Knowledge (XXG)

Photoelectrochemical cell

Source 📝

1269:. Photoelectrochemical oxidation reactions that take place within PEC cells are the key to water splitting for hydrogen production. While the main concern with this technology is stability, systems that use PECO technology to create hydrogen from vapor rather than liquid water has demonstrated potential for greater stability. Early researchers working on vapor fed systems developed modules with 14% solar to hydrogen (STH) efficiency, while remaining stable for 1000+ hours. More recently, further technological developments have been made, demonstrated by the direct air electrolysis (DAE) module developed by Jining Guo and his team, which produces 99% pure hydrogen from the air and has demonstrated stability of 8 months thus far. 1089:. If a photon has more energy than a material's characteristic band gap, it can free an electron upon absorption by the material. The remaining, positively charged hole and the free electron may recombine, generating heat, or they can take part in photoreactions with nearby species. If the photoreactions with these species result in regeneration of the electron-donating material—i.e., if the material acts as a catalyst for the reactions—then the reactions are deemed photocatalytic. PECO represents a type of photocatalysis whereby semiconductor-based electrochemistry catalyzes an oxidation reaction—for example, the oxidative degradation of an airborne contaminant in air purification systems. 1257:, which are extremely reactive and oxidize organic material and microorganisms that cause allergy symptoms, forming harmless products like carbon dioxide and water. Researchers testing this technology with patients suffering from allergies drew promising conclusions from their studies, observing significant reductions in total symptom scores (TSS) for both nasal (TNSS) and ocular (TOSS) allergies after just 4 weeks of using the PECO filter. This research demonstrates strong potential for impactful health improvements who suffer from severe allergies and asthma. 841:
semiconductor, in the case of titanium dioxide, into the visible blue. It was further found (Thulin and Guerra, 2008) that the strain also favorably shifted the band-edges to overlay the hydrogen evolution potential, and further still that the strain improved hole mobility, for lower charge recombination rate and high quantum efficiency. Chandekar developed a low-cost scalable manufacturing process to produce both the nano-structured template and the strained titanium dioxide coating. Other morphological investigations include
978:) in PEC water-splitting devices due to its low cost, ability to be n-type doped, and band gap (2.2eV). However, performance is plagued by poor conductivity and crystal anisotropy. Some researchers have enhanced catalytic activity by forming a layer of co-catalysts on the surface. Co-catalysts include cobalt-phosphate and iridium oxide, which is known to be a highly active catalyst for the oxygen evolution reaction. 963: 497:
electrolyte to the surface of the silicon electrode. There they react with the four holes associated with the four photoelectrons, the result being two water molecules and an oxygen molecule. Illuminated silicon immediately begins to corrode under contact with the electrolytes. The corrosion consumes material and disrupts the properties of the surfaces and interfaces within the cell.
454: 993:), which exhibits several different polymorphs at various temperatures, is of interest due to its high conductivity but has a relatively wide, indirect band gap (~2.7 eV) which means it cannot absorb most of the solar spectrum. Though many attempts have been made to increase absorption, they result in poor conductivity and thus WO 1092:
The principal objective of photoelectrocatalysis is to provide low-energy activation pathways for the passage of electronic charge carriers through the electrode electrolyte interface and, in particular, for the photoelectrochemical generation of chemical products. With regard to photoelectrochemical
1193:
Photoelectrochemical oxidation may be thought of as a special case of photochemical oxidation (PCO). Photochemical oxidation entails the generation of radical species that enable oxidation reactions, with or without the electrochemical interactions involved in semiconductor-catalyzed systems, which
1172:
itself. PECO concerns such a process where the electronic charge carriers are able to readily move through the reaction medium, thereby to some extent mitigating recombination reactions that would limit the oxidative process. The “photoelectrochemical cell” in this case could be as simple as a very
735:
photoanodes, on the other hand, will have early onset of the hydrogen evolution reaction in addition to high current and rapid photocurrent growth. To maximize current, anode and cathode materials need to be matched together; the best anode for one cathode material may not be the best for another.
734:
While the listed requirements can be applied generally, photoanodes and photocathodes have slightly different needs. A good photocathode will have early onset of the oxygen evolution reaction (low overpotential), a large photocurrent at saturation, and rapid growth of photocurrent upon onset. Good
1068:
reaction. While a photoelectrochemical cell typically involves both a semiconductor (electrode) and a metal (counter-electrode), at sufficiently small scales, pure semiconductor particles can behave as microscopic photoelectrochemical cells. PECO has applications in the detoxification of air and
1237:
PECO is a useful solution to treating stormwater because of its strong oxidation capacity. Investigating different mechanisms for herbicide degradation in stormwater, like PECO, photocatalytic oxidation (PCO), and electro-catalytic oxidation (ECO), researchers determined that PECO was the best
885:
but is still large enough to allow water splitting to occur at the surface. GaN nanowires exhibited better performance than GaN thin films, because they have a larger surface area and have a high single crystallinity which allows longer electron-hole pair lifetimes. Meanwhile, other non-oxide
496:
Incoming sunlight excites free electrons near the surface of the silicon electrode. These electrons flow through wires to the stainless steel electrode, where four of them react with four water molecules to form two molecules of hydrogen and 4 OH groups. The OH groups flow through the liquid
953:
Structuring of absorbing materials has both positive and negative affects on cell performance. Structuring allows for light absorption and carrier collection to occur in different places, which loosens the requirements for pure materials and helps with catalysis. This allows for the use of
840:
microstructure has also been investigated to further improve the performance. In 2002, Guerra (Nanoptek Corporation) discovered that high localized strain could be induced in semiconductor films formed on micro to nano-structured templates, and that this strain shifted the bandgap of the
1250:. For people with severe allergies, air purifiers are important to protect them from allergens within their own homes. However, some allergens are too small to be removed by normal purification methods. Air purifiers using PECO filters are able to remove particles as small as 0.1 nm. 113:
The situation within a photoelectrolytic cell, on the other hand, is quite different. For example, in a water-splitting photoelectrochemical cell, the excitation, by light, of an electron in a semiconductor leaves a hole which "draws" an electron from a neighboring water molecule:
102:, involves the excitation of negative charge carriers (electrons) within a semiconductor medium, and it is negative charge carriers (free electrons) which are ultimately extracted to produce power. The classification of photoelectrochemical cells which includes 1238:
option, demonstrating complete mineralization of diuron in one hour. Further research into this use for PECO is needed, as it was only able to degrade 35% of atrazine in that time, however it is a promising solution moving forward.
2143:
Su, Jinzhan; Guo, Liejin; Yoriya, Sorachon; Grimes, Craig A. (3 February 2010). "Aqueous Growth of Pyramidal-Shaped BiVO4 Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting".
2171:
Luo, Wenjun; Yang, Zaisan; Li, Zhaosheng; Zhang, Jiyuan; Liu, Jianguo; Zhao, Zongyan; Wang, Zhiqiang; Yan, Shicheng; Yu, Tao; Zou, Zhigang (2011). "Solar hydrogen generation from seawater with a modified BiVO4 photoanode".
1791:
Wang, D.; Pierre, A.; Kibria, M. G.; Cui, K.; Han, X.; Bevan, K. H.; Guo, H.; Paradis, S.; Hakima, A. R.; Mi, Z. (2011). "Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy".
597:
Water-splitting photoelectrochemical (PEC) cells use light energy to decompose water into hydrogen and oxygen within a two-electrode cell. In theory, three arrangements of photo-electrodes in the assembly of PECs exist:
1272:
Promising research and technological advancement using PECO for different applications like water and air treatment and hydrogen production suggests that it is a valuable tool that can be utilized in a variety of ways.
2530:
J. H. Carey, J. Lawrence, and H. M. Tosine, "Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions," Bulletin of Environmental Contamination and Toxicology, vol. 16, pp. 697–701,
1019:
has garnered interest from researchers. Over time, it has been shown that V-rich and compact films are associated with higher photocurrent, or higher performance. Bismuth Vanadate has also been studied for solar
1749:
U.S. Patent No.8,673,399: Bandgap-shifted semiconductor surface and method for making same, and apparatus for using same; John M. Guerra, Lukas M. Thulin, Amol N. Chandekar; March 18, 2014; assigned to Nanoptek
1185:
particles of sufficiently small dimension, the particles polarize into anodic and cathodic regions, effectively forming microscopic photoelectrochemical cells. The illuminated surface of a particle catalyzes a
1289:, may catalyze the oxidation of dissolved organic materials (phenol, benzoic acid, acetic acid, sodium stearate, and sucrose) under illumination by sunlamps. Additional work by Carey et al. suggested that TiO 281: 2045:
Zhong, Diane K.; Gamelin, Daniel R. (31 March 2010). "Photoelectrochemical Water Oxidation by Cobalt Catalyst ("Co−Pi")/α-FeO Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck".
944:
operated for 80 hours without noticeable corrosion, versus 8 hours for titanium dioxide. In the process, about 150 ml of hydrogen gas was generated, representing the storage of about 2 kilojoules of energy.
310:
This leaves positive charge carriers (protons, that is, H+ ions) in solution, which must then bond with one other proton and combine with two electrons in order to form hydrogen gas, according to:
1479:
Another photoelectrochemical method involves using dissolved metal complexes as a catalyst, which absorbs energy and creates an electric charge separation that drives the water-splitting reaction
1226:
technologies are widely used. These technologies are effective at filtering out pollutants like suspended solids, nutrients, and heavy metals, but struggle to remove herbicides. Herbicides like
412: 2116:
Berglund, Sean P.; Flaherty, David W.; Hahn, Nathan T.; Bard, Allen J.; Mullins, C. Buddie (16 February 2011). "Photoelectrochemical Oxidation of Water Using Nanostructured BiVO Films".
1713:
U.S. Patent No. 7,485,799: Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same; John M. Guerra, February 2009.
2081:
Tilley, S. David; Cornuz, Maurin; Sivula, Kevin; GrÀtzel, Michael (23 August 2010). "Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis".
1168:
This system shows a number of pathways for the production of oxidative species that facilitate the oxidation of the species, RX, in addition to its direct oxidation by the excited TiO
954:
non-precious and oxide catalysts that may be stable in more oxidizing conditions. However, these devices have lower open-circuit potentials which may contribute to lower performance.
1905:
Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. (2013). "High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation".
78:(typically sunlight) either directly into electrical power, or into something which can itself be easily used to produce electrical power (hydrogen, for example, can be burned to 2210:
H. Tributsch, "Photoelectrocatalysis," in Photocatalysis: Fundamentals and Applications, N. Serpone and E. Pelizzetti, Eds., ed New York: Wiley-Interscience, 1989, pp. 339-383.
1050: 720: 688: 642: 873:
GaN is another option, because metal nitrides usually have a narrow band gap that could encompass almost the entire solar spectrum. GaN has a narrower band gap than
1285:—e.g., as evidenced by the fading of paints incorporating it as a pigment. In 1969, Kinney and Ivanuski suggested that a variety of metal oxides, including TiO 1602: 1870:
Kline, G.; Kam, K.; Canfield, D.; Parkinson, B. (1981). "Efficient and stable photoelectrochemical cells constructed with WSe2 and MoSe2 photoanodes".
1559:
Wang, H.; Deutsch, T.; Turner, J. A. A. (2008). "Direct Water Splitting Under Visible Light with a Nanostructured Photoanode and GaInP2 Photocathode".
1173:
small particle of the semiconductor catalyst. Here, on the “light” side a species is oxidized, while on the “dark” side a separate species is reduced.
1308:
A. J. Bard, M. Stratmann, and S. Licht, Encyclopedia of Electrochemistry, Volume 6, Semiconductor Electrodes and Photoelectrochemistry: Wiley, 2002.
731:
In addition to these requirements, materials must be low-cost and earth abundant for the widespread adoption of PEC water splitting to be feasible.
936:
In 2013 a cell with 2 nanometers of nickel on a silicon electrode, paired with a stainless steel electrode, immersed in an aqueous electrolyte of
566:, due to relatively high efficiency of the latter and the similarity in vapor assisted deposition techniques commonly used in their creation. 2237:
A. J. Bard, "Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors," Journal of Photochemistry, vol. 10, pp. 59-75, 1979.
1972: 2576: 1539: 1403: 1052:
generation from seawater, which is much more difficult due to the presence of contaminating ions and a more harsh corrosive environment.
2512:
C. Goodeve and J. Kitchener, "Photosensitisation by titanium dioxide," Transactions of the Faraday Society, vol. 34, pp. 570–579, 1938.
2614: 536: 144: 2247:
Zheng, Zhaozhi; Deletic, Ana; Toe, Cui Ying; Amal, Rose; Zhang, Xiwang; Pickford, Russell; Zhou, Shujie; Zhang, Kefeng (2022-08-15).
1472: 1374: 1181:
The classical macroscopic photoelectrochemical system consists of a semiconductor in electric contact with a counter-electrode. For
2549: 2219:
O. Legrini, E. Oliveros, and A. Braun, "Photochemical processes for water treatment," Chemical Reviews, vol. 93, pp. 671-698, 1993.
1835:
Hye Song Jung; Young Joon Hong; Yirui Li; Jeonghui Cho; Young-Jin Kim; Gyu-Chui Yi (2008). "Photocatalysis Using GaN Nanowires".
658:
suitable band structure: large enough band gap to split water (1.23V) and appropriate positions relative to redox potentials for
2248: 1305:
M. Schiavello, Photoelectrochemistry, photocatalysis, and photoreactors: Fundamentals and developments. Dordrecht: Reidel, 1985.
2757: 2448:
Guo, Jining; Zhang, Yuecheng; Zavabeti, Ali; Chen, Kaifei; Guo, Yalou; Hu, Guoping; Fan, Xiaolei; Li, Gang Kevin (2022-09-06).
2856: 2712: 1334: 928:
are used as n-type electrode, due to their stability in chemical and electrochemical steps in the photocorrosion reactions.
1005:
With a narrower, direct band gap (2.4 eV) and proper band alignment with water oxidation potential, the monoclinic form of
445:
is another form of photoelectrolytic cell, with the output in that case being carbohydrates instead of molecular hydrogen.
2752: 1723:
Thulin, Lukas; Guerra, John (2008-05-14). "Calculations of strain-modified anatase $ {\text{TiO}}_{2}$ band structures".
1396: 2841: 2635: 1234:
are commonly used, and often end up in stormwater, posing potential health risks if they are not treated before reuse.
1302:
I. U. I. A. Gurevich, I. U. V. Pleskov, and Z. A. Rotenberg, Photoelectrochemistry. New York: Consultants Bureau, 1980.
2805: 2722: 2665: 1624:
Tryk, D.; Fujishima, A; Honda, K (2000). "Recent topics in photoelectrochemistry: achievements and future prospects".
1324: 2831: 2826: 2742: 2604: 2249:"Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation" 1464: 1329: 559: 103: 1202:
PECO may be useful in treating both air and water, as well as producing hydrogen as a source of renewable energy.
340: 2650: 2609: 1319: 482: 478: 442: 75: 28: 2737: 2645: 2569: 1610: 2393:"Stable Photoelectrochemical Hydrogen Evolution for 1000 h at 14% Efficiency in a Monolithic Vapor-fed Device" 2314: 2836: 2727: 2660: 2640: 1182: 1434: 2747: 2686: 1760:
Cao, F.; Oskam, G.; Meyer, G. J.; Searson, P. C. (1996). "Electron Transport in Porous Nanocrystalline TiO
1339: 758: 24: 2655: 2619: 1354: 563: 56: 2670: 1679:(1985). "On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells". 937: 655:
charge transport: photoelectrodes must be conductive (or semi-conductive) to minimize resistive losses
2851: 2461: 2404: 2263: 2009: 1914: 1879: 1801: 1688: 1568: 1504: 891: 67: 48: 2336:"Effect of a Novel Photoelectrochemical Oxidation Air Purifier on Nasal and Ocular Allergy Symptoms" 2846: 2691: 2562: 2545:
EERE-Photoelectrochemical Generation of Hydrogen Using Heterostructural Titania Nanotube ArraysMano
1070: 1065: 520: 95: 71: 51:
immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce
2334:
Rao, Nikhil G.; Kumar, Ambuj; Wong, Jenny S.; Shridhar, Ravi; Goswami, Dharendra Y. (2018-06-21).
1265:
Possibly the most exciting potential use for PECO is producing hydrogen to be used as a source of
2599: 2430: 2295: 1938: 1584: 986: 778: 2544: 1093:
oxidation, we may consider, for example, the following system of reactions, which constitute TiO
724:
catalytic activity: high catalytic activity increases efficiency of the water-splitting reaction
2198:
D. Y. Goswami, Principles of solar engineering, 3rd ed. Boca Raton: Taylor & Francis, 2015.
1023: 693: 661: 615: 558:
The mostly commonly researched modern photoelectrochemical cell in recent decades has been the
2495: 2477: 2422: 2373: 2355: 2287: 2279: 2098: 2063: 2027: 1968: 1930: 1852: 1817: 1468: 1359: 1349: 649: 605:
photo-anode made of a n-type semiconductor and a photo-cathode made of a p-type semiconductor
2792: 2787: 2782: 2777: 2485: 2469: 2412: 2363: 2347: 2271: 2181: 2153: 2125: 2090: 2055: 2017: 1922: 1887: 1844: 1809: 1773: 1732: 1696: 1633: 1576: 1512: 1266: 1254: 1247: 1006: 887: 777:
and other metal oxides are still most prominent catalysts for efficiency reasons. Including
764: 574: 552: 531:
remains an issue, given their direct contact with water. Research is now ongoing to reach a
1211: 810: 792: 754: 513: 40: 2465: 2408: 2267: 2013: 1918: 1883: 1805: 1692: 1572: 1508: 2521:
L. C. Kinney and V. R. Ivanuski, "Photolysis mechanisms for pollution abatement," 1969.
2490: 2449: 2368: 2335: 1531: 1457: 1369: 1344: 1187: 1086: 941: 551:
ever designed was also the first photoelectrochemical cell. It was created in 1839, by
528: 505: 501: 1637: 2820: 2707: 2434: 2299: 2228:
D. Y. Goswami, "Photoelectrochemical air disinfection " US Patent 7,063,820 B2, 2006.
1942: 1891: 1700: 1676: 1588: 1364: 1223: 1190:
reaction, while the “dark” side of the particle facilitates a concomitant reduction.
1061: 509: 83: 79: 44: 2717: 1493:"Photoelectrochemical Characterization and Durability Analysis of GaInPN Epilayers" 814: 532: 486: 462: 2275: 962: 1081:
The process by which a photon initiates a chemical reaction directly is known as
727:
stability: materials must be stable to prevent decomposition and loss of function
822: 548: 99: 63: 2473: 2417: 2392: 1736: 1407: 1219: 1215: 1082: 1060:
Photoelectrochemical oxidation (PECO) is the process by which light enables a
32: 2481: 2426: 2359: 2351: 2283: 2585: 1965:
Photoelectrochemical Water Splitting: Materials, Processes and Architectures
1926: 1281:
In 1938, Goodeve and Kitchener demonstrated the “photosensitization” of TiO
524: 2499: 2377: 2291: 2102: 2094: 2067: 2031: 1934: 1856: 1821: 2769: 1665:
A. Fujishima, K. Honda, S. Kikuchi, Kogyo Kagaku Zasshi 72 (1969) 108–113
1231: 818: 806: 570: 490: 466: 52: 2185: 1990:"Charge transport in metal oxides: A theoretical study of hematite α-Fe 562:, although much attention has recently shifted away from this topic to 516:. The other methodology uses in-solution metal complexes as catalysts. 107: 2157: 2129: 2059: 2022: 1989: 1848: 1813: 1777: 1580: 1516: 1227: 508:. One uses semiconductor surfaces as catalysts. In these devices the 470: 2315:"PECO v. PCO Air Purifiers: How are they different? - Molekule Blog" 1492: 970:
Researchers have extensively investigated the use of hematite (α-Fe
612:
There are several requirements for photoelectrode materials in PEC
453: 106:
meets this narrow definition, albeit the charge carriers are often
474: 452: 997:
does not appear to be a viable material for PEC water splitting.
276:{\displaystyle {\ce {H2O(l) + + 2h+ -> 2H+ (aq) + 1/2O2(g)}}} 2558: 1253:
These filters work as photons excite a photocatalyst, creating
66:, in that a photoelectrochemical cell's function is to use the 1435:"Silicon/nickel water splitter could lead to cheaper hydrogen" 608:
photo-cathode made of a p-type semiconductor and a metal anode
602:
photo-anode made of a n-type semiconductor and a metal cathode
2554: 2391:
Kistler, Tobias A.; Um, Min Young; Agbo, Peter (2020-01-04).
1651:
Seitz, Linsey (26 February 2019), "Lecture 13: Solar Fuels",
648:
light absorbance: determined by band gap and appropriate for
512:
surface absorbs solar energy and acts as an electrode for
1038: 708: 676: 630: 389: 258: 159: 1988:
Iordanova, N.; Dupuis, M.; Rosso, K. M. (8 April 2005).
1963:
Peter, Laurie; Lewerenz, Hans-Joachim (2 October 2013).
1653:
Lecture Slides, Introduction to Electrochemistry CHE 395
1085:; if this process is aided by a catalyst, it is called 817:
oxygen 2p character. The bands are separated by a wide
761:, (the photocatalytic properties of titanium dioxide). 1397:"Photoelectrochemical Water Systems for H2 Production" 821:
of at least 3 eV, so that these materials absorb only
238: 23:" is one of two distinct classes of device. The first 1222:. Currently, water treatment methods like the use of 1026: 696: 664: 618: 343: 147: 569:
Dye-sensitized solar cells or GrÀtzel cells use dye-
481:, that is, with light. This has been referred to as 2768: 2700: 2679: 2628: 2592: 1491:Deutsch, T. G.; Head, J. L.; Turner, J. A. (2008). 1293:may be useful for the photodechlorination of PCBs. 519:Photoelectrolytic cells have passed the 10 percent 39:, that is, a device which uses light incident on a 16:
Sources of electricity or hydrogen via electrolysis
1456: 1044: 714: 682: 636: 406: 275: 1459:Alternative energy: facts, statistics, and issues 535:of 10000 hours, a requirement established by the 1532:"A Microscopic Solution to an Enormous Problem" 2570: 407:{\displaystyle {\ce {2H+ + 2e- -> H2(g)}}} 8: 485:and has been suggested as a way of storing 461:A (water-splitting) photoelectrolytic cell 31:, which meets the standard definition of a 2577: 2563: 2555: 1395:John A. Turner; et al. (2007-05-17). 1246:PECO has also shown promise as a means of 853:nanowire arrays or porous nanocrystalline 2489: 2416: 2367: 2021: 1967:. Cambridge: Royal Society of Chemistry. 1429: 1427: 1194:occur in photoelectrochemical oxidation. 1177:Photochemical oxidation (PCO) versus PECO 1037: 1032: 1027: 1025: 813:has mainly titanium 3d character and the 707: 702: 697: 695: 675: 670: 665: 663: 629: 624: 619: 617: 555:, at age 19, in his father's laboratory. 392: 388: 383: 370: 365: 353: 348: 344: 342: 261: 257: 252: 224: 218: 213: 201: 196: 179: 165: 158: 153: 148: 146: 2048:Journal of the American Chemical Society 961: 2083:Angewandte Chemie International Edition 1387: 2397:Journal of the Electrochemical Society 1958: 1956: 1954: 1952: 1497:Journal of the Electrochemical Society 62:Both types of device are varieties of 2206: 2204: 593:Materials for photoelectrolytic cells 7: 1540:SLAC National Accelerator Laboratory 1404:National Renewable Energy Laboratory 2118:The Journal of Physical Chemistry C 457:Photoelectrolytic cell band diagram 2615:Proton-exchange membrane fuel cell 2450:"Hydrogen production from the air" 2174:Energy & Environmental Science 537:United States Department of Energy 14: 1766:The Journal of Physical Chemistry 1375:Timeline of hydrogen technologies 1681:Journal of Solid State Chemistry 1455:Berinstein, Paula (2001-06-30). 589:) to produce electrical energy. 543:Other photoelectrochemical cells 29:dye-sensitized photovoltaic cell 2758:Unitized regenerative fuel cell 2002:The Journal of Chemical Physics 1675:De Haart, L.; De Vries, A. J.; 2256:Journal of Hazardous Materials 1437:. Gizmag.com. 19 November 2013 1335:Photocatalytic water splitting 805:, this kind of semiconducting 573:highly porous nanocrystalline 399: 393: 376: 268: 262: 231: 225: 207: 186: 180: 172: 166: 1: 2753:Solid oxide electrolyzer cell 2276:10.1016/j.jhazmat.2022.129239 1764:Photoelectrochemical Cells". 1638:10.1016/S0013-4686(00)00337-6 2636:Direct borohydride fuel cell 2313:King, Haldane (2019-08-13). 1892:10.1016/0165-1633(81)90068-X 1701:10.1016/0022-4596(85)90296-8 1603:"First Photovoltaic Devices" 865:photoelectrochemical cells. 2723:Membrane electrode assembly 2666:Reformed methanol fuel cell 2146:Crystal Growth & Design 1530:Brad Plummer (2006-08-10). 1325:Glossary of fuel cell terms 1210:PECO has shown promise for 98:, as operating in standard 2873: 2743:Protonic ceramic fuel cell 2713:Electro-galvanic fuel cell 2605:Molten carbonate fuel cell 2474:10.1038/s41467-022-32652-y 1737:10.1103/PhysRevB.77.195112 1465:Greenwood Publishing Group 1330:Photoelectrolysis of water 1073:, and other applications. 1045:{\displaystyle {\ce {H2}}} 715:{\displaystyle {\ce {O2}}} 683:{\displaystyle {\ce {H2}}} 637:{\displaystyle {\ce {H2}}} 553:Alexandre-Edmond Becquerel 25:produces electrical energy 2801: 2733:Photoelectrochemical cell 2651:Direct methanol fuel cell 2610:Phosphoric acid fuel cell 1655:, Northwestern University 1320:Artificial photosynthesis 483:artificial photosynthesis 479:electromagnetic radiation 76:electromagnetic radiation 70:(or, very similarly, the 21:photoelectrochemical cell 2738:Proton-exchange membrane 2646:Direct-ethanol fuel cell 2418:10.1149/1945-7111/ab7d93 2352:10.1177/2152656718781609 2728:Membraneless Fuel Cells 2661:Metal hydride fuel cell 2641:Direct carbon fuel cell 2340:Allergy & Rhinology 1927:10.1126/science.1241327 886:semiconductors such as 473:gas by irradiating the 80:create electrical power 2748:Regenerative fuel cell 2687:Enzymatic biofuel cell 2095:10.1002/anie.201003110 1872:Solar Energy Materials 1340:Photochemical reaction 1255:hydroxyl free radicals 1097:-catalyzed oxidation. 1046: 967: 759:Honda-Fujishima effect 716: 684: 638: 564:perovskite solar cells 458: 449:Photoelectrolytic cell 408: 277: 37:photoelectrolytic cell 2857:Photoelectrochemistry 2656:Formic acid fuel cell 2620:Solid oxide fuel cell 2454:Nature Communications 1355:Photoelectrochemistry 1047: 965: 717: 685: 639: 456: 409: 278: 57:electrolysis of water 2346:: 2152656718781609. 1632:(15–16): 2363–2376. 1183:N-type semiconductor 1024: 949:Structured materials 694: 662: 616: 504:systems operate via 341: 145: 68:photoelectric effect 2842:Hydrogen production 2692:Microbial fuel cell 2466:2022NatCo..13.5046G 2409:2020JElS..167f6502K 2268:2022JHzM..43629239Z 2014:2005JChPh.122n4305I 1919:2013Sci...342..836K 1884:1981SoEnM...4..301K 1806:2011NanoL..11.2353W 1772:(42): 17021–17027. 1693:1985JSSCh..59..291D 1626:Electrochimica Acta 1573:2008ECSTr...6q..37W 1509:2008JElS..155B.903D 1261:Hydrogen Production 1071:hydrogen production 1066:catalytic oxidation 1040: 710: 678: 632: 521:economic efficiency 443:photosynthetic cell 391: 260: 161: 96:photovoltaic effect 72:photovoltaic effect 35:. The second is a 2600:Alkaline fuel cell 2186:10.1039/C1EE01812D 1077:Reaction mechanism 1042: 1028: 987:Tungsten(VI) oxide 968: 966:Hematite structure 712: 698: 680: 666: 634: 620: 459: 404: 379: 273: 248: 247: 149: 100:photovoltaic cells 2832:Energy conversion 2827:Materials science 2814: 2813: 2158:10.1021/cg9012125 2130:10.1021/jp1109459 2089:(36): 6405–6408. 2060:10.1021/ja908730h 2054:(12): 4202–4207. 2023:10.1063/1.1869492 1974:978-1-84973-647-3 1913:(6160): 836–840. 1849:10.1021/nn700320y 1814:10.1021/nl2006802 1778:10.1021/jp9616573 1725:Physical Review B 1581:10.1149/1.2832397 1517:10.1149/1.2946478 1360:Photoelectrolysis 1350:Photodissociation 1031: 701: 669: 650:solar irradiation 623: 549:photovoltaic cell 493:for use as fuel. 398: 382: 369: 352: 267: 251: 246: 230: 217: 200: 185: 171: 164: 152: 33:photovoltaic cell 2864: 2671:Zinc–air battery 2579: 2572: 2565: 2556: 2532: 2528: 2522: 2519: 2513: 2510: 2504: 2503: 2493: 2445: 2439: 2438: 2420: 2388: 2382: 2381: 2371: 2331: 2325: 2324: 2322: 2321: 2310: 2304: 2303: 2253: 2244: 2238: 2235: 2229: 2226: 2220: 2217: 2211: 2208: 2199: 2196: 2190: 2189: 2168: 2162: 2161: 2140: 2134: 2133: 2124:(9): 3794–3802. 2113: 2107: 2106: 2078: 2072: 2071: 2042: 2036: 2035: 2025: 1985: 1979: 1978: 1960: 1947: 1946: 1902: 1896: 1895: 1867: 1861: 1860: 1832: 1826: 1825: 1800:(6): 2353–2357. 1788: 1782: 1781: 1757: 1751: 1747: 1741: 1740: 1720: 1714: 1711: 1705: 1704: 1672: 1666: 1663: 1657: 1656: 1648: 1642: 1641: 1621: 1615: 1614: 1609:. Archived from 1599: 1593: 1592: 1561:ECS Transactions 1556: 1550: 1549: 1547: 1546: 1527: 1521: 1520: 1488: 1482: 1481: 1462: 1452: 1446: 1445: 1443: 1442: 1431: 1422: 1421: 1419: 1418: 1412: 1406:. Archived from 1401: 1392: 1267:renewable energy 1248:air purification 1051: 1049: 1048: 1043: 1041: 1039: 1036: 1029: 1017: 1016: 1015: 1001:Bismuth vanadate 938:potassium borate 927: 926: 925: 915: 914: 913: 902: 901: 900: 884: 883: 882: 864: 863: 862: 852: 851: 850: 839: 838: 837: 803: 802: 801: 789: 788: 787: 775: 774: 773: 749: 748: 747: 721: 719: 718: 713: 711: 709: 706: 699: 689: 687: 686: 681: 679: 677: 674: 667: 643: 641: 640: 635: 633: 631: 628: 621: 588: 587: 586: 575:titanium dioxide 413: 411: 410: 405: 403: 402: 396: 390: 387: 380: 375: 374: 367: 358: 357: 350: 282: 280: 279: 274: 272: 271: 265: 259: 256: 249: 239: 234: 228: 223: 222: 215: 206: 205: 198: 189: 183: 175: 169: 162: 160: 157: 150: 2872: 2871: 2867: 2866: 2865: 2863: 2862: 2861: 2817: 2816: 2815: 2810: 2797: 2764: 2696: 2675: 2624: 2588: 2583: 2541: 2536: 2535: 2529: 2525: 2520: 2516: 2511: 2507: 2447: 2446: 2442: 2390: 2389: 2385: 2333: 2332: 2328: 2319: 2317: 2312: 2311: 2307: 2251: 2246: 2245: 2241: 2236: 2232: 2227: 2223: 2218: 2214: 2209: 2202: 2197: 2193: 2170: 2169: 2165: 2142: 2141: 2137: 2115: 2114: 2110: 2080: 2079: 2075: 2044: 2043: 2039: 1997: 1993: 1987: 1986: 1982: 1975: 1962: 1961: 1950: 1904: 1903: 1899: 1869: 1868: 1864: 1834: 1833: 1829: 1790: 1789: 1785: 1763: 1759: 1758: 1754: 1748: 1744: 1722: 1721: 1717: 1712: 1708: 1674: 1673: 1669: 1664: 1660: 1650: 1649: 1645: 1623: 1622: 1618: 1607:pveducation.org 1601: 1600: 1596: 1558: 1557: 1553: 1544: 1542: 1529: 1528: 1524: 1490: 1489: 1485: 1475: 1454: 1453: 1449: 1440: 1438: 1433: 1432: 1425: 1416: 1414: 1410: 1399: 1394: 1393: 1389: 1384: 1379: 1315: 1299: 1297:Further reading 1292: 1288: 1284: 1279: 1263: 1244: 1212:water treatment 1208: 1206:Water Treatment 1200: 1179: 1171: 1164: 1160: 1156: 1152: 1145: 1141: 1134: 1130: 1126: 1119: 1115: 1108: 1104: 1096: 1079: 1058: 1022: 1021: 1014: 1011: 1010: 1009: 1007: 1003: 996: 992: 984: 977: 973: 960: 951: 934: 924: 921: 920: 919: 917: 912: 909: 908: 907: 905: 899: 896: 895: 894: 892: 881: 878: 877: 876: 874: 871: 861: 858: 857: 856: 854: 849: 846: 845: 844: 842: 836: 833: 832: 831: 829: 811:conduction band 800: 797: 796: 795: 793: 786: 783: 782: 781: 779: 772: 769: 768: 767: 765: 757:discovered the 755:Akira Fujishima 751: 746: 743: 742: 741: 739: 692: 691: 660: 659: 614: 613: 595: 585: 582: 581: 580: 578: 545: 514:water splitting 451: 366: 349: 339: 338: 214: 197: 143: 142: 92: 41:photosensitizer 27:similarly to a 17: 12: 11: 5: 2870: 2868: 2860: 2859: 2854: 2849: 2844: 2839: 2837:Photochemistry 2834: 2829: 2819: 2818: 2812: 2811: 2809: 2808: 2802: 2799: 2798: 2796: 2795: 2790: 2785: 2780: 2774: 2772: 2766: 2765: 2763: 2762: 2761: 2760: 2755: 2745: 2740: 2735: 2730: 2725: 2720: 2715: 2710: 2704: 2702: 2698: 2697: 2695: 2694: 2689: 2683: 2681: 2677: 2676: 2674: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2632: 2630: 2626: 2625: 2623: 2622: 2617: 2612: 2607: 2602: 2596: 2594: 2593:By electrolyte 2590: 2589: 2584: 2582: 2581: 2574: 2567: 2559: 2553: 2552: 2547: 2540: 2539:External links 2537: 2534: 2533: 2523: 2514: 2505: 2440: 2383: 2326: 2305: 2239: 2230: 2221: 2212: 2200: 2191: 2163: 2152:(2): 856–861. 2135: 2108: 2073: 2037: 2008:(14): 144305. 1995: 1991: 1980: 1973: 1948: 1897: 1878:(3): 301–308. 1862: 1843:(4): 637–642. 1827: 1783: 1761: 1752: 1742: 1731:(19): 195112. 1715: 1706: 1687:(3): 291–300. 1667: 1658: 1643: 1616: 1613:on 2010-07-18. 1594: 1551: 1522: 1483: 1473: 1447: 1423: 1386: 1385: 1383: 1380: 1378: 1377: 1372: 1370:Photosynthesis 1367: 1362: 1357: 1352: 1347: 1345:Photochemistry 1342: 1337: 1332: 1327: 1322: 1316: 1314: 1311: 1310: 1309: 1306: 1303: 1298: 1295: 1290: 1286: 1282: 1278: 1275: 1262: 1259: 1243: 1240: 1207: 1204: 1199: 1196: 1188:photooxidation 1178: 1175: 1169: 1166: 1165: 1162: 1158: 1154: 1150: 1147: 1143: 1142:(h) + OH → TiO 1139: 1136: 1132: 1128: 1124: 1121: 1117: 1113: 1110: 1106: 1102: 1094: 1087:photocatalysis 1078: 1075: 1057: 1056:Oxidation form 1054: 1035: 1012: 1002: 999: 994: 990: 983: 982:Tungsten oxide 980: 975: 971: 959: 956: 950: 947: 942:lithium borate 933: 930: 922: 910: 897: 879: 870: 867: 859: 847: 834: 828:Change of the 798: 784: 770: 750: 744: 737: 729: 728: 725: 722: 705: 673: 656: 653: 627: 610: 609: 606: 603: 594: 591: 583: 544: 541: 529:semiconductors 506:photocatalysis 450: 447: 439: 438: 437: 436: 435: 434: 433: 432: 431: 430: 429: 428: 427: 426: 425: 424: 423: 422: 421: 420: 419: 418: 417: 416: 415: 414: 401: 395: 386: 378: 373: 364: 361: 356: 347: 308: 307: 306: 305: 304: 303: 302: 301: 300: 299: 298: 297: 296: 295: 294: 293: 292: 291: 290: 289: 288: 287: 286: 285: 284: 283: 270: 264: 255: 245: 242: 237: 233: 227: 221: 212: 209: 204: 195: 192: 188: 182: 178: 174: 168: 156: 91: 90:Two principles 88: 15: 13: 10: 9: 6: 4: 3: 2: 2869: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2824: 2822: 2807: 2804: 2803: 2800: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2775: 2773: 2771: 2767: 2759: 2756: 2754: 2751: 2750: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2705: 2703: 2699: 2693: 2690: 2688: 2685: 2684: 2682: 2680:Biofuel cells 2678: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2633: 2631: 2627: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2597: 2595: 2591: 2587: 2580: 2575: 2573: 2568: 2566: 2561: 2560: 2557: 2551: 2548: 2546: 2543: 2542: 2538: 2527: 2524: 2518: 2515: 2509: 2506: 2501: 2497: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2432: 2428: 2424: 2419: 2414: 2410: 2406: 2403:(6): 066502. 2402: 2398: 2394: 2387: 2384: 2379: 2375: 2370: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2330: 2327: 2316: 2309: 2306: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2250: 2243: 2240: 2234: 2231: 2225: 2222: 2216: 2213: 2207: 2205: 2201: 2195: 2192: 2187: 2183: 2179: 2175: 2167: 2164: 2159: 2155: 2151: 2147: 2139: 2136: 2131: 2127: 2123: 2119: 2112: 2109: 2104: 2100: 2096: 2092: 2088: 2084: 2077: 2074: 2069: 2065: 2061: 2057: 2053: 2049: 2041: 2038: 2033: 2029: 2024: 2019: 2015: 2011: 2007: 2003: 1999: 1984: 1981: 1976: 1970: 1966: 1959: 1957: 1955: 1953: 1949: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1898: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1787: 1784: 1779: 1775: 1771: 1767: 1756: 1753: 1746: 1743: 1738: 1734: 1730: 1726: 1719: 1716: 1710: 1707: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1671: 1668: 1662: 1659: 1654: 1647: 1644: 1639: 1635: 1631: 1627: 1620: 1617: 1612: 1608: 1604: 1598: 1595: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1555: 1552: 1541: 1537: 1533: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1487: 1484: 1480: 1476: 1474:1-57356-248-3 1470: 1466: 1461: 1460: 1451: 1448: 1436: 1430: 1428: 1424: 1413:on 2011-06-11 1409: 1405: 1398: 1391: 1388: 1381: 1376: 1373: 1371: 1368: 1366: 1365:Photohydrogen 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1317: 1312: 1307: 1304: 1301: 1300: 1296: 1294: 1276: 1274: 1270: 1268: 1260: 1258: 1256: 1251: 1249: 1242:Air Treatment 1241: 1239: 1235: 1233: 1229: 1225: 1224:biofiltration 1221: 1217: 1213: 1205: 1203: 1197: 1195: 1191: 1189: 1184: 1176: 1174: 1148: 1137: 1122: 1116:(h) +RX → TiO 1111: 1100: 1099: 1098: 1090: 1088: 1084: 1076: 1074: 1072: 1067: 1064:to promote a 1063: 1062:semiconductor 1055: 1053: 1033: 1018: 1000: 998: 988: 981: 979: 964: 957: 955: 948: 946: 943: 939: 931: 929: 903: 889: 868: 866: 826: 824: 820: 816: 812: 808: 804: 790: 776: 762: 760: 756: 738: 736: 732: 726: 723: 703: 671: 657: 654: 651: 647: 646: 645: 625: 607: 604: 601: 600: 599: 592: 590: 576: 572: 567: 565: 561: 556: 554: 550: 542: 540: 538: 534: 530: 526: 522: 517: 515: 511: 510:semiconductor 507: 503: 502:photochemical 500:Two types of 498: 494: 492: 488: 484: 480: 476: 472: 468: 464: 455: 448: 446: 444: 384: 371: 362: 359: 354: 345: 337: 336: 335: 334: 333: 332: 331: 330: 329: 328: 327: 326: 325: 324: 323: 322: 321: 320: 319: 318: 317: 316: 315: 314: 313: 312: 311: 253: 243: 240: 235: 219: 210: 202: 193: 190: 176: 154: 141: 140: 139: 138: 137: 136: 135: 134: 133: 132: 131: 130: 129: 128: 127: 126: 125: 124: 123: 122: 121: 120: 119: 118: 117: 116: 115: 111: 109: 105: 104:GrĂ€tzel cells 101: 97: 94:The standard 89: 87: 85: 84:photohydrogen 81: 77: 74:) to convert 73: 69: 65: 60: 58: 54: 50: 47:, or aqueous 46: 45:semiconductor 42: 38: 34: 30: 26: 22: 2732: 2718:Flow battery 2526: 2517: 2508: 2457: 2453: 2443: 2400: 2396: 2386: 2343: 2339: 2329: 2318:. Retrieved 2308: 2259: 2255: 2242: 2233: 2224: 2215: 2194: 2180:(10): 4046. 2177: 2173: 2166: 2149: 2145: 2138: 2121: 2117: 2111: 2086: 2082: 2076: 2051: 2047: 2040: 2005: 2001: 1983: 1964: 1910: 1906: 1900: 1875: 1871: 1865: 1840: 1836: 1830: 1797: 1794:Nano Letters 1793: 1786: 1769: 1765: 1755: 1745: 1728: 1724: 1718: 1709: 1684: 1680: 1670: 1661: 1652: 1646: 1629: 1625: 1619: 1611:the original 1606: 1597: 1564: 1560: 1554: 1543:. Retrieved 1535: 1525: 1500: 1496: 1486: 1478: 1458: 1450: 1439:. Retrieved 1415:. Retrieved 1408:the original 1390: 1280: 1271: 1264: 1252: 1245: 1236: 1209: 1201: 1198:Applications 1192: 1180: 1167: 1091: 1080: 1059: 1004: 985: 969: 952: 935: 872: 827: 823:UV radiation 815:valence band 763: 752: 733: 730: 644:production: 611: 596: 568: 560:GrĂ€tzel cell 557: 546: 533:service life 518: 499: 495: 487:solar energy 463:electrolizes 460: 440: 309: 112: 93: 61: 36: 20: 18: 2852:Solar cells 2708:Blue energy 2460:(1): 5046. 1503:(9): B903. 465:water into 2847:Fuel cells 2821:Categories 2586:Fuel cells 2320:2023-01-17 2262:: 129239. 1677:Blasse, G. 1567:(17): 37. 1545:2011-05-02 1536:SLAC Today 1441:2013-12-29 1417:2011-05-02 1382:References 1220:wastewater 1216:stormwater 1105:(hv) → TiO 1083:photolysis 547:The first 64:solar cell 2482:2041-1723 2435:216411125 2427:0013-4651 2360:2152-6575 2300:249139350 2284:0304-3894 1943:206550249 1589:135984508 807:titanates 753:In 1967, 525:Corrosion 523:barrier. 377:⟶ 372:− 208:⟶ 108:excitonic 2806:Glossary 2770:Hydrogen 2500:36068193 2378:29977658 2292:35739758 2103:20665613 2068:20201513 2032:15847520 1935:24233719 1857:19206593 1837:ACS Nano 1822:21568321 1313:See also 1232:atrazine 1214:of both 1135:+ HO + H 958:Hematite 819:band gap 652:spectrum 571:adsorbed 491:hydrogen 467:hydrogen 55:via the 53:hydrogen 2793:Vehicle 2788:Storage 2783:Station 2778:Economy 2629:By fuel 2491:9448774 2462:Bibcode 2405:Bibcode 2369:6028155 2264:Bibcode 2010:Bibcode 1915:Bibcode 1907:Science 1880:Bibcode 1802:Bibcode 1689:Bibcode 1569:Bibcode 1505:Bibcode 1277:History 1153:(e) + O 1131:O → TiO 1127:(h) + H 1109:(e + h) 1069:water, 932:Silicon 527:of the 2701:Others 2498:  2488:  2480:  2433:  2425:  2376:  2366:  2358:  2298:  2290:  2282:  2101:  2066:  2030:  1971:  1941:  1933:  1855:  1820:  1587:  1471:  1228:diuron 809:, the 471:oxygen 82:, see 2550:Wired 2531:1976. 2431:S2CID 2296:S2CID 2252:(PDF) 1939:S2CID 1750:Corp. 1585:S2CID 1411:(PDF) 1400:(PDF) 1157:→ TiO 794:BaTiO 780:SrTiO 477:with 475:anode 49:metal 2496:PMID 2478:ISSN 2423:ISSN 2374:PMID 2356:ISSN 2288:PMID 2280:ISSN 2099:PMID 2064:PMID 2028:PMID 1969:ISBN 1931:PMID 1853:PMID 1818:PMID 1469:ISBN 1230:and 1218:and 1146:+ HO 1120:+ RX 1008:BiVO 940:and 918:MoSe 916:and 888:GaAs 791:and 690:and 577:(nc- 469:and 2486:PMC 2470:doi 2413:doi 2401:167 2364:PMC 2348:doi 2272:doi 2260:436 2182:doi 2154:doi 2126:doi 2122:115 2091:doi 2056:doi 2052:132 2018:doi 2006:122 1923:doi 1911:342 1888:doi 1845:doi 1810:doi 1774:doi 1770:100 1733:doi 1697:doi 1634:doi 1577:doi 1513:doi 1501:155 1161:+ O 1149:TiO 1138:TiO 1123:TiO 1112:TiO 1101:TiO 989:(WO 906:WSe 893:MoS 875:TiO 869:GaN 855:TiO 843:TiO 830:TiO 766:TiO 740:TiO 579:TiO 489:in 86:). 19:A " 2823:: 2494:. 2484:. 2476:. 2468:. 2458:13 2456:. 2452:. 2429:. 2421:. 2411:. 2399:. 2395:. 2372:. 2362:. 2354:. 2342:. 2338:. 2294:. 2286:. 2278:. 2270:. 2258:. 2254:. 2203:^ 2176:. 2150:10 2148:. 2120:. 2097:. 2087:49 2085:. 2062:. 2050:. 2026:. 2016:. 2004:. 2000:. 1951:^ 1937:. 1929:. 1921:. 1909:. 1886:. 1874:. 1851:. 1839:. 1816:. 1808:. 1798:11 1796:. 1768:. 1729:77 1727:. 1695:. 1685:59 1683:. 1630:45 1628:. 1605:. 1583:. 1575:. 1563:. 1538:. 1534:. 1511:. 1499:. 1495:. 1477:. 1467:. 1463:. 1426:^ 1402:. 904:, 890:, 825:. 539:. 441:A 229:aq 184:hv 110:. 59:. 43:, 2578:e 2571:t 2564:v 2502:. 2472:: 2464:: 2437:. 2415:: 2407:: 2380:. 2350:: 2344:9 2323:. 2302:. 2274:: 2266:: 2188:. 2184:: 2178:4 2160:. 2156:: 2132:. 2128:: 2105:. 2093:: 2070:. 2058:: 2034:. 2020:: 2012:: 1998:" 1996:3 1994:O 1992:2 1977:. 1945:. 1925:: 1917:: 1894:. 1890:: 1882:: 1876:4 1859:. 1847:: 1841:2 1824:. 1812:: 1804:: 1780:. 1776:: 1762:2 1739:. 1735:: 1703:. 1699:: 1691:: 1640:. 1636:: 1591:. 1579:: 1571:: 1565:6 1548:. 1519:. 1515:: 1507:: 1444:. 1420:. 1291:2 1287:2 1283:2 1170:2 1163:2 1159:2 1155:2 1151:2 1144:2 1140:2 1133:2 1129:2 1125:2 1118:2 1114:2 1107:2 1103:2 1095:2 1034:2 1030:H 1013:4 995:3 991:3 976:3 974:O 972:2 923:2 911:2 898:2 880:2 860:2 848:2 835:2 799:3 785:3 771:2 745:2 704:2 700:O 672:2 668:H 626:2 622:H 584:2 400:) 397:g 394:( 385:2 381:H 368:e 363:2 360:+ 355:+ 351:H 346:2 269:) 266:g 263:( 254:2 250:O 244:2 241:1 236:+ 232:) 226:( 220:+ 216:H 211:2 203:+ 199:h 194:2 191:+ 187:] 181:[ 177:+ 173:) 170:l 167:( 163:O 155:2 151:H

Index

produces electrical energy
dye-sensitized photovoltaic cell
photovoltaic cell
photosensitizer
semiconductor
metal
hydrogen
electrolysis of water
solar cell
photoelectric effect
photovoltaic effect
electromagnetic radiation
create electrical power
photohydrogen
photovoltaic effect
photovoltaic cells
GrÀtzel cells
excitonic
photosynthetic cell

electrolizes
hydrogen
oxygen
anode
electromagnetic radiation
artificial photosynthesis
solar energy
hydrogen
photochemical
photocatalysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑