Knowledge (XXG)

Periodic systems of small molecules

Source đź“ť

708: 250: 703:{\displaystyle {\begin{pmatrix}{\rm {Li}}&{\rm {Be}}\\{\rm {Na}}&{\rm {Mg}}\end{pmatrix}}\otimes {\begin{pmatrix}{\rm {Li}}&{\rm {Be}}\\{\rm {Na}}&{\rm {Mg}}\end{pmatrix}}={\begin{pmatrix}{\rm {Li_{2}}}&{\rm {LiBe}}&{\rm {BeLi}}&{\rm {Be_{2}}}\\{\rm {LiNa}}&{\rm {LiMg}}&{\rm {BeNa}}&{\rm {BeMg}}\\{\rm {NaLi}}&{\rm {NaBe}}&{\rm {MgLi}}&{\rm {MgBe}}\\{\rm {Na_{2}}}&{\rm {NaMg}}&{\rm {MgNa}}&{\rm {Mg_{2}}}\\\end{pmatrix}}} 883:, R1 and R2; for triatomic molecules, the monotonicity is close with respect to R1R2+R2R3 (which reduces to R1R2 for diatomic molecules). Therefore, the coordinates x, y, and z of the collapsed-coordinate system are C1+C2+C3, C2, and R1R2+R2R3. Multiple-regression predictions of four property values for molecules with tabulated data agree very well with the tabulated data (the error measures of the predictions include the tabulated data in all but a few cases). 725:. In all but the first of these cases, other researchers provided invaluable contributions and some of them are co-authors. The architectures of these systems have been adjusted by Kong and Hefferlin to include ionized species, and expanded by Kong, Hefferlin, and Zhuvikin and Hefferlin to the space of triatomic molecules. These architectures are mathematically related to the chart of the elements. They were first called “physical” periodic systems. 91: 33: 849:
molecular-orbital, and other fundamental theories, and (c) summing of atomic period and group numbers (Kong), the Kronecker product and exploitation of higher dimensions (Hefferlin), formula enumerations (Dias), the hydrogen-displacement principle (Haas), reduced potential curves (Jenz), and similar strategies.
853:
systems of molecules include some predictions of molecular properties, but starting at the turn of the Century there have been serious attempts to use periodic systems for the prediction of progressively more precise data for various numbers of molecules. Among these attempts are those of Kong, and Hefferlin
213:
atom, there will be a drastic change in the molecule’s properties. Several goals could be accomplished by constructing an explicit representation of this periodic law as manifested in molecules: (1) a classification scheme for the vast number of molecules that exist, starting with small ones having
865:
has three independent variables instead of the six demanded by the Kronecker-product system. The reduction of independent variables makes use of three properties of gas-phase, ground-state, triatomic molecules. (1) In general, whatever the total number of constituent atomic valence electrons, data
714:
The Kronecker product of a hypothetical four-element periodic chart. The sixteen molecules, some of which are redundant, suggest a hypercube, which in turn suggests that the molecules exist in a four-dimensional space; the coordinates are the period numbers and group numbers of the two constituent
878:
of the periodic chart of the elements, C1+C2+C3). (2) Linear/bent triatomic molecules appear to be slightly more stable, other parameters being equal, if carbon is the central atom. (3) Most physical properties of diatomic molecules (especially spectroscopic constants) are closely monotonic with
852:
A chronological list of the contributions to this field contains almost thirty entries dated 1862, 1907, 1929, 1935, and 1936; then, after a pause, a higher level of activity beginning with the 100th anniversary of Mendeleev’s publication of his element chart, 1969. Many publications on periodic
848:
Each of the molecular systems listed above, and those not cited, is also supported by three legs: (a) physical and chemical data arranged in graphical or tabular patterns (which, for physical periodic systems at least, echo the appearance of the element chart), (b) group dynamic, valence-bond,
1175:
Gary W. Burdick and Ray Hefferlin, "Chapter 7. Data Location in a Four-Dimensional Periodic System of Diatomic Molecules", in Mihai V Putz, Ed., Chemical Information and Computational Challenges in the 21st Century, NOVA, 2011,
1469:
Babaev, E.V. and R. Hefferlin 1996. The Concepts of Periodicity and Hyper- periodicity: from Atoms to Molecules, in Rouvray, D.H. and Kirby, E.C., “Concepts in Chemistry,” Research Studies Press Limited, Taunton, Somerset,
1547:
Carlson, C., Gilkeson, J., Linderman, K., LeBlanc, S. Hefferlin, R., and Davis, B (1997). "Estimation of Properties of Triatomic Molecules from Tabulated Data Using Least-Squares Fitting".
1089:
Hefferlin, R., Campbell, D. Gimbel, H. Kuhlman, and T. Cayton (1979). "The periodic table of diatomic molecules—I an algorithm for retrieval and prediction of spectrophysical properties".
218:
and tool for archiving data, (2) forecasting data for molecular properties based on the classification scheme, and (3) a sort of unity with the periodic chart and the periodic system of
773:
and they bear little resemblance to the element chart; they are called “chemical” systems. Chemical systems do not start with the element chart, but instead start with, for example,
1011:
Clark, C. H. D (1940). "Systematics of Band-Spectral Constants. Part V. Interrelations of Dissociation Energy and Equilibrium Internuclear Distance of Di-Atoms in Ground States".
1193:
Zhuvikin, G.V. & R. Hefferlin (1983). "Periodicheskaya Sistema Dvukhatomnykh Molekul: Teoretiko-gruppovoi Podkhod, Vestnik Leningradskovo Universiteta" (16): 10–16.
1566: 1255: 1124: 939:
Hefferlin, R. and Burdick, G.W. 1994. Fizicheskie i khimicheskie periodicheskie sistemy Molekul, Zhurnal Obshchei Xhimii, vol. 64, pp. 1870–1885. English translation:
1228:
Carlson, C.M., Cavanaugh, R.J, Hefferlin, R.A, and of Zhuvikin, G.V. (1996). "Periodic Systems of Molecular States from the Boson Group Dynamics of SO(3)xSU(2)s".
1079:
Kong, F. and Wu, W. 2010. Periodicity of Diatomic and Triatomic Molecules, Conference Proceedings of the 2010 Workshop on Mathematical Chemistry of the Americas.
870:
tend to be more similar than for adjacent molecules that have more or fewer valence electrons; for triatomic molecules, the electron count is the sum of the
837:, which provide the same information, and (c) data provided by experiment, by the solar system model, and by solutions to the Schroedinger equation. The 1141:
Hefferlin, R (2008). "Kronecker-Product Periodic Systems of Small Gas-Phase Molecules and the Search for Order in Atomic Ensembles of Any Phase".
155: 127: 833:), which provides the magic-number elements that end each row of the table and gives the number of elements in each row, (b) solutions to the 1181: 134: 43: 54: 1313:
Dias, J.R. (1982). "A periodic Table of Polycyclic Aromatic Hydrocarbons. Isomer Enumeration of Fused Polycyclic Aromatic Hydrocarbons".
778: 966:, in Baird, D., Scerri, E., and McIntyre, L. (Eds.) “The Philosophy of Chemistry, Synthesis of a New Discipline,” Springer, Dordrecht 841:
should not be ignored: it gave explanations for the wealth of spectroscopic data that were already in existence before the advent of
141: 971: 174: 72: 112: 105: 123: 1515:
Hefferlin, R. (2010). "Internuclear Separations using Least squares and Neural Networks for 46 new s and p Electron Diatomics".
234:
include those of (1) H. D. W. Clark, and (2) F.-A. Kong, which somewhat resemble the atomic chart. The system of R. Hefferlin
1480:
Hefferlin, R. (2010). "Vibration Frequencies using Least squares and Neural Networks for 50 new s and p Electron Diatomics".
1416:
Gorski, A (1973). "Morphological Classification of Simple Species. Part V. Evaluation of Structural Parameters of Species".
1397:
Gorski, A (1971). "Morphological Classification of Simple Species. Part I. Fundamental Components of Chemical Structure".
892: 769:
potentials, and acid-base tendencies (Gorski). These structures are not restricted to molecules with a given number of
1585: 101: 862: 148: 782: 1378:
Haas, A. (1988). "Das Elementverscheibungsprinzip und siene Bedeutung fur die Chemie der p-Block Elemente".
834: 194:
of the elements. Construction of such charts was initiated in the early 20th century and is still ongoing.
798: 774: 733:
Other investigators have focused on building structures that address specific kinds of molecules such as
1560: 1520: 1249: 1198: 1118: 47:
that states a Knowledge (XXG) editor's personal feelings or presents an original argument about a topic.
801:
which in principle includes all of the systems described above except those of Dias, Gorski, and Jenz.
1489: 1444: 1278: 1098: 1047: 786: 230:
Periodic systems (or charts or tables) of molecules are the subjects of two reviews. The systems of
219: 17: 917: 206: 1340:
Dias, J. R. (1994). "Benzenoids to Fullerines and the Circumscribing and Leapfrog Algorithms".
1177: 1158: 967: 963: 814: 239: 231: 1359:
Haas, A. (1982). "A new classification principle: the periodic system of functional groups".
721:
A totally different kind of periodic system is (5) that of G. V. Zhuvikin, which is based on
1497: 1452: 1322: 1286: 1237: 1150: 1106: 1055: 1020: 993: 867: 830: 809:
The periodic chart of the elements, like a small stool, is supported by three legs: (a) the
742: 1533: 1211: 1493: 1448: 1282: 1102: 1051: 897: 880: 871: 722: 191: 1579: 1290: 1110: 1059: 842: 826: 205:, at least small molecules. For instance, if one replaces any one of the atoms in a 822: 818: 215: 198: 1435:
Jenz, F (1996). "The Reduced Potential Curve (RPC) Method and its Applications".
1501: 762: 90: 1154: 1456: 838: 810: 738: 238:
was developed from (3) a three-dimensional to (4) a four-dimensional system
1269:
Hefferlin, R.; et al. (1984). "Periodic Systems of N-atom Molecules".
1162: 1303:
Morozov, N. 1907. Stroeniya Veshchestva, I. D. Sytina Publication, Moscow.
1024: 997: 754: 746: 210: 202: 1326: 922: 984:
Clark, C. H. D. (1935). "The periodic Groups of Non-Hydride Di-Atoms".
875: 1241: 758: 750: 734: 916:
Chung, D.-Y. (2000). "The Periodic Table of Elementary Particles".
766: 201:, represented by the periodic chart, is echoed in the behavior of 770: 84: 26: 805:
Bases of the element chart and periodic systems of molecules
44:
personal reflection, personal essay, or argumentative essay
1038:
Kong, F (1982). "The Periodicity of Diatomic Molecules".
941:"Periodic Systems of Molecules: Physical and Chemical". 50: 962:
Hefferlin, R. 2006. The Periodic Systems of Molecules
393: 326: 259: 857:
A collapsed-coordinate system for triatomic molecules
253: 702: 874:(the sum of the column numbers 1 to 8 in the 8: 1565:: CS1 maint: multiple names: authors list ( 1254:: CS1 maint: multiple names: authors list ( 1123:: CS1 maint: multiple names: authors list ( 921: 684: 676: 675: 658: 657: 640: 639: 629: 621: 620: 601: 600: 583: 582: 565: 564: 547: 546: 527: 526: 509: 508: 491: 490: 473: 472: 460: 452: 451: 434: 433: 416: 415: 405: 397: 396: 388: 368: 367: 356: 355: 342: 341: 330: 329: 321: 301: 300: 289: 288: 275: 274: 263: 262: 254: 252: 175:Learn how and when to remove this message 73:Learn how and when to remove this message 908: 190:are charts of molecules similar to the 1558: 1529: 1518: 1247: 1223: 1221: 1207: 1196: 1116: 729:Chemical periodic systems of molecules 226:Physical periodic systems of molecules 111:Please improve this article by adding 1271:J. Quant. Spectrosc. Radiat. Transfer 124:"Periodic systems of small molecules" 7: 1136: 1134: 1075: 1073: 1071: 1069: 958: 956: 935: 933: 18:Periodic Systems of Small Molecules 1143:Comb. Chem. High Throughput Screen 1091:Quant. Spectrosc. Radiat. Transfer 879:respect to the product of the two 789:(Gorski), and similar strategies. 681: 677: 668: 665: 662: 659: 650: 647: 644: 641: 626: 622: 611: 608: 605: 602: 593: 590: 587: 584: 575: 572: 569: 566: 557: 554: 551: 548: 537: 534: 531: 528: 519: 516: 513: 510: 501: 498: 495: 492: 483: 480: 477: 474: 457: 453: 444: 441: 438: 435: 426: 423: 420: 417: 402: 398: 372: 369: 360: 357: 346: 343: 334: 331: 305: 302: 293: 290: 279: 276: 267: 264: 242:of the element chart with itself. 25: 197:It is commonly believed that the 779:Grimm's hydride displacement law 89: 31: 214:just a few atoms, for use as a 881:atomic period (or row) numbers 244: 1: 1482:Quant. Spectr. Radiat. Transf 893:History of the periodic table 188:Periodic systems of molecules 113:secondary or tertiary sources 1291:10.1016/0022-4073(84)90098-0 1111:10.1016/0022-4073(79)90063-3 1060:10.1016/0022-2860(82)90199-5 761:(Haas); or a combination of 1502:10.1016/j.jqsrt.2009.08.004 863:collapsed-coordinate system 797:E. V. Babaev has erected a 1602: 1155:10.2174/138620708786306041 713: 1457:10.1080/01442359609353191 783:reduced potential curves 868:isoelectronic molecules 1528:Cite journal requires 1315:Chem. Inf. Comput. Sci 1230:Chem. Inf. Comput. Sci 1206:Cite journal requires 704: 100:relies excessively on 53:by rewriting it in an 1549:Croatica Chemica Acta 839:Bohr–Sommerfeld model 787:molecular descriptors 705: 220:fundamental particles 1437:Int. Rev. Phys. Chem 1380:Kontakte (Darmstadt) 1025:10.1039/tf9403500370 998:10.1039/tf9353101017 872:atomic group numbers 835:Schrödinger equation 799:hyperperiodic system 775:formula enumerations 765:, number of shells, 251: 1494:2010JQSRT.111...71H 1449:1996IRPC...15..467J 1327:10.1021/ci00033a004 1283:1984JQSRT..32..257H 1103:1979JQSRT..21..315H 1052:1982JMoSt..90...17K 1586:Chemical compounds 1013:Trans. Faraday Soc 986:Trans. Faraday Soc 943:Russ. J. Gen. Chem 831:Madelung principle 700: 694: 379: 312: 232:diatomic molecules 207:triatomic molecule 55:encyclopedic style 42:is written like a 1242:10.1021/ci9500748 1182:978-1-61209-712-1 785:(Jenz), a set of 743:functional groups 719: 718: 240:Kronecker product 185: 184: 177: 159: 83: 82: 75: 16:(Redirected from 1593: 1571: 1570: 1564: 1556: 1544: 1538: 1537: 1531: 1526: 1524: 1516: 1512: 1506: 1505: 1477: 1471: 1467: 1461: 1460: 1432: 1426: 1425: 1413: 1407: 1406: 1394: 1388: 1387: 1375: 1369: 1368: 1361:Chemiker-Zeitung 1356: 1350: 1349: 1337: 1331: 1330: 1310: 1304: 1301: 1295: 1294: 1266: 1260: 1259: 1253: 1245: 1225: 1216: 1215: 1209: 1204: 1202: 1194: 1190: 1184: 1173: 1167: 1166: 1138: 1129: 1128: 1122: 1114: 1086: 1080: 1077: 1064: 1063: 1035: 1029: 1028: 1008: 1002: 1001: 981: 975: 960: 951: 950: 937: 928: 927: 925: 913: 793:Hyperperiodicity 709: 707: 706: 701: 699: 698: 691: 690: 689: 688: 672: 671: 654: 653: 636: 635: 634: 633: 615: 614: 597: 596: 579: 578: 561: 560: 541: 540: 523: 522: 505: 504: 487: 486: 467: 466: 465: 464: 448: 447: 430: 429: 412: 411: 410: 409: 384: 383: 376: 375: 364: 363: 350: 349: 338: 337: 317: 316: 309: 308: 297: 296: 283: 282: 271: 270: 245: 180: 173: 169: 166: 160: 158: 117: 93: 85: 78: 71: 67: 64: 58: 35: 34: 27: 21: 1601: 1600: 1596: 1595: 1594: 1592: 1591: 1590: 1576: 1575: 1574: 1557: 1546: 1545: 1541: 1527: 1517: 1514: 1513: 1509: 1479: 1478: 1474: 1468: 1464: 1434: 1433: 1429: 1418:Roczniki Chemii 1415: 1414: 1410: 1399:Roczniki Chemii 1396: 1395: 1391: 1377: 1376: 1372: 1358: 1357: 1353: 1339: 1338: 1334: 1312: 1311: 1307: 1302: 1298: 1268: 1267: 1263: 1246: 1227: 1226: 1219: 1205: 1195: 1192: 1191: 1187: 1174: 1170: 1140: 1139: 1132: 1115: 1088: 1087: 1083: 1078: 1067: 1037: 1036: 1032: 1010: 1009: 1005: 983: 982: 978: 961: 954: 940: 938: 931: 923:physics/0003023 915: 914: 910: 906: 889: 859: 807: 795: 731: 693: 692: 680: 673: 655: 637: 625: 617: 616: 598: 580: 562: 543: 542: 524: 506: 488: 469: 468: 456: 449: 431: 413: 401: 389: 378: 377: 365: 352: 351: 339: 322: 311: 310: 298: 285: 284: 272: 255: 249: 248: 228: 181: 170: 164: 161: 118: 116: 110: 106:primary sources 94: 79: 68: 62: 59: 51:help improve it 48: 36: 32: 23: 22: 15: 12: 11: 5: 1599: 1597: 1589: 1588: 1578: 1577: 1573: 1572: 1539: 1530:|journal= 1507: 1472: 1462: 1443:(2): 467–523. 1427: 1408: 1389: 1370: 1351: 1332: 1305: 1296: 1277:(4): 257–268. 1261: 1217: 1208:|journal= 1185: 1168: 1149:(9): 690–706. 1130: 1097:(4): 315–336. 1081: 1065: 1040:J. Mol. Struct 1030: 1003: 976: 952: 929: 907: 905: 902: 901: 900: 898:Periodic table 895: 888: 885: 858: 855: 806: 803: 794: 791: 730: 727: 723:group dynamics 717: 716: 711: 710: 697: 687: 683: 679: 674: 670: 667: 664: 661: 656: 652: 649: 646: 643: 638: 632: 628: 624: 619: 618: 613: 610: 607: 604: 599: 595: 592: 589: 586: 581: 577: 574: 571: 568: 563: 559: 556: 553: 550: 545: 544: 539: 536: 533: 530: 525: 521: 518: 515: 512: 507: 503: 500: 497: 494: 489: 485: 482: 479: 476: 471: 470: 463: 459: 455: 450: 446: 443: 440: 437: 432: 428: 425: 422: 419: 414: 408: 404: 400: 395: 394: 392: 387: 382: 374: 371: 366: 362: 359: 354: 353: 348: 345: 340: 336: 333: 328: 327: 325: 320: 315: 307: 304: 299: 295: 292: 287: 286: 281: 278: 273: 269: 266: 261: 260: 258: 227: 224: 192:periodic table 183: 182: 97: 95: 88: 81: 80: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1598: 1587: 1584: 1583: 1581: 1568: 1562: 1554: 1550: 1543: 1540: 1535: 1522: 1511: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1466: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1428: 1423: 1419: 1412: 1409: 1404: 1400: 1393: 1390: 1385: 1381: 1374: 1371: 1366: 1362: 1355: 1352: 1347: 1343: 1336: 1333: 1328: 1324: 1320: 1316: 1309: 1306: 1300: 1297: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1262: 1257: 1251: 1243: 1239: 1235: 1231: 1224: 1222: 1218: 1213: 1200: 1189: 1186: 1183: 1179: 1172: 1169: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1135: 1131: 1126: 1120: 1112: 1108: 1104: 1100: 1096: 1092: 1085: 1082: 1076: 1074: 1072: 1070: 1066: 1061: 1057: 1053: 1049: 1045: 1041: 1034: 1031: 1026: 1022: 1018: 1014: 1007: 1004: 999: 995: 992:: 1017–1036. 991: 987: 980: 977: 973: 972:1-4020-3256-0 969: 965: 959: 957: 953: 948: 944: 936: 934: 930: 924: 919: 912: 909: 903: 899: 896: 894: 891: 890: 886: 884: 882: 877: 873: 869: 864: 856: 854: 850: 846: 844: 840: 836: 832: 828: 827:electron spin 824: 820: 816: 812: 804: 802: 800: 792: 790: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 748: 744: 740: 736: 728: 726: 724: 712: 695: 685: 630: 461: 406: 390: 385: 380: 323: 318: 313: 256: 247: 246: 243: 241: 237: 233: 225: 223: 221: 217: 212: 208: 204: 200: 195: 193: 189: 179: 176: 168: 157: 154: 150: 147: 143: 140: 136: 133: 129: 126: â€“  125: 121: 120:Find sources: 114: 108: 107: 103: 98:This article 96: 92: 87: 86: 77: 74: 66: 56: 52: 46: 45: 40:This article 38: 29: 28: 19: 1561:cite journal 1552: 1548: 1542: 1521:cite journal 1510: 1488:(1): 71–77. 1485: 1481: 1475: 1465: 1440: 1436: 1430: 1421: 1417: 1411: 1405:: 1981–1989. 1402: 1398: 1392: 1383: 1379: 1373: 1364: 1360: 1354: 1345: 1341: 1335: 1318: 1314: 1308: 1299: 1274: 1270: 1264: 1250:cite journal 1233: 1229: 1199:cite journal 1188: 1171: 1146: 1142: 1119:cite journal 1094: 1090: 1084: 1043: 1039: 1033: 1016: 1012: 1006: 989: 985: 979: 949:: 1659–1674. 946: 942: 911: 860: 851: 847: 823:atomic model 819:solar system 808: 796: 732: 720: 235: 229: 216:teaching aid 199:periodic law 196: 187: 186: 171: 162: 152: 145: 138: 131: 119: 99: 69: 63:October 2010 60: 41: 1342:New J. Chem 1236:: 396–398. 1019:: 370–376. 845:mechanics. 763:core charge 745:containing 737:(Morozov); 1555:: 479–508. 1424:: 211–216. 1367:: 239–248. 1348:: 667–673. 964:pp. 221 ff 904:References 815:Sommerfeld 739:benzenoids 135:newspapers 102:references 1321:: 15–22. 1046:: 17–28. 319:⊗ 203:molecules 165:July 2011 1580:Category 1470:England. 1163:18991573 887:See also 829:and the 781:(Haas), 777:(Dias), 755:nitrogen 747:fluorine 741:(Dias); 211:rare gas 1490:Bibcode 1445:Bibcode 1386:: 3–11. 1279:Bibcode 1099:Bibcode 1048:Bibcode 876:p-block 735:alkanes 715:atoms. 209:with a 149:scholar 49:Please 1180:  1161:  970:  825:(with 759:sulfur 751:oxygen 236:et al. 151:  144:  137:  130:  122:  918:arXiv 771:atoms 767:redox 156:JSTOR 142:books 1567:link 1534:help 1256:link 1212:help 1178:ISBN 1159:PMID 1125:link 968:ISBN 866:for 861:The 843:wave 811:Bohr 757:and 128:news 1498:doi 1486:111 1453:doi 1365:106 1323:doi 1287:doi 1238:doi 1151:doi 1107:doi 1056:doi 1021:doi 994:doi 104:to 1582:: 1563:}} 1559:{{ 1553:70 1551:. 1525:: 1523:}} 1519:{{ 1496:. 1484:. 1451:. 1441:15 1439:. 1422:47 1420:. 1403:45 1401:. 1382:. 1363:. 1346:18 1344:. 1319:22 1317:. 1285:. 1275:32 1273:. 1252:}} 1248:{{ 1234:36 1232:. 1220:^ 1203:: 1201:}} 1197:{{ 1157:. 1147:11 1145:. 1133:^ 1121:}} 1117:{{ 1105:. 1095:21 1093:. 1068:^ 1054:. 1044:90 1042:. 1017:36 1015:. 990:31 988:. 955:^ 947:64 945:. 932:^ 821:” 753:, 749:, 222:. 115:. 1569:) 1536:) 1532:( 1504:. 1500:: 1492:: 1459:. 1455:: 1447:: 1384:3 1329:. 1325:: 1293:. 1289:: 1281:: 1258:) 1244:. 1240:: 1214:) 1210:( 1165:. 1153:: 1127:) 1113:. 1109:: 1101:: 1062:. 1058:: 1050:: 1027:. 1023:: 1000:. 996:: 974:. 926:. 920:: 817:“ 813:– 696:) 686:2 682:g 678:M 669:a 666:N 663:g 660:M 651:g 648:M 645:a 642:N 631:2 627:a 623:N 612:e 609:B 606:g 603:M 594:i 591:L 588:g 585:M 576:e 573:B 570:a 567:N 558:i 555:L 552:a 549:N 538:g 535:M 532:e 529:B 520:a 517:N 514:e 511:B 502:g 499:M 496:i 493:L 484:a 481:N 478:i 475:L 462:2 458:e 454:B 445:i 442:L 439:e 436:B 427:e 424:B 421:i 418:L 407:2 403:i 399:L 391:( 386:= 381:) 373:g 370:M 361:a 358:N 347:e 344:B 335:i 332:L 324:( 314:) 306:g 303:M 294:a 291:N 280:e 277:B 268:i 265:L 257:( 178:) 172:( 167:) 163:( 153:· 146:· 139:· 132:· 109:. 76:) 70:( 65:) 61:( 57:. 20:)

Index

Periodic Systems of Small Molecules
personal reflection, personal essay, or argumentative essay
help improve it
encyclopedic style
Learn how and when to remove this message

references
primary sources
secondary or tertiary sources
"Periodic systems of small molecules"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
periodic table
periodic law
molecules
triatomic molecule
rare gas
teaching aid
fundamental particles
diatomic molecules
Kronecker product
group dynamics
alkanes
benzenoids
functional groups
fluorine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑