF) 7462:arXiv 7430:arXiv 7400:S2CID 7374:arXiv 7362:(PDF) 7321:S2CID 7303:arXiv 7259:S2CID 7178:S2CID 7098:Notes 6865:chord 6379:Here 4642:trace 4550:When 3810:When 3453:edges 1284:plane 1280:Earth 1264:torus 1256:donut 1252:torus 378:with 364:field 356:plane 7536:2011 7411:2011 7061:and 6406:and 6230:and 6187:and 6076:are 4605:and 4275:has 4201:are 4154:The 4124:and 2535:are 2515:and 1736:Let 1691:and 1669:flag 1667:. A 1240:area 1129:180. 1055:. A 1042:i.e. 1037:line 980:< 974:< 963:and 948:> 803:and 738:and 444:and 346:test 296:and 71:and 7781:doi 7709:doi 7674:doi 7639:doi 7572:doi 7558:162 7509:doi 7392:doi 7370:299 7313:doi 7251:doi 7217:doi 7170:doi 6902:to 5893:of 4282:on 2220:in 1671:of 567:to 35:of 19:In 7820:: 7787:. 7779:. 7771:. 7759:16 7757:. 7753:. 7680:. 7668:. 7647:MR 7645:. 7635:23 7633:. 7629:. 7592:^ 7578:. 7570:. 7556:. 7544:^ 7515:. 7505:10 7503:. 7499:. 7484:^ 7470:. 7460:. 7444:^ 7398:. 7390:. 7382:. 7368:. 7364:. 7333:^ 7319:. 7311:. 7297:. 7271:^ 7257:. 7247:60 7245:. 7231:^ 7213:51 7211:. 7205:. 7190:^ 7176:. 7164:. 7160:. 7148:^ 7138:. 7132:. 7106:^ 7077:. 7065:. 6817:. 6214:. 4737:A 4729:. 4656:. 4216:. 4060:12 4005:10 3922:11 3523:, 3485:, 2452:. 1402:. 1023:. 891:, 7809:. 7783:: 7775:: 7765:: 7744:. 7715:. 7711:: 7688:. 7676:: 7670:7 7653:. 7641:: 7611:. 7605:: 7599:* 7586:. 7574:: 7564:: 7538:. 7511:: 7478:. 7474:: 7464:: 7438:. 7432:: 7413:. 7394:: 7386:: 7376:: 7327:. 7315:: 7305:: 7299:3 7265:. 7253:: 7225:. 7219:: 7184:. 7172:: 7166:4 7140:1 7033:) 7030:x 7027:( 7022:0 7018:C 6997:) 6994:x 6991:( 6986:t 6982:C 6961:) 6958:x 6955:( 6950:t 6946:C 6925:) 6922:t 6919:+ 6916:x 6913:( 6910:C 6890:) 6887:t 6881:x 6878:( 6875:C 6849:2 6845:R 6838:R 6835:: 6832:C 6779:C 6776:B 6772:/ 6768:D 6765:A 6762:= 6759:v 6736:G 6716:G 6682:G 6662:) 6659:T 6656:( 6650:= 6647:G 6623:T 6603:T 6577:2 6573:R 6566:T 6563:: 6540:T 6485:3 6481:b 6477:, 6472:3 6468:a 6464:, 6459:2 6455:b 6451:, 6446:2 6442:a 6419:i 6415:b 6392:i 6388:a 6362:3 6358:b 6352:3 6348:a 6344:= 6339:2 6335:b 6329:2 6325:a 6321:+ 6316:1 6312:b 6306:1 6302:a 6200:n 6196:E 6173:n 6169:O 6141:0 6138:= 6135:} 6132:f 6129:, 6124:n 6120:E 6116:{ 6113:= 6110:} 6107:f 6104:, 6099:n 6095:O 6091:{ 6059:n 6055:y 6046:1 6042:y 6038:= 6033:n 6029:E 6005:n 6001:x 5992:1 5988:x 5984:= 5979:n 5975:O 5961:N 5930:) 5927:f 5924:( 5921:H 5901:g 5874:} 5871:g 5868:, 5865:f 5862:{ 5859:= 5856:g 5853:) 5850:f 5847:( 5844:H 5813:i 5809:y 5794:i 5790:y 5785:) 5776:1 5773:+ 5770:i 5766:y 5757:f 5746:1 5743:+ 5740:i 5736:y 5724:1 5718:i 5714:y 5705:f 5694:1 5688:i 5684:y 5679:( 5675:+ 5667:i 5663:x 5648:i 5644:x 5639:) 5630:1 5624:i 5620:x 5611:f 5600:1 5594:i 5590:x 5578:1 5575:+ 5572:i 5568:x 5559:f 5548:1 5545:+ 5542:i 5538:x 5533:( 5529:= 5526:) 5523:f 5520:( 5517:H 5491:f 5465:. 5462:j 5459:, 5456:i 5436:0 5433:= 5430:} 5425:j 5421:y 5417:, 5412:i 5408:x 5404:{ 5401:= 5398:} 5393:j 5389:y 5385:, 5380:i 5376:y 5372:{ 5369:= 5366:} 5361:j 5357:x 5353:, 5348:i 5344:x 5340:{ 5317:1 5311:i 5307:y 5300:i 5296:y 5289:= 5286:} 5281:1 5275:i 5271:y 5267:, 5262:i 5258:y 5254:{ 5231:1 5228:+ 5225:i 5221:y 5214:i 5210:y 5206:= 5203:} 5198:1 5195:+ 5192:i 5188:y 5184:, 5179:i 5175:y 5171:{ 5148:1 5142:i 5138:x 5131:i 5127:x 5123:= 5120:} 5115:1 5109:i 5105:x 5101:, 5096:i 5092:x 5088:{ 5065:1 5062:+ 5059:i 5055:x 5048:i 5044:x 5037:= 5034:} 5029:1 5026:+ 5023:i 5019:x 5015:, 5010:i 5006:x 5002:{ 4981:. 4974:, 4969:2 4965:y 4961:, 4956:2 4952:x 4948:, 4943:1 4939:y 4935:, 4930:1 4926:x 4896:0 4893:= 4890:} 4885:j 4881:E 4877:, 4872:i 4868:E 4864:{ 4861:= 4858:} 4853:j 4849:E 4845:, 4840:i 4836:O 4832:{ 4829:= 4826:} 4821:j 4817:O 4813:, 4808:i 4804:O 4800:{ 4765:} 4759:, 4753:{ 4727:k 4713:) 4710:P 4707:( 4702:k 4698:E 4694:= 4691:) 4688:P 4685:( 4680:k 4676:O 4661:P 4646:M 4618:N 4614:E 4591:N 4587:O 4576:n 4572:k 4568:n 4564:N 4560:n 4556:k 4552:N 4533:k 4529:E 4506:k 4502:O 4472:9 4468:x 4462:8 4458:x 4452:7 4448:x 4442:3 4438:x 4432:2 4428:x 4422:1 4418:x 4414:+ 4390:7 4386:x 4380:6 4376:x 4370:5 4366:x 4360:1 4356:x 4331:N 4327:N 4300:P 4296:P 4292:X 4284:X 4261:N 4257:E 4251:N 4247:O 4243:= 4240:f 4226:X 4187:N 4183:E 4177:N 4173:O 4169:= 4166:f 4137:k 4133:E 4110:k 4106:O 4076:N 4073:2 4069:x 4056:x 4050:8 4046:x 4040:4 4036:x 4032:+ 4027:2 4021:N 4018:2 4014:x 4001:x 3995:6 3991:x 3985:2 3981:x 3977:= 3972:k 3968:E 3944:1 3938:N 3935:2 3931:x 3918:x 3912:7 3908:x 3902:3 3898:x 3894:+ 3889:3 3883:N 3880:2 3876:x 3867:9 3863:x 3857:5 3853:x 3847:1 3843:x 3839:= 3834:k 3830:O 3816:k 3812:N 3790:N 3787:2 3783:x 3774:4 3770:x 3764:2 3760:x 3756:= 3751:N 3747:E 3723:1 3717:N 3714:2 3710:x 3701:3 3697:x 3691:1 3687:x 3683:= 3678:N 3674:O 3629:z 3626:y 3623:= 3620:x 3617:w 3596:b 3593:a 3587:1 3584:= 3581:c 3558:) 3555:) 3552:) 3549:P 3546:( 3543:A 3540:( 3537:B 3534:( 3531:A 3511:) 3508:) 3505:P 3502:( 3499:A 3496:( 3493:B 3473:) 3470:P 3467:( 3464:A 3423:N 3420:2 3416:F 3405:k 3401:k 3378:1 3372:k 3369:2 3365:x 3358:) 3353:1 3347:k 3344:2 3340:x 3334:2 3328:k 3325:2 3321:x 3314:1 3311:( 3306:) 3301:3 3298:+ 3295:k 3292:2 3288:x 3282:2 3279:+ 3276:k 3273:2 3269:x 3262:1 3259:( 3253:= 3244:0 3241:+ 3238:k 3235:2 3231:b 3221:0 3218:+ 3215:k 3212:2 3208:x 3201:) 3196:3 3193:+ 3190:k 3187:2 3183:x 3177:2 3174:+ 3171:k 3168:2 3164:x 3157:1 3154:( 3149:) 3144:1 3138:k 3135:2 3131:x 3125:2 3119:k 3116:2 3112:x 3105:1 3102:( 3096:= 3087:1 3084:+ 3081:k 3078:2 3074:b 3064:1 3058:k 3055:2 3051:x 3044:) 3039:2 3036:+ 3033:k 3030:2 3026:x 3020:1 3017:+ 3014:k 3011:2 3007:x 3000:1 2997:( 2992:) 2987:2 2981:k 2978:2 2974:x 2968:3 2962:k 2959:2 2955:x 2948:1 2945:( 2939:= 2930:0 2927:+ 2924:k 2921:2 2917:a 2907:0 2904:+ 2901:k 2898:2 2894:x 2887:) 2882:2 2876:k 2873:2 2869:x 2863:3 2857:k 2854:2 2850:x 2843:1 2840:( 2835:) 2830:2 2827:+ 2824:k 2821:2 2817:x 2811:1 2808:+ 2805:k 2802:2 2798:x 2791:1 2788:( 2782:= 2773:1 2767:k 2764:2 2760:a 2729:) 2724:N 2721:2 2717:b 2713:, 2707:, 2702:1 2698:b 2694:( 2691:= 2688:) 2683:N 2680:2 2676:x 2672:, 2666:, 2661:1 2657:x 2653:( 2650:B 2629:) 2624:N 2621:2 2617:a 2613:, 2607:, 2602:1 2598:a 2594:( 2591:= 2588:) 2583:N 2580:2 2576:x 2572:, 2566:, 2561:1 2557:x 2553:( 2550:A 2523:B 2503:A 2483:A 2477:B 2439:N 2435:N 2418:, 2413:2 2409:b 2405:, 2400:2 2396:a 2392:, 2387:1 2383:b 2379:, 2374:1 2370:a 2344:i 2340:V 2336:+ 2331:1 2328:+ 2325:i 2321:V 2315:i 2311:b 2307:+ 2302:2 2299:+ 2296:i 2292:V 2286:i 2282:a 2278:= 2273:3 2270:+ 2267:i 2263:V 2233:3 2229:R 2205:, 2200:3 2196:V 2192:, 2187:2 2183:V 2179:, 2174:1 2170:V 2140:N 2136:N 2120:N 2117:2 2113:F 2098:F 2082:N 2079:2 2075:F 2064:N 2060:N 2044:. 2037:, 2032:4 2028:x 2024:, 2019:3 2015:x 2011:, 2006:2 2002:x 1998:, 1993:1 1989:x 1965:, 1960:2 1956:y 1952:, 1947:2 1943:x 1939:, 1934:1 1930:y 1926:, 1921:1 1917:x 1894:n 1891:2 1887:x 1883:, 1877:, 1872:1 1868:x 1845:4 1841:t 1837:, 1832:3 1828:t 1824:, 1819:2 1815:t 1811:, 1806:1 1802:t 1779:N 1776:2 1772:F 1768:, 1762:, 1757:1 1753:F 1742:N 1738:P 1717:N 1713:P 1709:P 1705:P 1701:P 1697:P 1693:L 1689:P 1685:p 1681:L 1679:, 1677:p 1673:P 1640:X 1632:X 1615:. 1609:) 1604:4 1600:t 1591:2 1587:t 1583:( 1580:) 1575:3 1571:t 1562:1 1558:t 1554:( 1549:) 1544:4 1540:t 1531:3 1527:t 1523:( 1520:) 1515:2 1511:t 1502:1 1498:t 1494:( 1488:= 1485:X 1457:4 1453:t 1449:, 1444:3 1440:t 1436:, 1431:2 1427:t 1423:, 1418:1 1414:t 1392:F 1384:F 1342:3 1322:6 1302:7 1205:) 1202:z 1199:, 1196:y 1193:, 1190:x 1187:( 1167:) 1164:z 1161:, 1158:y 1155:, 1152:x 1149:( 1126:= 1123:z 1120:+ 1117:y 1114:+ 1111:x 1091:z 1088:, 1085:y 1082:, 1079:x 1040:( 983:1 977:a 971:0 951:0 945:K 923:n 919:a 915:K 865:H 841:H 820:) 817:H 814:( 811:T 787:H 762:) 759:H 756:( 751:2 747:T 726:H 716:T 696:2 692:T 657:N 653:N 649:N 645:N 641:N 634:N 630:N 626:N 622:N 618:M 614:N 606:M 602:k 586:k 583:+ 580:N 576:P 553:k 549:P 538:M 530:N 526:N 488:k 484:P 461:k 457:Q 446:Q 442:P 438:Q 434:Q 430:P 416:Q 410:P 327:) 322:7 318:P 312:3 308:P 304:( 284:) 279:5 275:P 269:1 265:P 261:( 239:4 235:Q 211:, 206:6 202:Q 198:, 193:4 189:Q 185:, 180:2 176:Q 165:Q 161:P 144:, 139:5 135:P 131:, 126:3 122:P 118:, 113:1 109:P

Index

mathematics
dynamical system
moduli space
polygons
projective plane
pentagram
diagonals
Richard Schwartz
pentagons
Alfred Clebsch
Theodore Motzkin
Desargues' theorem
Poncelet's porism
Branko Grünbaum
vertices
polygon
test
convex
plane
projective plane
field
vertices
general position
commutes
projective transformations
mapping
moduli space
equivalence classes

projective transformation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.