Knowledge (XXG)

Photoconductive atomic force microscopy

Source 📝

1656:. The feedback loop is particularly important in non-contact AFM techniques, particularly in pc-AFM. As previously mentioned, in non-contact mode the cantilever is stationary and the tip does not come into physical contact with the sample surface. The cantilever behaves as a spring and oscillates at its resonance frequency. Topological variance causes the spring-like oscillations of the cantilever to change amplitude and phase in order to prevent the tip from colliding with sample topographies. The non-contact feedback loop is used to control that changes in the oscillations of the cantilever. The application of AFM on non-conducting samples (c-AFM) has in recent years evolved into the modification used for analysis of morphologies on the local scale, particularly morphologies at heterojunctions of multilayered samples. Photoconductive atomic force microscopy (pc-AFM) is particularly prevalent in the development of organic photovoltaic devices (OPV). The fundamental modification of c-AFM to pc-AFM is the addition of an illumination source and an inverted microscope that focuses the laser to a nanometer-scale point directly underneath the conductive AFM tip. The main concept of the illumination laser point is that it must be small enough to fit within the confines of ultra-thin films. These characteristics are achieved by using a monochromatic light source and a laser filter. In the OPV application, applying the illumination laser to the confines of ultra-thin films is further assisted by the recent development of the bulk heterojunction (BHJ) mixture of electron donating and accepting material in the film. The combination of the conductive tip and illumination laser provides photocurrent images with vertical resolutions in the range of 0 to 10 pA when overlaid with the topographical data obtained. Also unique to this modification are the spectra data gathered by comparing the current between the tip and sample to a variety of parameters including: laser wavelength, applied voltage and light intensity. The pc-AFM technique was also reported to detect local surface oxidation at a vertical resolution of 80 nm. 1826:
level and can help to increase our fundamental knowledge of mechanisms involved in OPVs at nano-scale level. pc-AFM is capable of gathering information such as the mapping of photocurrents, differences in film morphology, determination of donor-acceptor domains, current density-voltage plots, quantum efficiencies, and approximate charge carrier mobilities. One of the other notable characteristics of pc-AFM is its ability to provide concurrent information regarding the topological and photocurrent properties of the device at nano-scale. Using this concurrent sampling method, the sample handling is minimized and can provide more accurate results. In a study by Pingree et al., pc-AFM was used to measure how spatial deviations in the photocurrent generation developed with different processing techniques. The authors were able to compare these photocurrent variations to the duration of the annealing process. They have concluded that lengthening the annealing time allows for improved nano-scale phase separation as well as created a more ordered device. Actual times for the annealing process vary depending on the properties of the polymers used. The authors have shown that external quantum efficiency (EQE) and power conversion efficiency (PCE) levels reach a maximum at certain annealing times whereas while the electron and hole mobility's do not show the corresponding trends. Therefore, while lengthening the annealing time can increase the photocurrents within the OPV, there is a practical limit to after which the benefits may not be substantial. Besides functional properties, pc-AFM can also be used to interrogate the composition heterogeneity of OPVs when combined with either Raman or infrared (IR) spectroscopy, and it is especially valuable for studying their degradation.
1882:-butyric acid methyl ester (PCBM) is explained in detail as follows. In this study, the precursor to BP (1,4:8,11:15,18:22,25-tetraethano-29H,31H-tetrabenzoporphyrin (CP) solution is applied as the starting film, and was thermally annealed which caused the CP to convert into BP. The BP:fullerene layer serves as the undoped layer within the device. For surface measurements, the undoped layer is rinsed with a few drops of chloroform and spin-dried until the BP network is exposed at the donor/acceptor interface. For bulk heterojunction characterization, an additional fullerene solution is spin-coated onto the undoped layer, a thin layer of lithium fluoride is then deposited followed by either an aluminum or gold cathode which is thermally annealed to the device. The thin layer of lithium fluoride is deposited to help prevent the oxidation of the device. Controlling the thickness of these layers plays a significant role in the generation of the efficiency of the PV cells. Typically, the thickness of the active layers is usually smaller than 100 nm to produce photocurrents. This dependence on layer thickness is due to the probability that an electron is able to travel distances on the order of exciton diffusion length within the applied electric field. Many of the organic semiconductors used in the PV devices are sensitive to water and oxygen. This is due to the likelihood of photo-oxidation which can occur when exposed to these conditions. While the top metal contact can prevent some of this, many studies are either performed in an inert atmosphere such as nitrogen, or under 2120:
damping from building supports. This source of vibrational noise is easily controlled through the use of a vibration isolation table. Acoustical vibrations are far more common than mechanical vibrations. This type of vibration is a result of air movement near the instrument such as fans or human voices. Several methods have been developed to help reduce this source of vibration. An easy solution for this is separating the electronic components from the stage. The reason for this separation of components is due to the cooling fans within the electrical devices. While operating, the fans lead to a constant source of vibrational noise within the system. In most cases, other methods still need to be employed to help reduce this source of noise. For instance, the instrument can be placed within a sealed box constructed of acoustic dampening material. Smaller stages also result in less surface area for acoustic vibrations to collide with, thus reducing the noise recorded. A more in depth solution consists of removing all sharp edges on the instrument. These sharp edges can excite resonances within the piezo-electric materials which increase the acoustic noise within the system.
1706:. The interior of the cylinder is divided into four regions (x and y regions) by non-conducting metallic strips. Electrical leads are fixed to one end and the exterior wall of the cylinder so that a current can be applied. When a voltage is applied to the exterior, the cylinder expands in x and y direction. Voltage along the interior of the tube causes cylinder expansion in the z-direction and thus movement of the tip in the z-direction. The placement of the piezo tube is dependent upon the type of AFM performed and the mode of analysis. However the z-piezo must always be fixed above the tip and cantilever to control the z-motion. This configuration is most often seen in the c-AFM and pc-AFM modifications to make room for additional instrumental components which are placed below the scanning stage. This is particularly true for pc-AFM, which must have the piezo-components arranged above the cantilever and tip so that the illumination laser can transmit through the sample.with applied voltage 233:. Conductive AFM has been widely used in characterizing the local electric properties in both photovoltaic fullerene blends and organic films, but no reports have shown the use of c-AFM to display the distribution of photocurrents in organic thin films. The most recent variation of SPM devices include (tr-EFM) and photoconductive AFM (pc-AFM) . Both these techniques are capable of obtaining information regarding photo-induced charging rates with nano-scale resolution. The advantage of pc-AFM over tr-ERM is present in the maximum obtainable resolution by each method. pc-AFM can map photocurrent distributions with approximately 20 nm resolution, whereas tr-EFM was only able to obtain between 50 and 100 nm resolution at this time. Another important factor to note is although the tr-EFM is capable of characterizing thin films within organic solar cells, it is unable to provide the needed information regarding the capacitance gradient nor the surface potential of the thin film. 1942:
mode is less destructive to the sample, but the tip is more likely to drift out of contact with the surface and thus it may not record data. Drifting of the tip is also seen due to piezo hysteresis, which causes displacement due to molecular friction and polarization effects due to the applied electric field. It is important to note the correlation between resolution and curvature of tip radius. Early STM tips used by Binning and Rohrer were fairly large, anywhere between some hundred nm to 1 μm in radius. In more recent work, the tip radius of curvature was mentioned as 10–40 nm. By reducing the radius of curvature of the tip, it allows for the enhanced detection of deviations within the OPVs surface morphology. Tips often need to be replaced due to tip rounding, which leads to a decrease in the resolution. Tip rounding occurs due to the loss of outermost atoms present at the apex of the tip which can be a result of excessive force applied or character of the sample.
1793:
the photocurrents are mapped in this direction. Therefore, normal AFM/c-AFM can be implemented for analysis in the x and y directions. The instrumental module proposed by Lee et al. produced spot sizes from the illumination laser of 1 mm in thicknesses. Recent applications have altered Lee's design in order to decrease spot size while simultaneously increasing the intensity of this laser. Recent instrumentation has replaced the angled mirror with an inverted microscope and a neutral density filter. In this device the x and y piezos, illumination laser and inverted microscopy are confined underneath the sample substrate, while the z-piezo remains above the conductive cantilever. In the applications of Ginger et al. a neutral-density filter is added to increase laser attenuation and the precision of laser alignment is enhanced by the addition of the inverted microscope.
1862:, is a transparent, polymeric conductive layer which is usually placed between the ITO and the active OPV layer. The PEDOT:PSS is a conductive polymer is stable over various applied charges. In most studies, PEDOT:PSS is spin-coated onto the ITO-coated glass substrates directly after plasma cleaning of the ITO. Plasma cleaning, as well as halo-acid etching, have been shown to improve the surface uniformity and conductivity of the substrate. This PEDOT:PSS layer is then annealed to the ITO prior to spin-coating the OPV layer onto the substrate. Studies by Pingree et al. have shown the direct correlation between annealing time and both peak and average photocurrent generation. Once this OPV film is spin-coated onto the substrate, it is then annealed at temperatures between 70 and 170 °C, for periods up to an hour depending on the procedure as well as OPV being used. 1047:
piezo-tube becomes displaced by an angle, θ. As the tube is displaced, the sample that, in traditional AFM is fixed to the tube generates lateral translation and rotation relative to the AFM tip, thus movement of the tip is generated in the x and y directions When voltage is applied of the inside of the tube, movement in the z-direction is implemented. The relationship between the movement of the piezo-tube and the direction of the displacement of the AFM tip assumes that the tube is perfectly symmetric. When no voltage is applied to the tube the z-axis bisects the tube, sample and sample stage symmetrically. When a voltage is applied to the exterior of the tube (x and y motion), the expansion of the tube can be understood as a circular arc. In this equation, the
1735:
traditional AFM their configuration is tailored to measuring surface currents on the local scale. As mentioned previously, the piezo-tube can be placed either above or below the sample, depending on the application of the instrumentation. In the case of c-AFM, repulsive contact mode is the predominantly used to obtain electric current images from the surface as the sample moves in the x and y direction. Placing the z-piezo above the cantilever allows for better control of the cantilever and tip during analysis. The material that comprises the conductive tip and cantilever can be customized for a particular application. Metal-coated cantilevers, gold wires, all-metal cantilevers and
58:. This property is largely attributed to resistance that is characteristic of the organic layer. The fundamentals of pc-AFM are modifications to traditional AFM and focus on the use of pc-AFM in PV characterization. In pc-AFM the major modifications include: a second illumination laser, an inverted microscope and a neutral density filter. These components assist in the precise alignment of the illumination laser and the AFM tip within the sample. Such modifications must complement the existing principals and instrumental modules of pc-AFM so as to minimize the effect of mechanical noise and other interferences on the cantilever and sample. 1971:
to determine the impact the illumination process exhibits on the OPV. Short circuit measurements are also commonly performed on the OPV devices. This consists of engaging the illumination source at open current (that is applied potential to the sample is zero). Nguyen and workers noted that a positive photocurrent reading correlated to the conduction of holes, while a negative reading correlated to the conduction of electrons. This alone allowed the authors to make predictions regarding the morphology within the cell. The current density for the forward and reverse bias can calculated as follows:
637:
sample while simultaneously measuring changes in the topographical features. In all techniques of AFM, two modes of operation can be used: contact mode and non-contact mode. In c-AFM resonant contact mode is used to obtain topographical from current that is measured between the biased AFM tip and the sample surface. In this type of operation, the current is measured in the small space between the tip and the sample surface. This quantification is based on the relationship between the current traveling through the sample and layer thickness. In the previous equation, A
1026: 258:
largely dependent on the fundamentals of the AFM cantilever, metallic tip, scanning piezo-tube and the feedback loop that transfers information from lasers that guide the motion of the probe across the surface of a sample. The ultra-fine dimensions of the tip and the way the tip scans the surface produces lateral resolutions of 500 nm or less. In AFM, the cantilever and tip functions as a mass on a spring. When a force acts on the spring (cantilever), the spring response is directly related to the magnitude of the force.
194:, and phase-separated domains. Many of these problems arise from the deficient knowledge of electro-optical properties on the nano-scale level. In numerous studies, it has been observed that heterogeneities in the electrical and optical properties influence device performance. These heterogeneities which occur in OPVs are a result the manufacturing process, such as annealing time, which is explained below. Research has mainly consisted of discovering exactly how this film morphology affects the device performance. 1765:
between the illumination laser and the guiding laser was also a concern. First attempts to address these two issues was to place a prism between the sample tip and the surface such that the prism would allow the illumination laser to reflect at the interface between the prism and the laser and thus be focused to a localized spot on the sample surface. However, lack of space for the prism and the production of multiple light reflections when introducing a prism required a different concept for configuration.
1756:
modified from existing cp-AFM instrumentation. The first report of this instrumental modification came in 2008. In that paper, Lee and coworkers implemented the aforementioned modifications to examine the resolution of photocurrent imaging. Their design consisted of three main units: a conductive mirror plate, steering mirror and laser source. The main difficulty with the previously existing c-AFM instrumentation is the inability of the technique for characterizing
685: 1710:
to the piezo corresponding to the appropriate direction of tip displacement. In this type of set-up the sample and substrate are mounted on top of the z-piezo component. When the x and y piezo components are in use, the orthogonal design causes them to push against the base of the z-piezo, causing the z-piezo to rotate about a fixed point. Applying voltage to the z-piezo causes the tube to move up and down on its pivot point.
156:). This global demand for solar energy increased 54% in 2010, while the United States alone has installed more than 2.3 GW of solar energy sources in 2010. Some of the attributes which make OPVs such a promising candidate to solve this problem include their low-cost of production, throughput, ruggedness, and their chemically tunable electric properties along with significant reduction in the production of 1021:{\displaystyle I=A_{\text{eff}}\left({\frac {q^{2}m_{o}}{8\pi hm_{\text{eff}}}}\right)\left({\frac {1}{t\left(E^{2}\right)}}\right)\left({\frac {\beta ^{2}V^{2}}{\phi d^{2}}}\right)e^{\left(\left({\frac {\left(8\pi \right)\left(2m_{\text{eff}}q\right)^{\frac {1}{2}}}{\left(3h\right)}}\right)\left(\nu \left(E\right)\right)\left({\frac {d}{\beta V}}\right)\left(\phi ^{\frac {1}{3}}\right)\right)}} 2103: 464:. There is also a force exerted from the cantilever pressing down on the tip. The magnitude of the force exerted by the cantilever is dependent upon the direction of its motion, whether it is attracted or repelled from the sample surface When the tip of the cantilever and the surface come into contact, the single atom at the point of the tip and the atoms on the surface exhibit a 5147: 2094: 1841:(InAs) quantum dots through the implementation of pc-AFM. Through the use of pc-AFM, information regarding quantum dot size, as well as the dispersion of quantum dots within the device, can be recorded in a non-destructive manner. This information can then be used to display local variances in photoactivity relating to heterogeneities within the film morphology. 1866: 1769:
employed as a means of controlling the trajectory of the laser source, with this addition the position of the reflected beam on the sample could be easily adjusted for placement underneath the AFM tip. The illumination laser source was a diode-pumped solid-state laser system that produced a wavelength of 532 nm and a spot of 1 mm in the sample.
1898: 1934: 1660: 1926:. As the sampling begins, the tip is moved close to the sample which creates a weakly attractive force between them. Another force which is often present in contact mode is capillary force due to hydration on the sample surface. This force is due to the ability of the water to contact the tip, thus creating an undesirable attractive force. 209:(STXM). These methods are very useful in the identification of the local morphology on the film surface, but lack the ability to provide fundamental information regarding local photocurrent generation and ultimately on the device performance. To obtain information which links the electrical and optical properties, the use of electrical 1714: 1748: 1691: 20: 1813: 1031:
manufactured as a cylinder. In all techniques, sample topography is measured by the movement of the x and y piezos. When performing non-contact mode pc-AFM, the piezo-tube keeps the probe from moving in the x and y direction and measures the photocurrent between the sample surface and conducting tip in the z-direction.
1922:
detector. The z-piezo scanner then recognizes this deviation and moves vertically to return the laser spot to its set position. This vertical movement by the z-piezo scanner is correlated to a change in voltage. Sampling in contact mode relies upon intermolecular forces between the tip and surface as depicted by
2116:
experience attractive forces between them. This current density measurement is then combined with the topographical information previously gathered from the AFM tip and cantilever. The resulting image displays the local variations in morphology with the current density measurements superimposed onto of them.
2115:
to the sample through the spotted gold contact. By adjusting this bias, along with the current passing through the cantilever, one can adjust the repulsive/attractive forces between the sample and the tip. When a reverse bias is applied (tip is negative relative to the sample), the tip and the sample
1970:
images of the sample. Dark current is referred to as the photocurrent generation created by the OPV in the absence of an illumination source. The cantilever and tip are simply rastered across the sample while topographic and current measurements are obtained. This data can then be used as a reference
1917:
Once the sample preparation is complete, the sample is placed onto the scanning stage of the pc-AFM module. This scanning stage is used for x-y piezo translation, completely independent of the z-direction while using a z-piezo scanner. The piezo-electric material within this scanner converts a change
1808:
which carries relatively small current within it, is able to generate nano-scale holes within the sample material to which the two electrodes are able to detect the relatively small change in conductance due to the flow from the top electrode to the bottom electrode. The combination of these elements
1792:
The conductive AFM tip was easily aligned over the reflected illumination beam. The laser spot in the sample was reported to be 1mm in size and can be found using the AFM recording device. A convenience of this technique is that laser alignment is only necessary for imaging in the z-direction because
1781:
images that were taken with and without the placement of the mirror and laser. This particular set-up required the separation of the x, y and z piezo-scanners The separation of piezo-tubes accounts for the elimination of x-z cross-coupling and scanning-size errors, which is common in traditional AFM.
1681:
that is positioned adjacent to the illumination source. The technical parameters of pc-AFM are identical to those of traditional AFM techniques. This section will focus on the instrumentation necessary for AFM and then detail the requirements for pc-AFM modification. The main instrumental components
2097:
Unannealed film: (a) current-voltage plot under 632 nm laser with platinum AFM tip, (b) pc-AFM under short circuit representation, and (c) dark current-voltage plots. Annealed film: (d) illuminated current-voltage characteristics, (e) pc-AFM short circuit representation, and (f) dark current-voltage
1764:
The first main concern deals with component configuration and whether or not there is physically enough space for modification in the cramped c-AFM module. The component configuration must be such the addition of the laser illumination component does not cause disturbance to other units. Interaction
1755:
The main components and instrumentation of c-AFM instrumentation are identical to that required for a pc-AFM module. The only modifications are the illumination source, filter and inverted microscope objective that are located beneath the sample substrate. In fact, most pc-AFM instruments are simply
1743:
in ambient conditions. The main difference between the instrumentation of c-AFM and STM is that in c-AFM the bias voltage can be directly applied to the nanostructure (tip and substrate). In STM, on the other hand, the applied voltage must be supported within the vacuum tunneling gap between the STM
1709:
In some configurations, the piezo components can be arranged in a tripod design. In this type of set-up, the x, y and z components are arranged orthogonally to one another with their apex attached to a movable pivot point. Similar to the cylindrical piezo, in the tripod design the voltage is applied
257:
The fundamental principles of photoconductive atomic force microscopy (pc-AFM) are based on those of traditional atomic force microscopy (AFM) in that an ultrafine metallic tip scans the surface of a material to quantify topological features. The working premises for all types of AFM techniques are
164:
PV device, which ultimately yielded a power conversion efficiency of 1%. Tang's research was published in 1986, which allowed others to decipher many of the problems which limited the basic understanding of the process involved in the OPVs. In later years, the majority of the research focused on the
2119:
Several methods have been employed to help reduce both mechanical and acoustic vibrations within the system. Mechanical vibrations are mainly attributed to traffic in and out of a building Other sources of mechanical vibrations have often been seen in the higher stories of a building due to reduced
1954:
have also been widely used as illumination sources, but are atypical in recent work. In a study by Coffey et al., lasers of two different wavelengths (532 nm and 405 nm) are irradiated onto the same sample area. With this work, they have shown images with identical contrast which proves
1941:
There are considerations which need to be taken into account when determining which mode is optimal for sampling for a given application. It has been shown that sampling in contact mode with very soft samples can damage the sample and render it useless for further studies. Sampling in non-contact
1825:
Although there is significant insight as to how OPVs work, it is still difficult to relate the device's functionality to local film structures. This difficulty may be attributed to the minimal current generation at a given point within OPVs. Through pc-AFM, OPV devices can be probed at nano-scale
1780:
The addition of the mirror and laser underneath the sample substrate results in a higher scanning level due to raising the sample substrate. This configuration has no effect on any other instrument component and does not affect AFM performance. This result was confirmed by identical topographical
1784:
In addition there was no evidence of laser interferences between the guiding laser and the irradiation laser. The guiding laser, at a wavelength of 650 nm, hits the mirror on the back of the conducting cantilever from vertical trajectory and is reflected away from the cantilever towards the
1768:
The module constructed by Lee et al. implemented a tilted mirror plate that was positioned underneath the sample substrate. This conductive mirror was tilted at 45° and successfully reflected the illuminating laser to a focused spot directly underneath the conductive tip. The steering mirror was
1760:
devices. Specifically, it is difficult to measure changes in local and nano-scale electrical properties that result from the photonic effect. The optical illumination component (laser) was added to the c-AFM module in order to make such properties visible. Early in development, the main concerns
636:
Modifications of this early work have been implemented to perform AFM analysis on both conducting and non-conducting materials. Conductive atomic force microscopy (c-AFM) is one such modification technique. The c-AFM technique operates by measuring fluctuations in current from the biased tip and
1945:
Because of the extremely small radius of the AFM tip, the illumination source is allowed to be focused tighter, thus increasing its efficiency. Typical arrangements for pc-AFM contain a low powered, 532 nm laser (2–5 mW) whose beam is reflected off mirrors located beneath the scanning
1046:
material reacts with an applied voltage to either the interior or exterior of the tube. When voltage is applied to the two electrodes connected to the scanner, the tube will expand or contract causing motion to the AFM tip in the direction of this movement. This phenomenon is illustrated as the
189:
as compared to other high efficiency polymers. These copolymers have been widely researched due to their ability to be tuned for specific optical and electrical properties. To date, the best OPV devices have a maximum power conversion efficiency of approximately 8.13%. This low power conversion
1906: 1686:
components and the sample substrate. The components for photoconductive modification include: the illumination source (532 nm laser), filter and inverted microscope. When modifying traditional AFM for pc application, all components must be combined such that they do not interfere with one
1921:
Many commercial AFM cantilever tips have pre-measured resonant frequencies and force constants which are provided to the customer. As sampling proceeds, the cantilever tip's position changes, which causes the scanning laser wavelength (650 nm) to deviate from its original position on the
1030:
The accuracies of all AFM techniques rely heavily on a sample scanning tube, the piezo-tube. The piezo-tube scanner is responsible for the direction of tip displacement during a sample analysis, and is dependent on the mode of analysis. The piezo components are either arranged orthogonally or
1734:
The instrumentation of conductive AFM (c-AFM) has evolved with the desire to measure local electrical properties of materials with high resolutions. The essential components are: the piezo-tube, the guide laser, the conducting tip, and cantilever. Although these components are identical to
1726:
is focused through the tube and onto a mirror that rests on tip of the cantilever. The guiding laser is reflected off of the mirror and detected by a photodetector. The laser senses when the forces acting on the tip change. The reflected laser beam from this phenomenon reaches the
248:
in physics in 1986. They fabricated an instrument called scanning tunneling microscope (STM) and demonstrated that STM provides surface topography on the atomic scale. This microscopy technique yielded resolutions which were nearly equal to scanning electron microscopy (SEM).
1858:(ZnO) and carbon nanotubes as an alternative to ITO. Although these semiconductors are relatively inexpensive, high quality ITO layers are still being used extensively for PV applications. Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), more commonly known as 460:. Attractive forces between the atoms on the sample surface and the atom at the AFM tip draw the cantilever tip closer to the surface. When the cantilever tip and the sample surface come within a range of a few angstroms repulsive forces come into play as a result of 4559:
Westenhoff, S.; Howard, Ian A.; Hodgkiss, Justin M.; Kirov, Kiril R.; Bronstein, Hugo A.; Williams, Charlotte K.; Greenham, Neil C.; Friend, Richard H.; et al. (2008). "Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages".
1672:
The instrumentation involved for pc-AFM is very similar to that necessary for traditional AFM or the modified conductive AFM. The main difference between pc-AFM and other types of AFM instruments is the illumination source that is focused through the inverted
1648: 81:, in which photoconductivity was observed. Anthracene was heavily studied due to its known crystal structure and its commercial availability in high-purity single anthracene crystals. The studies of photoconductive properties of organic dyes such as 1744:
probe and surface. When the tip is in close contact with the sample surface the application of bias voltage to the tip creates a vacuum gap between the tip and the sample that enables the investigation of electron transport through nanostructures.
1849:
Sample preparation of the OPV is of the utmost importance when performing pc-AFM studies. The sampling substrate is recommended to be conductive, as well as transparent, to the light source which is irradiated upon it. Numerous studies have used
1789:(PSPD). The illumination beam, on the other hand, travels from underneath the sample platform and is reflected into position by the reflecting mirror. The angle of the mirror plate ensures that the beam does not extend past the sample surface. 1773: 2106:
a) Superimposed photocurrent map and three-dimensional film topography collected from a conductive AFM tip (diamond coated) while under short circuit conditions. (b) Reduced scan area which depict local current-voltage measurements in
632: 2056: 190:
efficiency is directly related to discrepancies in the film morphology on the nano-scale level. Explanations of film morphology include recombination and/or trapping of charges, low open circuit voltages, heterogeneous interfaces,
1918:
in the applied potential into mechanical motion which moves the samples with nanometer resolution and accuracy. There are two variations in which the z-piezo scanner functions; one is contact mode while the other is tapping mode.
1959: 1504: 4832:
Li, Jiangyu; Huang, Boyuan; Esfahani, Ehsan Nasr; Wei, Linlin; Yao, Jianjun; Zhao, Jinjin; Chen, Wei (2017). "Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy".
1761:
regarding pc-AFM include: physical configuration, laser disturbance and laser alignment. Although many of these concerns have been resolved pc-AFM modules are still widely modified from c-AFM and traditional AFM instruments.
1370: 1035: 4598:
X.-D. Dang; A.B. Tamayo; J. Seo; C.V. Hoven; B. Walker; T.-Q. Nguyen (2010). "Nanostructure and Optoelectronic Characterization of Small Molecule Bulk Heterojunction Solar Cells by Photoconductive Atomic Force Microscopy".
1721:
The other essential components of AFM instrumentation include the AFM tip module, which includes: the AFM tip, the cantilever, and the guiding laser. When the piezo-tube is positioned above the cantilever and tip, the
1702:. Most cylindrical piezos are between 12 and 24 mm in length and 6 and 12 mm in diameter. The exterior of the piezo-tube is coated with a thin layer of conducting metal so that this region can sustain an 1277: 4661:
C.V. Hoven; X.-D. Dang; R.C. Coffin; J. Peet; T.-Q. Nguyen; G.C. Bazan (2010). "Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives".
3550:
H. J. Lee; S. M. Park (2004). "Electrochemistry of Conductive Polymers. 30. Nanoscale Measurements of Doping Distributions and Current−Voltage Characteristics of Electrochemically Deposited Polypyrrole Films".
440: 3501:
H.-N. Lin; H.-L. Lin; S.-S. Wang; L.-S. Yu; G.-Y. Perng; S.-A. Chen; S.-H. Chen (2002). "Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy".
4903:
Madl, M.; Brezna, W.; Strasser, G.; Klang, P.; Andrews, A. M.; Bodnarchuk, M. I.; Kovalenko, M. V.; Yarema, M.; Heiss, W. (2011-01-10). "AFM-based photocurrent imaging of epitaxial and colloidal QDs".
4505:
Madl, M.; Brezna, W.; Klang, P.; Andrews, A. M.; Strasser, G.; Smoliner, J. (2010). "High resolution photocurrent imaging by atomic force microscopy on the example of single buried InAs quantum dots".
4797:
O. Douheret; L. Lutsen; A. Swinnen; M. Breselge; K. Vandewal; L. Goris; J. Manca (2006). "Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy".
1809:
produced laser intensities in the range of 10 to 108 W/m and decreased the size of the laser spot to sub-micrometer dimensions making this technique useful for the application of nm thin OPV films.
1189: 1134: 3171:
Cornil, D. Beljonne, J. P. Calbert, J. L. Bredas (2001). "Interchain Interactions in Organic π-Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport".
4196:
Dante, M., Peet, J., Nguyen, T.Q. (2008). "Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy".
2820:
L.S.C. Pingree; O.G. Reid; D.S. Ginger (2010). "Imaging the Evolution of Nanoscale Photocurrent Collection and Transport Networks during Annealing of Polythiophene/Fullerene Solar Cells".
2650:
H. Xin; O.G. Reid; G. Ren; F.S. Kim; D.S. Ginger; S.A. Jenekhe (2010). "Polymer nanowire/fullerene bulk heterojunction solar cells: How nanostructure determines photovoltaic properties".
2958:
D.C. Coffey; O.G. Reid; D.B. Rodovsky; G.P. Bartholomew; D.S. Ginger (2007). "Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy".
1510: 1731:. The output from this detector acts as a response to the changes in force and the cantilever adjusts the position of the tip, while keeping constant the force that acts on the tip. 144:(OPV) devices (organic solar cells), have been studied extensively to help in reducing the dependence on fossil fuel and containing the emission of green house gases (especially CO 85:
were initiated only in the early 1960s owing to the discovery of the PV effect in these dyes. In further studies, it was determined that important biological molecules such as
5338: 5074: 160:. For decades, the researchers have believed that the maximum power conversion efficiency (PCE) would most likely remain below 0.1%. Only in 1979 Tang reported a two-layer, 4634:
M. Dante; A. Garcia; T.-Q. Nguyen (2010). "Three-Dimensional Nanoscale Organization of Highly Efficient Low Band-Gap Conjugated Polymer Bulk Heterojunction Solar Cells".
4146:
Groves, C.; et al. (2010). "Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy".
2870:
M. Guide; X.D. Dang; T.Q. Nguyen (2011). "Nanoscale Characterization of Tetrabenzoporphyrin and Fullerene-Based Solar Cells by Photoconductive Atomic Force Microscopy".
2702:
T.A. Bull; L.S.C. Pingree; S.A. Jenekhe; D.S. Ginger; C.K. Luscombe (2010). "The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells".
4223: 4071: 3929: 3816: 3678: 3417: 3198: 54:(PV) devices between two electrodes, in which PV properties rely heavily on the nature of the electrodes. In addition, single layer PV devices notoriously have a poor 3474:
L. S. C. Pingree; B. A. Macleod; D. S. Ginger (2008). "The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport".
302: 185:
donor-acceptor copolymers have been created for PCBM-based OPV devices. These low band-gap donor-acceptor copolymers are able to absorb a higher percentage of the
489: 5129: 4379:
Tanaka, I.; et al. (1999). "Imaging and probing electronic properties of self-assembled InAs quantum dots by atomic force microscopy with conductive tip".
3431:
C. Ionescu-Zanetti; A. Mechler; S. A. Carter; R. Lal (2004). "Semiconductive Polymer Blends: Correlating Structure with Transport Properties at the Nanoscale".
1981: 4414:
Wold, D.J.; et al. (2000). "Formation of Metal−Molecule−Metal Tunnel Junctions:  Microcontacts to Alkanethiol Monolayers with a Conducting AFM Tip".
4754:
O.G. Reid; K Munechika; D.S. Ginger (2008). "Space Charge Limited Current Measurements on Conjugated Polymer Films using Conductive Atomic Force Microscopy".
2090:
is the film thickness in nanometers. The majority of the organic materials have relative permeability values of ~3 in their amorphous and crystalline states.
1663:
Photocurrent resolutions compared with a traditional topographical image. Reproduction granted by The American Chemical Society. License Number: 2656610690457
5134: 4090:
Sakaguchi, H.; et al. (1999). "Nanometer-Scale Photoelectric Property of Organic Thin Films Investigated by a Photoconductive Atomic Force Microscope".
3614: 1854:-coated glass as their conductive substrate. Because of high cost of ITO, however, there have been attempts to utilize other semiconducting layers, such as 1388: 306:
The forces acting on the tip are such that the spring (cantilever) remains soft but responds to the applied force, with a detectable resonant frequency,
1739:
cantilevers are used. In many cases diamond is the preferred material for cantilever and/or tip because it is an extremely hard material that does not
1292: 3368:
A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, M. M. de Kok (2007).
3293:
Jaquith, Michael; Muller, Erik M.; Marohn, John A. (2007). "Time-Resolved Electric Force Microscopy of Charge Trapping in Polycrystalline Pentacene".
353:
must also decrease to increase the value of the ratio. Manipulating the values in this way provides the necessary high resonance frequency. A typical
4957:
M. Taub; B. Menzel; G. Khanna; E. Lilleodden (2003). SPM Training Manual, Vers. 2.0 (Report). Laboratory for Advanced Materials, Stanford University.
2750:
B.H. Hamadani; S. Jung; P.M. Haney; L.J. Richter; N.B. Zhitenev (2010). "Origin of Nanoscale Variations in Photoresponse of an Organic Solar Cell".
2545: 2111:
The range of bias commonly applied is usually limited to between −5 V to +5 V for most studies. This can be achieved by applying a forward bias or
5067: 1833:. Because if their relative ease of use, along with size-tunable excitation attributes, quantum dots have commonly been applied as sensitizers in 3341:
Kemerink, M.; Timpanaro, S.; De Kok, M. M.; Meulenkamp, E. A.; Touwslager, F. J. (2004). "Three-Dimensional Inhomogeneities in PEDOT:PSS Films".
5194: 5164: 5022: 4994: 4715:"Measurement of nanoscale external quantum efficiency of conjugated polymer:fullerene solar cells by photoconductive atomic force microscopy" 3913: 3800: 1200: 1890: 1910: 170: 5246: 5241: 5226: 5189: 5112: 381: 5359: 5102: 5060: 226: 2276:"Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung" 324:
is defined as the mass acting on the cantilever: the mass of the cantilever itself and the mass of the tip. The relationship between
50:
Multi-layer photovoltaic cells have gained popularity since mid 1980s. At the time, research was primarily focused on single-layer
4265: 3184: 202: 1694:
Schematic of AFM sample analysis components. Reproduction granted by The American Chemical Society. License Number: 265674124703
5364: 5256: 5221: 3212:
E. Moons (2002). "Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes".
4470:
Lee, J.; et al. (2008). "Construction of pcAFM module to measure photoconductance with a nano-scale spatial resolution".
5374: 5369: 5236: 5216: 5211: 5174: 3952:
Olbrich, A.; et al. (1998). "Conducting atomic force microscopy for nanoscale electrical characterization of thin SiO".
3001:
A. Sharma; G. Andersson; D.A. Lewis. (2011). "Role of humidity on indium and tin migration in organic photovoltaic devices".
1930:, along with several other sources of tip contamination, are key factors in the decreased resolution observed while sampling 214: 130: 2604:
L.S.C. Pingree; O.G. Reid; D.S. Ginger (2010). "Electrical Scanning Probe Microscopy on Active Organic Electronic Devices".
456:. Changes in these forces are monitored by a guide laser that is reflected off the back of the cantilever and detected by a 5179: 5124: 2129: 1071:, is expressed as the intensity of the electric field applied to the exterior of the tube, the voltage along the x-axis, U 222: 218: 4053: 1829:
In more recent studies, pc-AFM has been employed to gather information regarding the photoactive regions from the use of
1140: 1085: 105:
which are slightly more expensive than organic based solar cells. The commonly used inorganic based solar cells include
101:
also exhibited the PV effect. Although many different blends have been researched, the market is dominated by inorganic
5276: 5271: 2222:
A. E. Becquerel (1839). "Research on the effects of chemical radiation from sunlight by means of electric currents".
468:. The atoms exhibit attractive forces until a certain point and then experience repulsion from one another. The term 3578:
K. D. O'Neil; B. Shaw; O. A. Semenikhin (2007). "On the Origin of Mesoscopic Inhomogeneity of Conducting Polymers".
2348:"The crystal and molecular structure of anthracene. II. Structure investigation by the triple Fourier series method" 1796:
One of the most common pc-AFM setups incorporates a light source, which emits in the visible spectrum along with an
1643:{\displaystyle dz=\left(\left(R+\chi \right)sin\Theta -L\right)+\left(D_{ss}+D_{sp}\right)\left(cos\Theta -1\right)} 5292: 5206: 5146: 2390:
G.J. Sloan (1966). "Studies on the Purification of Anthracene; Determination and Use of Segregation Coefficients".
461: 5302: 5266: 5261: 5184: 5169: 5083: 3618: 210: 177:, dictated the majority of studies pertaining to OPV for many years. In more recent research, polymer-based bulk 5037:
AFM Instrumentation. AFM University, Atomic Force Microscopy Education Resource Library. Web. 21 Apr. 2011. <
1687:
another and so that various sources of noise and mechanical interference do not disrupt the optical components.
5231: 2195:
H. Spanggaard; F.C. Krebs (2004). "A brief history of the development of organic and polymeric photovoltaics".
55: 5297: 5097: 480: 465: 453: 198: 35: 5041: 1698:
In traditional instrumentation, the stage is a cylindrical piezo-tube scanner that minimizes the effect of
1967: 1678: 5251: 4217: 3672: 3411: 3192: 3144:
Hoppe, H.; Sariciftci, N. S. (2006). "Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells".
2549: 1947: 230: 2444:
G.J. Sloan; J.M. Thomas; J.O. Williams (1975). "Basal Dislocations in Single Crystals of Anthracene".
4912: 4852: 4806: 4763: 4726: 4671: 4514: 4388: 4348: 4339:
O’Shea, S.J.; et al. (1995). "Characterization of tips for conducting atomic force microscopy".
4296: 4099: 3961: 3861: 3650: 3511: 3440: 3381: 3221: 3110: 3010: 2967: 2879: 2829: 2759: 2453: 2426: 2399: 2359: 2326: 2287: 2160: 1804:). The use of a gold plated silicon AFM probe is often used as the top anode in pc-AFM studies. This 1674: 449: 141: 122: 1923: 1699: 1067:
is the extension of the tube after the voltage is applied. The change in length of the piezo-tube,
51: 221:(SKPM) have been utilized in the studies of electron injection and charge trapping effects, while 4876: 4842: 4695: 4616: 4538: 4115: 3923: 3810: 3456: 3399: 3237: 3126: 2903: 2621: 372: 5018: 4990: 4928: 4868: 4779: 4687: 4577: 4530: 4487: 4326:
Materials Evaluation and Engineering Inc. Handbook of Analytical Methods For Materials. (2009)
4163: 4065: 3909: 3879: 3796: 3595: 3310: 3026: 2983: 2895: 2845: 2775: 2719: 2667: 1883: 1837:
devices. The authors have studied the photoresponse of sub-surface foundations such as buried
134: 69:
after illumination when he submerged platinum electrodes within an aqueous solution of either
39: 5307: 4920: 4860: 4814: 4771: 4734: 4679: 4643: 4608: 4569: 4522: 4479: 4423: 4396: 4356: 4304: 4205: 4155: 4107: 4015: 3969: 3869: 3658: 3587: 3560: 3519: 3483: 3448: 3389: 3350: 3302: 3273: 3229: 3180: 3153: 3118: 3071: 3018: 2975: 2887: 2837: 2767: 2711: 2659: 2613: 2526: 2461: 2434: 2407: 2367: 2334: 2295: 2204: 2168: 1851: 1797: 1683: 627:{\displaystyle f={-\mathrm {d} V \over \mathrm {d} r}={24\varepsilon _{o} \over r_{o}}\left} 206: 191: 157: 126: 3056: 275: 197:
Until recently, microscopy methods used in the characterization of these OPVs consisted of
5045: 2051:{\displaystyle J={\frac {8}{9}}\varepsilon _{o}\varepsilon _{r}\mu {\frac {V^{3}}{L^{3}}}} 1927: 1838: 241: 110: 70: 62: 1901:
Chemical structure of (1,4:8,11:15,18:22,25-tetraethano-29H,31H-tetrabenzoporphyrin (CP).
4916: 4856: 4810: 4767: 4730: 4675: 4526: 4518: 4392: 4352: 4300: 4103: 3965: 3865: 3654: 3515: 3444: 3385: 3225: 3114: 3014: 2971: 2883: 2833: 2763: 2457: 2430: 2403: 2363: 2330: 2291: 2164: 5323: 4269: 2481: 1951: 1834: 1703: 1043: 675:, the field enhancement factor, accounts for the non-planar, geometry of the tip used. 266: 186: 178: 98: 82: 77:. In the early 20th century, Pochettino and Volmer studied the first organic compound, 74: 3615:
New Scanning Probe Techniques for Analyzing Organic Photovoltaic Materials and Devices
3278: 3261: 3233: 1878:
A recently developed OPV system based on tetrabenzoporphryin (BP) and either -phenyl-C
663:= 0.5, which is the effective mass of an electron in the conduction band of a sample, 5353: 4699: 4620: 4119: 3460: 3403: 3241: 2625: 2530: 1786: 1653: 1499:{\displaystyle dx=(R+\chi )\left(1-cos\Theta \right)+\left(D_{ss}+D_{sp}\right)U_{x}} 457: 61:
The original exploration of the PV effect can be accredited to research published by
4880: 4542: 3130: 3095: 2907: 2233:
A.E. Becquerel (1839). "On Electrod Effect under the Influence of Solar Radiation".
475:
is the separation at which the sum of the potentials between the two atoms is zero
4483: 4285:"Noninvasive determination of optical lever sensitivity in atomic force microscopy" 4245:
Geisse, N. AFM and combined optical techniques. Application Note 12 Asylum research
4019: 3370:"Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films" 2112: 1955:
that the photocurrent variations are less related to spatial absorbance variation.
1889: 1830: 86: 66: 2102: 1869:
Deviation of the laser spot on photo diode caused by changes in sample topography.
4984: 2208: 1365:{\displaystyle \Theta ={\frac {L}{R}}=\left({\frac {d_{31}L}{t_{r}}}\right)U_{x}} 229:(c-AFM) have been used to investigate electron transport properties within these 1378:, the displacement of the probe in the x and z directions can be calculated as: 245: 237: 106: 3874: 3849: 2417:
G.J. Sloan (1967). "Kinetics of Crystallization of Anthracene from the Vapor".
5333: 5328: 4864: 3663: 3638: 2465: 2438: 2411: 2372: 2347: 2339: 2314: 1855: 1682:
to all AFM techniques are the conductive AFM cantilever and tip, the modified
445: 174: 102: 94: 78: 4932: 4872: 4534: 3260:
A. C. Mayer; S. R. Scully; B. E. Hardin; M. W. Rowell; M. D. McGehee (2007).
2299: 140:
With the high demand of cheap, clean energy sources persistently increasing,
5199: 5052: 2093: 1859: 1805: 161: 114: 90: 4924: 4783: 4691: 4683: 4612: 4581: 4491: 4167: 3883: 3599: 3452: 3394: 3369: 3314: 3030: 2987: 2899: 2891: 2849: 2779: 2723: 2671: 2617: 1812: 3122: 2315:"The crystal and molecular structure of anthracene. I. X-ray measurements" 1958: 1865: 1713: 4111: 1757: 1751:
Repulsive contact between the Au-plated conductive AFM tip and the sample
1728: 182: 3185:
10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7
1772: 1659: 3022: 1897: 1801: 1740: 1736: 1272:{\displaystyle \Delta L=Ed_{31}=\left({\frac {d_{31}L}{t}}\right)U_{x}} 118: 4818: 4775: 4739: 4714: 4647: 4573: 4427: 4360: 4308: 4284: 4209: 4159: 4003: 3591: 3564: 3523: 3487: 3354: 3306: 3076: 2979: 2841: 2771: 2715: 2663: 1962:
Different illumination sources show nearly identical photocurrent maps
1950:(CCD), the tip can easily be positioned directly over the laser spot. 1933: 5107: 4400: 3973: 3157: 2275: 2172: 4847: 1747: 1690: 1034: 679:
Relationship between conducting current and sample layer thickness:
19: 4266:"Development of Crosstalk Eliminated (XE) Atomic Force Microscopy" 3617:(Report). Asylum Research Atomic Force Microscopes. Archived from 2101: 2092: 1957: 1932: 1904: 1896: 1888: 1864: 1811: 1771: 1746: 1723: 1712: 1689: 1658: 1033: 435:{\displaystyle f_{o}={\frac {1}{2\pi }}{\sqrt {\frac {k}{m_{o}}}}} 18: 5038: 166: 5056: 3057:"Organic-Based Photovoltaics: Toward Low-Cost Power Generation" 1905: 2255:
A. Pochettino (1906). "Photoelectric behavior of anthracene".
1382:
Expressions for probe displacement in the x- and z-directions:
1816:
Representation of pc-AFM instrumentation and sample substrate
5145: 4004:"System errors quantitative analysis of sample-scanning AFM" 3613:
R. Giridharagopal; G. Shao; C. Groves; D.S. Ginger. (2010).
1042:
The principles of the piezo-tube is dependent upon how the
641:
is the effective emission area at the injecting electrode,
335:
must be very small in order to make the spring soft. Since
2517:
G.A. Chamberlain (1983). "Organic solar cells: A review".
2498:
S. Anthoe (2002). "Organic photovoltaic cells: a review".
2151:
Tang, C.W. (1986). "Two-layer organic photovoltaic cell".
1055:
is the curvature radius of the tube with applied voltage,
4983:
D. Damjanovic (2006). I. Mayergoyz; G. Bertotti (eds.).
1194:
Length displacement in terms of exterior electric field:
2313:
A. M. Mathieson; J.M. Robertson; V.C. Sinclair (1950).
1937:
Decreased resolution caused by rounding of the AFM tip.
3055:
Shaheen, S. E.; Ginley, D. S.; Jabbour, G. E. (2005).
2346:
V.C. Sinclair; J.M. Robertson; A.M. Mathieson (1950).
1966:
Most sampling procedures often begin by obtaining the
1984: 1513: 1391: 1295: 1203: 1143: 1088: 1051:
term indicates the outside radius of the piezo-tube,
688: 492: 384: 278: 236:
The origin of PC-AFM is due to the work performed by
262:
is defined as the force constant of the cantilever.
5316: 5285: 5157: 5090: 173:(PCBM). This, along with the research performed on 4713:X.-D. Dang; A. Mikhailovsky; T.-Q. Nguyen (2010). 3639:"Surface Studies by Scanning Tunneling Microscopy" 3637:Binning, H. Rhorer, Ch. Gerber, E. Weibel (1982). 2480: 2050: 1642: 1498: 1364: 1271: 1184:{\displaystyle L+\Delta L=\left(R+r\right)\Theta } 1183: 1129:{\displaystyle L-\Delta L=\left(R-r\right)\Theta } 1128: 1020: 626: 434: 296: 23:Animation representing sampling process of pc-AFM. 1800:(ITO) semi-conductive layer (used as the bottom 65:in 1839. Becquerel noticed the generation of a 4058:Asylum Research Atomic Force Microscopes. 2010 1893:Chemical structure of tetrabenzoporphryin (BP) 1652:Another fundamental concept of all AFM is the 360:value has a magnitude of 10 kg and creates an 5068: 2815: 2813: 2811: 2809: 1075:, and the thickness of the wall of the tube. 317:is the spring constant of the cantilever and 8: 5017:(3 ed.). London: Institute of Physics. 4593: 4591: 4222:: CS1 maint: multiple names: authors list ( 4141: 4139: 4137: 4135: 4133: 4131: 4129: 4085: 4083: 4081: 4070:: CS1 maint: multiple names: authors list ( 4054:"Photoconductive AFM of Organic Solar Cells" 3928:: CS1 maint: multiple names: authors list ( 3848:Binnig, G.; Quate, C. F.; Gerber, C (1986). 3815:: CS1 maint: multiple names: authors list ( 3756: 3754: 3752: 3750: 3677:: CS1 maint: multiple names: authors list ( 3416:: CS1 maint: multiple names: authors list ( 3197:: CS1 maint: multiple names: authors list ( 2807: 2805: 2803: 2801: 2799: 2797: 2795: 2793: 2791: 2789: 2078:is the relative permeability of the medium, 1079:Expressions for bend geometry of piezo-tube: 165:composite blend of poly(3-hexylthiopehene) ( 3748: 3746: 3744: 3742: 3740: 3738: 3736: 3734: 3732: 3730: 5075: 5061: 5053: 4047: 4045: 4043: 4041: 4039: 4037: 4035: 4033: 4031: 4029: 3947: 3945: 3943: 3941: 3939: 3899: 3897: 3895: 3893: 3843: 3841: 444:Several forces affect the behavior of the 4846: 4738: 4241: 4239: 4237: 4235: 4233: 3873: 3786: 3784: 3782: 3780: 3778: 3776: 3774: 3772: 3714: 3712: 3710: 3708: 3662: 3545: 3543: 3541: 3539: 3537: 3535: 3533: 3393: 3277: 3075: 2371: 2338: 2146: 2144: 2040: 2030: 2024: 2015: 2005: 1991: 1983: 1598: 1582: 1512: 1490: 1472: 1456: 1390: 1356: 1340: 1326: 1319: 1302: 1294: 1263: 1240: 1233: 1220: 1202: 1142: 1087: 996: 969: 907: 893: 861: 851: 834: 819: 809: 802: 781: 764: 747: 726: 716: 709: 699: 687: 613: 602: 596: 586: 575: 569: 563: 550: 539: 529: 515: 505: 499: 491: 423: 413: 398: 389: 383: 277: 5008: 5006: 3761:"Chapter 1: Scanning Probe Microscopy". 3706: 3704: 3702: 3700: 3698: 3696: 3694: 3692: 3690: 3688: 3255: 3253: 3251: 2953: 2951: 2949: 2947: 2945: 2943: 2941: 2939: 2937: 2865: 2863: 2861: 2859: 2599: 2597: 2595: 2593: 2591: 2589: 2587: 2585: 2583: 2581: 2579: 2197:Solar Energy Materials & Solar Cells 4952: 4950: 4948: 4946: 4944: 4942: 4554: 4552: 4465: 4463: 4461: 4459: 4457: 4374: 4372: 4370: 4322: 4320: 4318: 4259: 4257: 4255: 4253: 4251: 4191: 4189: 4187: 4185: 4183: 4181: 4179: 4177: 3997: 3995: 3993: 3991: 3989: 3987: 3985: 3983: 3632: 3630: 3628: 3336: 3334: 3332: 3330: 3328: 3326: 3324: 3050: 3048: 3046: 3044: 3042: 3040: 2935: 2933: 2931: 2929: 2927: 2925: 2923: 2921: 2919: 2917: 2745: 2743: 2741: 2739: 2737: 2735: 2733: 2697: 2695: 2693: 2691: 2689: 2687: 2685: 2683: 2681: 2577: 2575: 2573: 2571: 2569: 2567: 2565: 2563: 2561: 2559: 2385: 2383: 2140: 244:on STM for which they were awarded the 28:Photoconductive atomic force microscopy 5150:Typical atomic force microscopy set-up 4978: 4976: 4974: 4972: 4970: 4968: 4966: 4964: 4455: 4453: 4451: 4449: 4447: 4445: 4443: 4441: 4439: 4437: 4334: 4332: 4215: 4063: 3921: 3808: 3670: 3409: 3190: 3089: 3087: 2645: 2643: 2641: 2639: 2637: 2635: 2546:"Growth in Solar means Growth in Ohio" 2250: 2248: 2190: 2188: 2186: 2184: 2182: 1063:is the initial length of the tube and 207:scanning transmission X-ray microscopy 4898: 4896: 4894: 4892: 4890: 3094:Hoppe, H.; Sariciftci, N. S. (2004). 331:and the spring constant is such that 213:(SPM) is an active area of research. 7: 4507:Semiconductor Science and Technology 3763:Explorer Instrument Operation Manual 1911:phenyl-C61-butyric acid methyl ester 1776:pc-AFM module with conducting mirror 171:phenyl-C61-butyric acid methyl ester 671:is the barrier height. The symbol, 3721:Principle of Instrumental Analysis 3096:"Organic Solar Cells: An Overview" 1626: 1556: 1436: 1296: 1282:Expression for tube displacement, 1204: 1178: 1150: 1123: 1095: 516: 506: 227:conductive atomic force microscopy 14: 4002:Xiaojun, T.; et al. (2005). 3791:Atkins, P., De Paula, J. (2010). 3719:Skoog, D.A.; et al. (2007). 2071:is the permittivity of a vacuum, 1038:Sample scanning piezo-tube in AFM 203:transmission electron microscopy 97:as well as structurally similar 5257:Scanning quantum dot microscopy 3904:Atkins, P, DePaula, J. (2009). 3723:(6 ed.). pp. 616–618. 2082:is the mobility of the medium, 1059:is the bend angle of the tube, 42:in addition to surface forces. 16:Type of atomic force microscopy 5212:Photothermal microspectroscopy 4484:10.1016/j.ultramic.2008.04.077 4020:10.1016/j.ultramic.2005.06.046 3906:Elements of Physical Chemistry 3146:Journal of Materials Chemistry 1413: 1401: 215:Electrostatic force microscopy 131:copper indium gallium selenide 1: 4527:10.1088/0268-1242/25/6/065010 4283:Sun, Q.; et al. (2006). 4148:Accounts of Chemical Research 3279:10.1016/S1369-7021(07)70276-6 2130:Scanning tunneling microscope 1874:An example of OPV fabrication 479:Force on AFM tip in terms of 367:of approximately 2 kHz. 346:are in a ratio, the value of 223:scanning tunneling microscopy 3832:Nanotechnology for Engineers 2548:. Energy.gov. Archived from 2531:10.1016/0379-6787(83)90039-X 2209:10.1016/j.solmat.2004.02.021 1946:stage. Through the use of a 667:is the sample thickness and 181:solar cells, along with low 5195:Near-field scanning optical 5165:Ballistic electron emission 3262:"Polymer-based solar cells" 3234:10.1088/0953-8984/14/47/301 2483:Photoconductivity of solids 1717:Diagram of the tripod piezo 448:: attractive and repulsive 5391: 5293:Scanning probe lithography 4264:Park Systems Inc. (2008). 3875:10.1103/PhysRevLett.56.930 3795:(8 ed.). OUP Oxford. 3793:Atkins' Physical Chemistry 462:electrostatic interactions 5360:Scanning probe microscopy 5303:Feature-oriented scanning 5267:Scanning SQUID microscopy 5262:Scanning SQUID microscope 5143: 5084:Scanning probe microscopy 5015:Thin-Film Optical Filters 4989:. Vol. 3. Elsevier. 4986:The Science of Hysteresis 4865:10.1038/s41535-017-0061-4 4052:Dang, X.D., Nguyen, T.Q. 3908:(5 ed.). Macmillan. 3850:"Atomic Force Microscope" 3664:10.1103/PhysRevLett.49.57 2466:10.1080/15421407508082852 2439:10.1080/15421406708083424 2412:10.1080/15421406608083267 2373:10.1107/S0365110X50000653 2340:10.1107/S0365110X50000641 1975:Current density equation: 211:scanning probe microscopy 5247:Scanning joule expansion 5242:Scanning ion-conductance 5227:Scanning electrochemical 5190:Magnetic resonance force 3214:J. Phys. Condens. Matter 2300:10.1002/andp.19133450411 2086:is the applied bias and 2064:is the current density, 1374:With the calculation of 649:is the Planck constant, 645:is the electron charge, 5298:Dip-pen nanolithography 5044:April 27, 2009, at the 4905:Physica Status Solidi C 481:Lennard-Jones potential 466:Lennard-Jones potential 454:electrostatic repulsion 219:Kelvin probe microscopy 199:atomic force microscopy 36:atomic force microscopy 5365:Semiconductor analysis 5151: 4925:10.1002/pssc.201000599 4684:10.1002/adma.200903677 4613:10.1002/adfm.201000799 4295:(1): 013701–013701–5. 3453:10.1002/adma.200305747 3395:10.1002/adma.200602575 3003:Phys. Chem. Chem. Phys 2892:10.1002/adma.201003644 2618:10.1002/adma.200801466 2446:Mol. Cryst. Liq. Cryst 2108: 2099: 2052: 1963: 1938: 1914: 1909:Chemical structure of 1902: 1894: 1870: 1817: 1777: 1752: 1718: 1695: 1679:neutral density filter 1664: 1644: 1500: 1366: 1273: 1185: 1130: 1039: 1022: 628: 436: 298: 269:for cantilever motion: 231:organic semiconductors 24: 5375:Scientific techniques 5370:Intermolecular forces 5252:Scanning Kelvin probe 5149: 5013:Macleod, H A (2001). 4835:npj Quantum Materials 3123:10.1557/JMR.2004.0252 2105: 2096: 2053: 1961: 1948:charge-coupled device 1936: 1908: 1900: 1892: 1868: 1815: 1775: 1750: 1716: 1693: 1662: 1645: 1501: 1367: 1274: 1186: 1131: 1037: 1023: 629: 437: 299: 297:{\displaystyle f=-kd} 22: 5339:Vibrational analysis 5222:Scanning capacitance 4272:on October 22, 2010. 4112:10.1143/JJAP.38.3908 1982: 1675:microscope objective 1511: 1389: 1293: 1201: 1141: 1086: 686: 490: 450:Van der Waals forces 382: 276: 142:organic photovoltaic 5237:Scanning Hall probe 5217:Piezoresponse force 5175:Electrostatic force 4917:2011PSSCR...8..426M 4857:2017npjQM...2...56L 4811:2006ApPhL..89c2107D 4768:2008NanoL...8.1602R 4731:2010ApPhL..97k3303D 4676:2010AdM....22E..63H 4519:2010SeScT..25f5010M 4393:1999ApPhL..74..844T 4353:1995RScI...66.2508O 4301:2006RScI...77a3701H 4104:1999JaJAP..38.3908S 3966:1998ApPhL..73.3114O 3866:1986PhRvL..56..930B 3655:1982PhRvL..49...57B 3516:2002ApPhL..81.2572L 3445:2004AdM....16..385I 3386:2007AdM....19.1196N 3226:2002JPCM...1412235M 3115:2004JMatR..19.1924H 3015:2011PCCP...13.4381S 2972:2007NanoL...7..738C 2884:2011AdM....23.2313G 2834:2009NanoL...9.2946P 2764:2010NanoL..10.1611H 2552:on October 9, 2010. 2458:1975MCLC...30..167S 2431:1967MolCr...2..323S 2404:1966MolCr...1..161S 2364:1950AcCry...3..251S 2331:1950AcCry...3..245M 2292:1913AnP...345..775V 2165:1986ApPhL..48..183T 1924:Van der Waals force 1785:position sensitive 217:(EFM) and scanning 117:substrates such as 5180:Kelvin probe force 5152: 5125:Scanning tunneling 4092:Jpn. J. Appl. Phys 3023:10.1039/C0CP02203A 2487:. New York: Wiley. 2479:R.H. Bube (1960). 2280:Annalen der Physik 2274:M. Volmer (1913). 2109: 2100: 2048: 1964: 1939: 1915: 1903: 1895: 1871: 1818: 1778: 1753: 1719: 1696: 1665: 1640: 1496: 1362: 1269: 1181: 1126: 1040: 1018: 624: 432: 373:resonant frequency 313:. In Hooke's law, 294: 34:) is a variant of 25: 5347: 5346: 5024:978-1-4200-7302-7 4996:978-0-12-369431-7 4819:10.1063/1.2227846 4776:10.1021/nl080155l 4740:10.1063/1.3483613 4648:10.1021/jp809650p 4601:Adv. Funct. Mater 4574:10.1021/ja803054g 4478:(10): 1090–1093. 4428:10.1021/ja994468h 4422:(12): 2970–2971. 4361:10.1063/1.1145649 4341:Rev. Sci. Instrum 4309:10.1063/1.2162455 4289:Rev. Sci. Instrum 4210:10.1021/jp712086q 4204:(18): 7241–7249. 4160:10.1021/ar900231q 4098:(6B): 3908–3911. 3960:(21): 3114–3116. 3915:978-1-4292-1813-9 3830:Brugger, J. "1". 3802:978-0-19-954337-3 3592:10.1021/jp071564t 3565:10.1021/jp035766a 3524:10.1063/1.1509464 3488:10.1021/jp711838h 3355:10.1021/jp0464674 3307:10.1021/jp073626l 3077:10.1557/mrs2005.2 2980:10.1021/nl062989e 2878:(20): 2313–2319. 2842:10.1021/nl901358v 2772:10.1021/nl9040516 2716:10.1021/nn800878c 2664:10.1021/nn9014906 2544:L. Laird (2010). 2257:Acad. Lincei Rend 2046: 1999: 1884:ultra-high vacuum 1346: 1310: 1253: 1004: 982: 935: 915: 896: 841: 792: 754: 750: 702: 611: 584: 556: 524: 430: 429: 411: 135:cadmium telluride 40:photoconductivity 5382: 5308:Millipede memory 5277:Scanning voltage 5272:Scanning thermal 5077: 5070: 5063: 5054: 5048: 5035: 5029: 5028: 5010: 5001: 5000: 4980: 4959: 4958: 4954: 4937: 4936: 4900: 4885: 4884: 4850: 4829: 4823: 4822: 4799:Appl. Phys. Lett 4794: 4788: 4787: 4751: 4745: 4744: 4742: 4719:Appl. Phys. Lett 4710: 4704: 4703: 4658: 4652: 4651: 4636:J. Phys. Chem. C 4631: 4625: 4624: 4595: 4586: 4585: 4562:J. Am. Chem. Soc 4556: 4547: 4546: 4502: 4496: 4495: 4467: 4432: 4431: 4416:J. Am. Chem. Soc 4411: 4405: 4404: 4401:10.1063/1.123402 4381:Appl. Phys. Lett 4376: 4365: 4364: 4347:(3): 2508–2512. 4336: 4327: 4324: 4313: 4312: 4280: 4274: 4273: 4268:. Archived from 4261: 4246: 4243: 4228: 4227: 4221: 4213: 4198:J. Phys. Chem. C 4193: 4172: 4171: 4143: 4124: 4123: 4087: 4076: 4075: 4069: 4061: 4049: 4024: 4023: 4014:(1–4): 336–342. 3999: 3978: 3977: 3974:10.1063/1.122690 3954:Appl. Phys. Lett 3949: 3934: 3933: 3927: 3919: 3901: 3888: 3887: 3877: 3845: 3836: 3835: 3827: 3821: 3820: 3814: 3806: 3788: 3767: 3766: 3758: 3725: 3724: 3716: 3683: 3682: 3676: 3668: 3666: 3634: 3623: 3622: 3621:on May 17, 2011. 3610: 3604: 3603: 3580:J. Phys. Chem. B 3575: 3569: 3568: 3553:J. Phys. Chem. B 3547: 3528: 3527: 3504:Appl. Phys. Lett 3498: 3492: 3491: 3476:J. Phys. Chem. C 3471: 3465: 3464: 3428: 3422: 3421: 3415: 3407: 3397: 3365: 3359: 3358: 3343:J. Phys. Chem. B 3338: 3319: 3318: 3295:J. Phys. Chem. B 3290: 3284: 3283: 3281: 3257: 3246: 3245: 3209: 3203: 3202: 3196: 3188: 3168: 3162: 3161: 3158:10.1039/B510618B 3141: 3135: 3134: 3100: 3091: 3082: 3081: 3079: 3061: 3052: 3035: 3034: 2998: 2992: 2991: 2955: 2912: 2911: 2867: 2854: 2853: 2817: 2784: 2783: 2747: 2728: 2727: 2699: 2676: 2675: 2658:(4): 1861–1872. 2647: 2630: 2629: 2601: 2554: 2553: 2541: 2535: 2534: 2514: 2508: 2507: 2495: 2489: 2488: 2486: 2476: 2470: 2469: 2442: 2415: 2387: 2378: 2377: 2375: 2352:Acta Crystallogr 2344: 2342: 2319:Acta Crystallogr 2310: 2304: 2303: 2271: 2265: 2264: 2252: 2243: 2242: 2231: 2219: 2213: 2212: 2192: 2177: 2176: 2153:Appl. Phys. Lett 2148: 2057: 2055: 2054: 2049: 2047: 2045: 2044: 2035: 2034: 2025: 2020: 2019: 2010: 2009: 2000: 1992: 1798:indium tin oxide 1700:mechanical noise 1649: 1647: 1646: 1641: 1639: 1635: 1611: 1607: 1606: 1605: 1590: 1589: 1569: 1565: 1546: 1542: 1505: 1503: 1502: 1497: 1495: 1494: 1485: 1481: 1480: 1479: 1464: 1463: 1443: 1439: 1371: 1369: 1368: 1363: 1361: 1360: 1351: 1347: 1345: 1344: 1335: 1331: 1330: 1320: 1311: 1303: 1278: 1276: 1275: 1270: 1268: 1267: 1258: 1254: 1249: 1245: 1244: 1234: 1225: 1224: 1190: 1188: 1187: 1182: 1177: 1173: 1135: 1133: 1132: 1127: 1122: 1118: 1027: 1025: 1024: 1019: 1017: 1016: 1015: 1011: 1010: 1006: 1005: 997: 987: 983: 981: 970: 964: 960: 959: 940: 936: 934: 930: 918: 917: 916: 908: 906: 902: 898: 897: 894: 879: 875: 862: 846: 842: 840: 839: 838: 825: 824: 823: 814: 813: 803: 797: 793: 791: 790: 786: 785: 765: 759: 755: 753: 752: 751: 748: 732: 731: 730: 721: 720: 710: 704: 703: 700: 633: 631: 630: 625: 623: 619: 618: 617: 612: 607: 606: 597: 591: 590: 585: 580: 579: 570: 567: 557: 555: 554: 545: 544: 543: 530: 525: 523: 519: 513: 509: 500: 441: 439: 438: 433: 431: 428: 427: 415: 414: 412: 410: 399: 394: 393: 303: 301: 300: 295: 192:grain boundaries 158:greenhouse gases 127:gallium arsenide 123:gallium selenide 5390: 5389: 5385: 5384: 5383: 5381: 5380: 5379: 5350: 5349: 5348: 5343: 5312: 5281: 5207:Photon scanning 5153: 5141: 5130:Electrochemical 5118:Photoconductive 5086: 5081: 5051: 5046:Wayback Machine 5036: 5032: 5025: 5012: 5011: 5004: 4997: 4982: 4981: 4962: 4956: 4955: 4940: 4902: 4901: 4888: 4831: 4830: 4826: 4796: 4795: 4791: 4753: 4752: 4748: 4712: 4711: 4707: 4660: 4659: 4655: 4633: 4632: 4628: 4597: 4596: 4589: 4568:(41): 13653–8. 4558: 4557: 4550: 4504: 4503: 4499: 4472:Ultramicroscopy 4469: 4468: 4435: 4413: 4412: 4408: 4378: 4377: 4368: 4338: 4337: 4330: 4325: 4316: 4282: 4281: 4277: 4263: 4262: 4249: 4244: 4231: 4214: 4195: 4194: 4175: 4145: 4144: 4127: 4089: 4088: 4079: 4062: 4051: 4050: 4027: 4008:Ultramicroscopy 4001: 4000: 3981: 3951: 3950: 3937: 3920: 3916: 3903: 3902: 3891: 3854:Phys. Rev. Lett 3847: 3846: 3839: 3829: 3828: 3824: 3807: 3803: 3790: 3789: 3770: 3760: 3759: 3728: 3718: 3717: 3686: 3669: 3643:Phys. Rev. Lett 3636: 3635: 3626: 3612: 3611: 3607: 3586:(31): 9253–69. 3577: 3576: 3572: 3549: 3548: 3531: 3500: 3499: 3495: 3473: 3472: 3468: 3430: 3429: 3425: 3408: 3367: 3366: 3362: 3340: 3339: 3322: 3292: 3291: 3287: 3259: 3258: 3249: 3211: 3210: 3206: 3189: 3170: 3169: 3165: 3143: 3142: 3138: 3098: 3093: 3092: 3085: 3059: 3054: 3053: 3038: 3000: 2999: 2995: 2957: 2956: 2915: 2869: 2868: 2857: 2819: 2818: 2787: 2749: 2748: 2731: 2701: 2700: 2679: 2649: 2648: 2633: 2603: 2602: 2557: 2543: 2542: 2538: 2516: 2515: 2511: 2497: 2496: 2492: 2478: 2477: 2473: 2443: 2416: 2389: 2388: 2381: 2345: 2312: 2311: 2307: 2273: 2272: 2268: 2254: 2253: 2246: 2235:C. R. Acad. Sci 2232: 2224:C. R. Acad. Sci 2221: 2220: 2216: 2194: 2193: 2180: 2173:10.1063/1.96937 2150: 2149: 2142: 2138: 2126: 2076: 2069: 2036: 2026: 2011: 2001: 1980: 1979: 1952:Xenon arc lamps 1928:Capillary force 1881: 1876: 1847: 1839:indium arsenide 1823: 1670: 1668:Instrumentation 1616: 1612: 1594: 1578: 1577: 1573: 1532: 1528: 1527: 1523: 1509: 1508: 1486: 1468: 1452: 1451: 1447: 1420: 1416: 1387: 1386: 1352: 1336: 1322: 1321: 1315: 1291: 1290: 1259: 1236: 1235: 1229: 1216: 1199: 1198: 1163: 1159: 1139: 1138: 1108: 1104: 1084: 1083: 1074: 992: 988: 974: 965: 949: 945: 941: 923: 919: 889: 885: 881: 880: 868: 864: 863: 857: 856: 852: 847: 830: 826: 815: 805: 804: 798: 777: 773: 769: 760: 743: 733: 722: 712: 711: 705: 695: 684: 683: 662: 655: 640: 598: 595: 571: 568: 562: 558: 546: 535: 531: 514: 501: 488: 487: 473: 419: 403: 385: 380: 379: 371:Expression for 365: 358: 351: 344: 329: 322: 311: 274: 273: 255: 242:Heinrich Rohrer 155: 151: 147: 111:polycrystalline 99:phthalocyanines 71:silver chloride 63:Henri Becquerel 48: 17: 12: 11: 5: 5388: 5386: 5378: 5377: 5372: 5367: 5362: 5352: 5351: 5345: 5344: 5342: 5341: 5336: 5331: 5326: 5324:Nanotechnology 5320: 5318: 5314: 5313: 5311: 5310: 5305: 5300: 5295: 5289: 5287: 5283: 5282: 5280: 5279: 5274: 5269: 5264: 5259: 5254: 5249: 5244: 5239: 5234: 5229: 5224: 5219: 5214: 5209: 5204: 5203: 5202: 5192: 5187: 5185:Magnetic force 5182: 5177: 5172: 5170:Chemical force 5167: 5161: 5159: 5155: 5154: 5144: 5142: 5140: 5139: 5138: 5137: 5135:Spin polarized 5132: 5122: 5121: 5120: 5115: 5110: 5105: 5094: 5092: 5088: 5087: 5082: 5080: 5079: 5072: 5065: 5057: 5050: 5049: 5030: 5023: 5002: 4995: 4960: 4938: 4911:(2): 426–428. 4886: 4824: 4789: 4746: 4725:(11): 113303. 4705: 4653: 4626: 4587: 4548: 4497: 4433: 4406: 4387:(6): 844–846. 4366: 4328: 4314: 4275: 4247: 4229: 4173: 4154:(5): 612–620. 4125: 4077: 4025: 3979: 3935: 3914: 3889: 3860:(9): 930–933. 3837: 3822: 3801: 3768: 3726: 3684: 3624: 3605: 3570: 3529: 3493: 3466: 3423: 3360: 3320: 3301:(27): 7711–4. 3285: 3247: 3204: 3163: 3136: 3083: 3036: 3009:(10): 4381–7. 2993: 2913: 2855: 2828:(8): 2946–52. 2785: 2729: 2710:(3): 627–636. 2677: 2631: 2555: 2536: 2509: 2500:Rom. Rep. Phys 2490: 2471: 2379: 2305: 2266: 2244: 2214: 2178: 2139: 2137: 2134: 2133: 2132: 2125: 2122: 2074: 2067: 2043: 2039: 2033: 2029: 2023: 2018: 2014: 2008: 2004: 1998: 1995: 1990: 1987: 1879: 1875: 1872: 1846: 1843: 1835:optoelectronic 1822: 1819: 1704:electric field 1669: 1666: 1638: 1634: 1631: 1628: 1625: 1622: 1619: 1615: 1610: 1604: 1601: 1597: 1593: 1588: 1585: 1581: 1576: 1572: 1568: 1564: 1561: 1558: 1555: 1552: 1549: 1545: 1541: 1538: 1535: 1531: 1526: 1522: 1519: 1516: 1493: 1489: 1484: 1478: 1475: 1471: 1467: 1462: 1459: 1455: 1450: 1446: 1442: 1438: 1435: 1432: 1429: 1426: 1423: 1419: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1359: 1355: 1350: 1343: 1339: 1334: 1329: 1325: 1318: 1314: 1309: 1306: 1301: 1298: 1266: 1262: 1257: 1252: 1248: 1243: 1239: 1232: 1228: 1223: 1219: 1215: 1212: 1209: 1206: 1180: 1176: 1172: 1169: 1166: 1162: 1158: 1155: 1152: 1149: 1146: 1125: 1121: 1117: 1114: 1111: 1107: 1103: 1100: 1097: 1094: 1091: 1072: 1044:piezo-electric 1014: 1009: 1003: 1000: 995: 991: 986: 980: 977: 973: 968: 963: 958: 955: 952: 948: 944: 939: 933: 929: 926: 922: 914: 911: 905: 901: 892: 888: 884: 878: 874: 871: 867: 860: 855: 850: 845: 837: 833: 829: 822: 818: 812: 808: 801: 796: 789: 784: 780: 776: 772: 768: 763: 758: 746: 742: 739: 736: 729: 725: 719: 715: 708: 698: 694: 691: 660: 653: 638: 622: 616: 610: 605: 601: 594: 589: 583: 578: 574: 566: 561: 553: 549: 542: 538: 534: 528: 522: 518: 512: 508: 504: 498: 495: 471: 426: 422: 418: 409: 406: 402: 397: 392: 388: 363: 356: 349: 342: 327: 320: 309: 293: 290: 287: 284: 281: 254: 251: 187:solar spectrum 179:heterojunction 153: 149: 145: 83:methylene blue 75:silver bromide 47: 44: 38:that measures 15: 13: 10: 9: 6: 4: 3: 2: 5387: 5376: 5373: 5371: 5368: 5366: 5363: 5361: 5358: 5357: 5355: 5340: 5337: 5335: 5332: 5330: 5327: 5325: 5322: 5321: 5319: 5315: 5309: 5306: 5304: 5301: 5299: 5296: 5294: 5291: 5290: 5288: 5284: 5278: 5275: 5273: 5270: 5268: 5265: 5263: 5260: 5258: 5255: 5253: 5250: 5248: 5245: 5243: 5240: 5238: 5235: 5233: 5232:Scanning gate 5230: 5228: 5225: 5223: 5220: 5218: 5215: 5213: 5210: 5208: 5205: 5201: 5198: 5197: 5196: 5193: 5191: 5188: 5186: 5183: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5162: 5160: 5156: 5148: 5136: 5133: 5131: 5128: 5127: 5126: 5123: 5119: 5116: 5114: 5111: 5109: 5106: 5104: 5101: 5100: 5099: 5096: 5095: 5093: 5089: 5085: 5078: 5073: 5071: 5066: 5064: 5059: 5058: 5055: 5047: 5043: 5039: 5034: 5031: 5026: 5020: 5016: 5009: 5007: 5003: 4998: 4992: 4988: 4987: 4979: 4977: 4975: 4973: 4971: 4969: 4967: 4965: 4961: 4953: 4951: 4949: 4947: 4945: 4943: 4939: 4934: 4930: 4926: 4922: 4918: 4914: 4910: 4906: 4899: 4897: 4895: 4893: 4891: 4887: 4882: 4878: 4874: 4870: 4866: 4862: 4858: 4854: 4849: 4844: 4840: 4836: 4828: 4825: 4820: 4816: 4812: 4808: 4805:(3): 032107. 4804: 4800: 4793: 4790: 4785: 4781: 4777: 4773: 4769: 4765: 4762:(6): 1602–9. 4761: 4757: 4750: 4747: 4741: 4736: 4732: 4728: 4724: 4720: 4716: 4709: 4706: 4701: 4697: 4693: 4689: 4685: 4681: 4677: 4673: 4669: 4665: 4657: 4654: 4649: 4645: 4641: 4637: 4630: 4627: 4622: 4618: 4614: 4610: 4606: 4602: 4594: 4592: 4588: 4583: 4579: 4575: 4571: 4567: 4563: 4555: 4553: 4549: 4544: 4540: 4536: 4532: 4528: 4524: 4520: 4516: 4513:(6): 065010. 4512: 4508: 4501: 4498: 4493: 4489: 4485: 4481: 4477: 4473: 4466: 4464: 4462: 4460: 4458: 4456: 4454: 4452: 4450: 4448: 4446: 4444: 4442: 4440: 4438: 4434: 4429: 4425: 4421: 4417: 4410: 4407: 4402: 4398: 4394: 4390: 4386: 4382: 4375: 4373: 4371: 4367: 4362: 4358: 4354: 4350: 4346: 4342: 4335: 4333: 4329: 4323: 4321: 4319: 4315: 4310: 4306: 4302: 4298: 4294: 4290: 4286: 4279: 4276: 4271: 4267: 4260: 4258: 4256: 4254: 4252: 4248: 4242: 4240: 4238: 4236: 4234: 4230: 4225: 4219: 4211: 4207: 4203: 4199: 4192: 4190: 4188: 4186: 4184: 4182: 4180: 4178: 4174: 4169: 4165: 4161: 4157: 4153: 4149: 4142: 4140: 4138: 4136: 4134: 4132: 4130: 4126: 4121: 4117: 4113: 4109: 4105: 4101: 4097: 4093: 4086: 4084: 4082: 4078: 4073: 4067: 4059: 4055: 4048: 4046: 4044: 4042: 4040: 4038: 4036: 4034: 4032: 4030: 4026: 4021: 4017: 4013: 4009: 4005: 3998: 3996: 3994: 3992: 3990: 3988: 3986: 3984: 3980: 3975: 3971: 3967: 3963: 3959: 3955: 3948: 3946: 3944: 3942: 3940: 3936: 3931: 3925: 3917: 3911: 3907: 3900: 3898: 3896: 3894: 3890: 3885: 3881: 3876: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3842: 3838: 3834:. p. 28. 3833: 3826: 3823: 3818: 3812: 3804: 3798: 3794: 3787: 3785: 3783: 3781: 3779: 3777: 3775: 3773: 3769: 3764: 3757: 3755: 3753: 3751: 3749: 3747: 3745: 3743: 3741: 3739: 3737: 3735: 3733: 3731: 3727: 3722: 3715: 3713: 3711: 3709: 3707: 3705: 3703: 3701: 3699: 3697: 3695: 3693: 3691: 3689: 3685: 3680: 3674: 3665: 3660: 3656: 3652: 3648: 3644: 3640: 3633: 3631: 3629: 3625: 3620: 3616: 3609: 3606: 3601: 3597: 3593: 3589: 3585: 3581: 3574: 3571: 3566: 3562: 3558: 3554: 3546: 3544: 3542: 3540: 3538: 3536: 3534: 3530: 3525: 3521: 3517: 3513: 3509: 3505: 3497: 3494: 3489: 3485: 3481: 3477: 3470: 3467: 3462: 3458: 3454: 3450: 3446: 3442: 3438: 3434: 3427: 3424: 3419: 3413: 3405: 3401: 3396: 3391: 3387: 3383: 3379: 3375: 3371: 3364: 3361: 3356: 3352: 3349:(49): 18820. 3348: 3344: 3337: 3335: 3333: 3331: 3329: 3327: 3325: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3289: 3286: 3280: 3275: 3271: 3267: 3263: 3256: 3254: 3252: 3248: 3243: 3239: 3235: 3231: 3227: 3223: 3220:(47): 12235. 3219: 3215: 3208: 3205: 3200: 3194: 3186: 3182: 3178: 3174: 3167: 3164: 3159: 3155: 3151: 3147: 3140: 3137: 3132: 3128: 3124: 3120: 3116: 3112: 3108: 3104: 3103:J. Mater. Res 3097: 3090: 3088: 3084: 3078: 3073: 3069: 3065: 3058: 3051: 3049: 3047: 3045: 3043: 3041: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 2997: 2994: 2989: 2985: 2981: 2977: 2973: 2969: 2966:(3): 738–44. 2965: 2961: 2954: 2952: 2950: 2948: 2946: 2944: 2942: 2940: 2938: 2936: 2934: 2932: 2930: 2928: 2926: 2924: 2922: 2920: 2918: 2914: 2909: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2873: 2866: 2864: 2862: 2860: 2856: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2816: 2814: 2812: 2810: 2808: 2806: 2804: 2802: 2800: 2798: 2796: 2794: 2792: 2790: 2786: 2781: 2777: 2773: 2769: 2765: 2761: 2758:(5): 1611–7. 2757: 2753: 2746: 2744: 2742: 2740: 2738: 2736: 2734: 2730: 2725: 2721: 2717: 2713: 2709: 2705: 2698: 2696: 2694: 2692: 2690: 2688: 2686: 2684: 2682: 2678: 2673: 2669: 2665: 2661: 2657: 2653: 2646: 2644: 2642: 2640: 2638: 2636: 2632: 2627: 2623: 2619: 2615: 2611: 2607: 2600: 2598: 2596: 2594: 2592: 2590: 2588: 2586: 2584: 2582: 2580: 2578: 2576: 2574: 2572: 2570: 2568: 2566: 2564: 2562: 2560: 2556: 2551: 2547: 2540: 2537: 2532: 2528: 2524: 2520: 2513: 2510: 2505: 2501: 2494: 2491: 2485: 2484: 2475: 2472: 2467: 2463: 2459: 2455: 2451: 2447: 2440: 2436: 2432: 2428: 2424: 2420: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2384: 2380: 2374: 2369: 2365: 2361: 2357: 2353: 2349: 2341: 2336: 2332: 2328: 2324: 2320: 2316: 2309: 2306: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2267: 2262: 2258: 2251: 2249: 2245: 2240: 2236: 2229: 2225: 2218: 2215: 2210: 2206: 2202: 2198: 2191: 2189: 2187: 2185: 2183: 2179: 2174: 2170: 2166: 2162: 2158: 2154: 2147: 2145: 2141: 2135: 2131: 2128: 2127: 2123: 2121: 2117: 2114: 2104: 2095: 2091: 2089: 2085: 2081: 2077: 2070: 2063: 2058: 2041: 2037: 2031: 2027: 2021: 2016: 2012: 2006: 2002: 1996: 1993: 1988: 1985: 1977: 1976: 1972: 1969: 1960: 1956: 1953: 1949: 1943: 1935: 1931: 1929: 1925: 1919: 1912: 1907: 1899: 1891: 1887: 1885: 1873: 1867: 1863: 1861: 1857: 1853: 1844: 1842: 1840: 1836: 1832: 1827: 1820: 1814: 1810: 1807: 1803: 1799: 1794: 1790: 1788: 1787:photodetector 1782: 1774: 1770: 1766: 1762: 1759: 1749: 1745: 1742: 1738: 1732: 1730: 1725: 1724:guiding laser 1715: 1711: 1707: 1705: 1701: 1692: 1688: 1685: 1680: 1676: 1667: 1661: 1657: 1655: 1654:feedback loop 1650: 1636: 1632: 1629: 1623: 1620: 1617: 1613: 1608: 1602: 1599: 1595: 1591: 1586: 1583: 1579: 1574: 1570: 1566: 1562: 1559: 1553: 1550: 1547: 1543: 1539: 1536: 1533: 1529: 1524: 1520: 1517: 1514: 1506: 1491: 1487: 1482: 1476: 1473: 1469: 1465: 1460: 1457: 1453: 1448: 1444: 1440: 1433: 1430: 1427: 1424: 1421: 1417: 1410: 1407: 1404: 1398: 1395: 1392: 1384: 1383: 1379: 1377: 1372: 1357: 1353: 1348: 1341: 1337: 1332: 1327: 1323: 1316: 1312: 1307: 1304: 1299: 1288: 1287: 1285: 1279: 1264: 1260: 1255: 1250: 1246: 1241: 1237: 1230: 1226: 1221: 1217: 1213: 1210: 1207: 1196: 1195: 1191: 1174: 1170: 1167: 1164: 1160: 1156: 1153: 1147: 1144: 1136: 1119: 1115: 1112: 1109: 1105: 1101: 1098: 1092: 1089: 1081: 1080: 1076: 1070: 1066: 1062: 1058: 1054: 1050: 1045: 1036: 1032: 1028: 1012: 1007: 1001: 998: 993: 989: 984: 978: 975: 971: 966: 961: 956: 953: 950: 946: 942: 937: 931: 927: 924: 920: 912: 909: 903: 899: 890: 886: 882: 876: 872: 869: 865: 858: 853: 848: 843: 835: 831: 827: 820: 816: 810: 806: 799: 794: 787: 782: 778: 774: 770: 766: 761: 756: 744: 740: 737: 734: 727: 723: 717: 713: 706: 696: 692: 689: 681: 680: 676: 674: 670: 666: 659: 652: 648: 644: 634: 620: 614: 608: 603: 599: 592: 587: 581: 576: 572: 564: 559: 551: 547: 540: 536: 532: 526: 520: 510: 502: 496: 493: 485: 483: 482: 476: 474: 467: 463: 459: 458:photodetector 455: 451: 447: 442: 424: 420: 416: 407: 404: 400: 395: 390: 386: 377: 376: 374: 368: 366: 359: 352: 345: 338: 334: 330: 323: 316: 312: 304: 291: 288: 285: 282: 279: 271: 270: 268: 263: 261: 252: 250: 247: 243: 239: 234: 232: 228: 224: 220: 216: 212: 208: 204: 200: 195: 193: 188: 184: 180: 176: 172: 168: 163: 159: 143: 138: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 59: 57: 53: 45: 43: 41: 37: 33: 29: 21: 5286:Applications 5117: 5098:Atomic force 5033: 5014: 4985: 4908: 4904: 4838: 4834: 4827: 4802: 4798: 4792: 4759: 4755: 4749: 4722: 4718: 4708: 4670:(8): E63–6. 4667: 4663: 4656: 4639: 4635: 4629: 4607:(19): 3314. 4604: 4600: 4565: 4561: 4510: 4506: 4500: 4475: 4471: 4419: 4415: 4409: 4384: 4380: 4344: 4340: 4292: 4288: 4278: 4270:the original 4218:cite journal 4201: 4197: 4151: 4147: 4095: 4091: 4057: 4011: 4007: 3957: 3953: 3905: 3857: 3853: 3831: 3825: 3792: 3762: 3720: 3673:cite journal 3649:(1): 57–60. 3646: 3642: 3619:the original 3608: 3583: 3579: 3573: 3556: 3552: 3510:(14): 2572. 3507: 3503: 3496: 3482:(21): 7922. 3479: 3475: 3469: 3436: 3432: 3426: 3412:cite journal 3377: 3373: 3363: 3346: 3342: 3298: 3294: 3288: 3269: 3266:Mater. Today 3265: 3217: 3213: 3207: 3193:cite journal 3179:(14): 1053. 3176: 3172: 3166: 3149: 3145: 3139: 3106: 3102: 3067: 3063: 3006: 3002: 2996: 2963: 2959: 2875: 2871: 2825: 2821: 2755: 2751: 2707: 2703: 2655: 2651: 2609: 2605: 2550:the original 2539: 2522: 2518: 2512: 2503: 2499: 2493: 2482: 2474: 2452:(1–2): 167. 2449: 2445: 2422: 2418: 2395: 2391: 2355: 2351: 2322: 2318: 2308: 2283: 2279: 2269: 2260: 2256: 2238: 2234: 2227: 2223: 2217: 2203:(2–3): 125. 2200: 2196: 2156: 2152: 2118: 2113:reverse bias 2110: 2087: 2083: 2079: 2072: 2065: 2061: 2059: 1978: 1974: 1973: 1968:dark current 1965: 1944: 1940: 1920: 1916: 1877: 1848: 1831:quantum dots 1828: 1824: 1821:Applications 1795: 1791: 1783: 1779: 1767: 1763: 1754: 1733: 1720: 1708: 1697: 1671: 1651: 1507: 1385: 1381: 1380: 1375: 1373: 1289: 1283: 1281: 1280: 1197: 1193: 1192: 1137: 1082: 1078: 1077: 1068: 1064: 1060: 1056: 1052: 1048: 1041: 1029: 682: 678: 677: 672: 668: 664: 657: 650: 646: 642: 635: 486: 478: 477: 469: 443: 378: 375:of a spring: 370: 369: 361: 354: 347: 340: 336: 332: 325: 318: 314: 307: 305: 272: 265: 264: 259: 256: 235: 196: 139: 87:chlorophylls 67:photocurrent 60: 52:photovoltaic 49: 31: 27: 26: 5113:Non-contact 4642:(4): 1596. 3559:(5): 1590. 3380:(9): 1196. 3109:(7): 1924. 267:Hooke's law 246:Nobel Prize 238:Gerd Binnig 107:crystalline 103:solar cells 56:fill factor 5354:Categories 5334:Microscopy 5329:Microscope 5103:Conductive 4848:1706.02397 4664:Adv. Mater 3439:(5): 385. 3433:Adv. Mater 3374:Adv. Mater 3272:(11): 28. 3173:Adv. Mater 2872:Adv. Mater 2606:Adv. Mater 2519:Sol. Cells 2425:(4): 323. 2419:Mol. Cryst 2398:(1): 161. 2392:Mol. Cryst 2358:(4): 251. 2325:(4): 245. 2286:(4): 755. 2159:(2): 183. 2136:References 1856:zinc oxide 446:cantilever 225:(STM) and 205:(TEM) and 175:fullerenes 95:porphyrins 79:anthracene 46:Background 5200:Nano-FTIR 4933:1862-6351 4873:2397-4648 4841:(1): 56. 4756:Nano Lett 4700:205235443 4621:247665858 4535:0268-1242 4120:119459990 3924:cite book 3811:cite book 3461:135984512 3404:136916550 3242:250773358 3152:(1): 45. 3070:(1): 10. 2960:Nano Lett 2822:Nano Lett 2752:Nano Lett 2626:138146880 2612:(1): 19. 2022:μ 2013:ε 2003:ε 1860:PEDOT:PSS 1806:electrode 1630:− 1627:Θ 1560:− 1557:Θ 1540:χ 1437:Θ 1425:− 1411:χ 1297:Θ 1205:Δ 1179:Θ 1151:Δ 1124:Θ 1113:− 1096:Δ 1093:− 994:ϕ 976:β 947:ν 873:π 828:ϕ 807:β 738:π 593:− 537:ε 503:− 408:π 286:− 162:thin-film 115:amorphous 91:carotenes 5317:See also 5108:Infrared 5042:Archived 4881:53129878 4784:18447400 4692:20217801 4582:18798623 4543:95804750 4492:18562107 4168:20143815 4066:cite web 3884:10033323 3600:17637051 3315:17583945 3131:22455511 3064:MRS Bull 3031:21258707 2988:17295549 2908:36248286 2900:21462370 2850:19588929 2780:20411971 2724:19228011 2704:ACS Nano 2672:20222697 2652:ACS Nano 2124:See also 1845:Sampling 1758:photonic 1729:detector 1677:and the 183:band-gap 152:, and SO 93:, other 4913:Bibcode 4853:Bibcode 4807:Bibcode 4764:Bibcode 4727:Bibcode 4672:Bibcode 4515:Bibcode 4389:Bibcode 4349:Bibcode 4297:Bibcode 4100:Bibcode 3962:Bibcode 3862:Bibcode 3651:Bibcode 3512:Bibcode 3441:Bibcode 3382:Bibcode 3222:Bibcode 3111:Bibcode 3011:Bibcode 2968:Bibcode 2880:Bibcode 2830:Bibcode 2760:Bibcode 2454:Bibcode 2427:Bibcode 2400:Bibcode 2360:Bibcode 2327:Bibcode 2288:Bibcode 2161:Bibcode 1886:(UHV). 1802:cathode 1741:oxidize 1737:diamond 201:(AFM), 119:silicon 5091:Common 5021:  4993:  4931:  4879:  4871:  4782:  4698:  4690:  4619:  4580:  4541:  4533:  4490:  4166:  4118:  3912:  3882:  3799:  3598:  3459:  3402:  3313:  3240:  3129:  3029:  2986:  2906:  2898:  2848:  2778:  2722:  2670:  2624:  2525:: 47. 2506:: 427. 2263:: 355. 2241:: 561. 2230:: 145. 2098:plots. 2060:where 1913:(PCBM) 452:, and 253:Theory 169:) and 113:, and 32:PC-AFM 5158:Other 5040:> 4877:S2CID 4843:arXiv 4696:S2CID 4617:S2CID 4539:S2CID 4116:S2CID 3457:S2CID 3400:S2CID 3238:S2CID 3127:S2CID 3099:(PDF) 3060:(PDF) 2904:S2CID 2622:S2CID 1684:piezo 5019:ISBN 4991:ISBN 4929:ISSN 4869:ISSN 4780:PMID 4688:PMID 4578:PMID 4531:ISSN 4488:PMID 4224:link 4164:PMID 4072:link 3930:link 3910:ISBN 3880:PMID 3817:link 3797:ISBN 3679:link 3596:PMID 3418:link 3311:PMID 3199:link 3027:PMID 2984:PMID 2896:PMID 2846:PMID 2776:PMID 2720:PMID 2668:PMID 2107:(c). 339:and 240:and 167:P3HT 148:, NO 133:and 4921:doi 4861:doi 4815:doi 4772:doi 4735:doi 4680:doi 4644:doi 4640:113 4609:doi 4570:doi 4566:130 4523:doi 4480:doi 4476:108 4424:doi 4420:122 4397:doi 4357:doi 4305:doi 4206:doi 4202:112 4156:doi 4108:doi 4016:doi 4012:105 3970:doi 3870:doi 3659:doi 3588:doi 3584:111 3561:doi 3557:108 3520:doi 3484:doi 3480:112 3449:doi 3390:doi 3351:doi 3347:108 3303:doi 3299:111 3274:doi 3230:doi 3181:doi 3154:doi 3119:doi 3072:doi 3019:doi 2976:doi 2888:doi 2838:doi 2768:doi 2712:doi 2660:doi 2614:doi 2527:doi 2462:doi 2435:doi 2408:doi 2368:doi 2335:doi 2296:doi 2205:doi 2169:doi 1852:ITO 895:eff 749:eff 701:eff 654:eff 639:eff 73:or 5356:: 5005:^ 4963:^ 4941:^ 4927:. 4919:. 4907:. 4889:^ 4875:. 4867:. 4859:. 4851:. 4837:. 4813:. 4803:89 4801:. 4778:. 4770:. 4758:. 4733:. 4723:97 4721:. 4717:. 4694:. 4686:. 4678:. 4668:22 4666:. 4638:. 4615:. 4605:20 4603:. 4590:^ 4576:. 4564:. 4551:^ 4537:. 4529:. 4521:. 4511:25 4509:. 4486:. 4474:. 4436:^ 4418:. 4395:. 4385:74 4383:. 4369:^ 4355:. 4345:66 4343:. 4331:^ 4317:^ 4303:. 4293:77 4291:. 4287:. 4250:^ 4232:^ 4220:}} 4216:{{ 4200:. 4176:^ 4162:. 4152:43 4150:. 4128:^ 4114:. 4106:. 4096:38 4094:. 4080:^ 4068:}} 4064:{{ 4056:. 4028:^ 4010:. 4006:. 3982:^ 3968:. 3958:73 3956:. 3938:^ 3926:}} 3922:{{ 3892:^ 3878:. 3868:. 3858:56 3856:. 3852:. 3840:^ 3813:}} 3809:{{ 3771:^ 3729:^ 3687:^ 3675:}} 3671:{{ 3657:. 3647:49 3645:. 3641:. 3627:^ 3594:. 3582:. 3555:. 3532:^ 3518:. 3508:81 3506:. 3478:. 3455:. 3447:. 3437:16 3435:. 3414:}} 3410:{{ 3398:. 3388:. 3378:19 3376:. 3372:. 3345:. 3323:^ 3309:. 3297:. 3270:10 3268:. 3264:. 3250:^ 3236:. 3228:. 3218:14 3216:. 3195:}} 3191:{{ 3177:13 3175:. 3150:16 3148:. 3125:. 3117:. 3107:19 3105:. 3101:. 3086:^ 3068:30 3066:. 3062:. 3039:^ 3025:. 3017:. 3007:13 3005:. 2982:. 2974:. 2962:. 2916:^ 2902:. 2894:. 2886:. 2876:23 2874:. 2858:^ 2844:. 2836:. 2824:. 2788:^ 2774:. 2766:. 2756:10 2754:. 2732:^ 2718:. 2706:. 2680:^ 2666:. 2654:. 2634:^ 2620:. 2610:21 2608:. 2558:^ 2521:. 2504:53 2502:. 2460:. 2450:30 2448:. 2433:. 2421:. 2406:. 2394:. 2382:^ 2366:. 2354:. 2350:. 2333:. 2321:. 2317:. 2294:. 2284:40 2282:. 2278:. 2261:15 2259:. 2247:^ 2237:. 2226:. 2201:83 2199:. 2181:^ 2167:. 2157:48 2155:. 2143:^ 1880:61 1328:31 1242:31 1222:31 1069:ΔL 1065:ΔL 656:/ 588:12 533:24 484:: 137:. 129:, 125:, 121:, 109:, 89:, 5076:e 5069:t 5062:v 5027:. 4999:. 4935:. 4923:: 4915:: 4909:8 4883:. 4863:: 4855:: 4845:: 4839:2 4821:. 4817:: 4809:: 4786:. 4774:: 4766:: 4760:8 4743:. 4737:: 4729:: 4702:. 4682:: 4674:: 4650:. 4646:: 4623:. 4611:: 4584:. 4572:: 4545:. 4525:: 4517:: 4494:. 4482:: 4430:. 4426:: 4403:. 4399:: 4391:: 4363:. 4359:: 4351:: 4311:. 4307:: 4299:: 4226:) 4212:. 4208:: 4170:. 4158:: 4122:. 4110:: 4102:: 4074:) 4060:. 4022:. 4018:: 3976:. 3972:: 3964:: 3932:) 3918:. 3886:. 3872:: 3864:: 3819:) 3805:. 3765:. 3681:) 3667:. 3661:: 3653:: 3602:. 3590:: 3567:. 3563:: 3526:. 3522:: 3514:: 3490:. 3486:: 3463:. 3451:: 3443:: 3420:) 3406:. 3392:: 3384:: 3357:. 3353:: 3317:. 3305:: 3282:. 3276:: 3244:. 3232:: 3224:: 3201:) 3187:. 3183:: 3160:. 3156:: 3133:. 3121:: 3113:: 3080:. 3074:: 3033:. 3021:: 3013:: 2990:. 2978:: 2970:: 2964:7 2910:. 2890:: 2882:: 2852:. 2840:: 2832:: 2826:9 2782:. 2770:: 2762:: 2726:. 2714:: 2708:3 2674:. 2662:: 2656:4 2628:. 2616:: 2533:. 2529:: 2523:8 2468:. 2464:: 2456:: 2441:. 2437:: 2429:: 2423:1 2414:. 2410:: 2402:: 2396:1 2376:. 2370:: 2362:: 2356:3 2343:. 2337:: 2329:: 2323:3 2302:. 2298:: 2290:: 2239:9 2228:9 2211:. 2207:: 2175:. 2171:: 2163:: 2088:L 2084:V 2080:μ 2075:r 2073:ε 2068:o 2066:ε 2062:J 2042:3 2038:L 2032:3 2028:V 2017:r 2007:o 1997:9 1994:8 1989:= 1986:J 1637:) 1633:1 1624:s 1621:o 1618:c 1614:( 1609:) 1603:p 1600:s 1596:D 1592:+ 1587:s 1584:s 1580:D 1575:( 1571:+ 1567:) 1563:L 1554:n 1551:i 1548:s 1544:) 1537:+ 1534:R 1530:( 1525:( 1521:= 1518:z 1515:d 1492:x 1488:U 1483:) 1477:p 1474:s 1470:D 1466:+ 1461:s 1458:s 1454:D 1449:( 1445:+ 1441:) 1434:s 1431:o 1428:c 1422:1 1418:( 1414:) 1408:+ 1405:R 1402:( 1399:= 1396:x 1393:d 1376:θ 1358:x 1354:U 1349:) 1342:r 1338:t 1333:L 1324:d 1317:( 1313:= 1308:R 1305:L 1300:= 1286:: 1284:θ 1265:x 1261:U 1256:) 1251:t 1247:L 1238:d 1231:( 1227:= 1218:d 1214:E 1211:= 1208:L 1175:) 1171:r 1168:+ 1165:R 1161:( 1157:= 1154:L 1148:+ 1145:L 1120:) 1116:r 1110:R 1106:( 1102:= 1099:L 1090:L 1073:x 1061:L 1057:θ 1053:R 1049:r 1013:) 1008:) 1002:3 999:1 990:( 985:) 979:V 972:d 967:( 962:) 957:) 954:E 951:( 943:( 938:) 932:) 928:h 925:3 921:( 913:2 910:1 904:) 900:q 891:m 887:2 883:( 877:) 870:8 866:( 859:( 854:( 849:e 844:) 836:2 832:d 821:2 817:V 811:2 800:( 795:) 788:) 783:2 779:E 775:( 771:t 767:1 762:( 757:) 745:m 741:h 735:8 728:o 724:m 718:2 714:q 707:( 697:A 693:= 690:I 673:β 669:Φ 665:d 661:0 658:m 651:m 647:h 643:q 621:] 615:6 609:r 604:o 600:r 582:r 577:o 573:r 565:2 560:[ 552:o 548:r 541:o 527:= 521:r 517:d 511:V 507:d 497:= 494:f 472:o 470:r 425:o 421:m 417:k 405:2 401:1 396:= 391:o 387:f 364:o 362:f 357:o 355:m 350:o 348:m 343:o 341:m 337:k 333:k 328:o 326:f 321:o 319:m 315:k 310:o 308:f 292:d 289:k 283:= 280:f 260:k 154:x 150:x 146:2 30:(

Index


atomic force microscopy
photoconductivity
photovoltaic
fill factor
Henri Becquerel
photocurrent
silver chloride
silver bromide
anthracene
methylene blue
chlorophylls
carotenes
porphyrins
phthalocyanines
solar cells
crystalline
polycrystalline
amorphous
silicon
gallium selenide
gallium arsenide
copper indium gallium selenide
cadmium telluride
organic photovoltaic
greenhouse gases
thin-film
P3HT
phenyl-C61-butyric acid methyl ester
fullerenes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.