Knowledge (XXG)

Photonic molecule

Source 📝

123:"A micrometer-sized piece of semiconductor can trap photons inside it in such a way that they act like electrons in an atom. Now the 21 September PRL describes a way to link two of these "photonic atoms" together. The result of such a close relationship is a "photonic molecule," whose optical modes bear a strong resemblance to the electronic states of a diatomic molecule like hydrogen." "Photonic molecules, named by analogy with chemical molecules, are clusters of closely located electromagnetically interacting microcavities or "photonic atoms"." "Optically coupled microcavities have emerged as photonic structures with promising properties for investigation of fundamental science as well as for applications." 81:, which, in the presence of one excited atom, prevents nearby atoms from being excited to the same degree. In this case, as two photons enter the atomic cloud, the first excites an atom, annihilating itself in the interaction, but the transmitted energy must move forward inside the excited atom before the second photon can excite nearby atoms. In effect the two photons push and pull each other through the cloud as their energy is passed from one atom to the next, forcing them to interact. This photonic interaction is mediated by the electromagnetic interaction between photons and atoms. 104:
Owing to this similarity, optical microcavities can be termed 'photonic atoms'. Taking this analogy even further, a cluster of several mutually-coupled photonic atoms forms a photonic molecule. When individual photonic atoms are brought into close proximity, their optical modes interact and give rise to a spectrum of hybridized super-modes of photonic molecules. This is very similar to what happens when two isolated systems are coupled, like two
1841: 30:". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition (which is not equivalent), photons confined to two or more coupled optical cavities also reproduce the physics of interacting 138:
modes of the ring or the clockwise and counterclockwise modes of the ring. This was followed by the demonstration of a lithographically-fabricated photonic molecule, inspired by an analogy with a simple diatomic molecule. However, other nature-inspired PM structures (such as ‘photonic benzene’) have
103:
The term photonic molecule has been also used since 1998 for an unrelated phenomenon involving electromagnetically-interacting optical microcavities. The properties of quantized confined photon states in optical micro- and nanocavities are very similar to those of confined electron states in atoms.
142:
Photonic molecules offer advantages over isolated photonic atoms in a variety of applications, including bio(chemical) sensing, cavity optomechanics, and microlasers, Photonic molecules can also be used as quantum simulators of many-body physics and as building blocks of future optical quantum
615:
Boriskina, Svetlana V.; Benson, Trevor M.; Sewell, Phillip (2007). "Photonic molecules made of matched and mismatched microcavities: New functionalities of microlasers and optoelectronic components". In Kudryashov, Alexis V; Paxton, Alan H; Ilchenko, Vladimir S (eds.).
69:
As the photons entered the cloud, their energy excited atoms along their path, causing them to lose speed. Inside the cloud medium, the photons dispersively coupled to strongly interacting atoms in highly excited
1703:
MartĂ­nez-ArgĂŒello, A. M.; Toledano-Marino, M. P.; TerĂĄn-JuĂĄrez, A. E.; Flores-Olmedo, E.; BĂĄez, G.; SadurnĂ­, E.; MĂ©ndez-SĂĄnchez, R. A. (2022-02-21). "Molecular orbitals of an elastic artificial benzene".
1296:
Fan, J. A.; Bao, K.; Wu, C.; Bao, J.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Shvets, G.; Nordlander, P.; Capasso, F. (2010). "Fano-like Interference in Self-Assembled Plasmonic Quadrumer Clusters".
74:. This caused the photons to behave as massive particles with strong mutual attraction (photon molecules). Eventually the photons exited the cloud together as normal photons (often entangled in pairs). 1157:
Smotrova, E. I.; Nosich, A. I.; Benson, T. M.; Sewell, P. (2006). "Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes".
1340:
Liu, N.; Mukherjee, S.; Bao, K.; Brown, L. V.; DorfmĂŒller, J.; Nordlander, P.; Halas, N. J. (2012). "Magnetic Plasmon Formation and Propagation in Artificial Aromatic Molecules".
89:
The interaction of the photons suggests that the effect could be employed to build a system that can preserve quantum information, and process it using quantum logic operations.
547:
Rakovich, Y.; Donegan, J.; Gerlach, M.; Bradley, A.; Connolly, T.; Boland, J.; Gaponik, N.; Rogach, A. (2004). "Fine structure of coupled optical modes in photonic molecules".
1106:
Boriskina, S. V. (2006). "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules".
445:
Benson, T. M.; Boriskina, S. V.; Sewell, P.; Vukovic, A.; Greedy, S. C.; Nosich, A. I. (2006). "Micro-Optical Resonators for Microlasers and Integrated Optoelectronics".
301:
Deutsch, Ivan H.; Chiao, Raymond Y.; Garrison, John C. (1992-12-21). "Diphotons in a nonlinear Fabry-PĂ©rot resonator: Bound states of interacting photons in an optical
1617:
Hong, Y.; Pourmand, M.; Boriskina, S. V.; Reinhard, B. R. M. (2013). "Enhanced Light Focusing in Self-Assembled Optoplasmonic Clusters with Subwavelength Dimensions".
95:
It may be possible to arrange the photonic molecules in such a way within the medium that they form larger two-dimensional structures (similar to drawings).
1778: 752:
Bayer, M.; Gutbrod, T.; Reithmaier, J.; Forchel, A.; Reinecke, T.; Knipp, P.; Dremin, A.; Kulakovskii, V. (1998). "Optical Modes in Photonic Molecules".
187:
Shen, Jung-Tsung; Fan, Shanhui (2007-04-13). "Strongly Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupled to a Two-Level System".
830:
Boriskina, S. V. (2006). "Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: A proposal and numerical analysis".
139:
been proposed and shown to support confined optical modes closely analogous to the ground-state molecular orbitals of their chemical counterparts.
1668:
Ahn, W.; Boriskina, S. V.; Hong, Y.; Reinhard, B. R. M. (2012). "Photonic–Plasmonic Mode Coupling in On-Chip Integrated Optoplasmonic Molecules".
523: 472: 248:
Shen, Jung-Tsung; Fan, Shanhui (2007-12-27). "Strongly correlated multiparticle transport in one dimension through a quantum impurity".
92:
The system could also be useful in classical computing, given the much-lower power required to manipulate photons than electrons.
2045: 2115: 2040: 1771: 2227: 2055: 113: 2110: 1855: 2237: 66:
to just a few degrees above absolute zero. Using weak laser pulses, small numbers of photons were fired into the cloud.
1261:
Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. (2004). "Plasmon Hybridization in Nanoparticle Dimers".
153:
Finally, hybrid photonic-plasmonic (or opto-plasmonic) and elastic molecules have also been proposed and demonstrated.
657:
Grossmann, Tobias; Wienhold, Tobias; Bog, Uwe; Beck, Torsten; Friedmann, Christian; Kalt, Heinz; Mappes, Timo (2013).
2288: 1764: 109: 2262: 2161: 1791: 134:, although they did not use the term "photonic molecule". The two modes forming the molecule could then be the 126:
The first photonic realization of the two-level system of a photonic molecule was by Spreew et al., who used
2283: 2156: 131: 1916: 787:
Lin, B. (2003). "Variational analysis for photonic molecules: Application to photonic benzene waveguides".
2181: 2171: 1921: 985:
Hu, Y. W.; Xiao, Y. F.; Liu, Y. C.; Gong, Q. (2013). "Optomechanical sensing with on-chip microcavities".
900: 450: 1434:"Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing" 2100: 1860: 1723: 1626: 1573: 1504: 1349: 1306: 1270: 1219: 1166: 1115: 1080: 1037: 994: 949: 892: 849: 796: 761: 718: 670: 556: 393: 314: 267: 206: 135: 1071:
Nakagawa, A.; Ishii, S.; Baba, T. (2005). "Photonic molecule laser composed of GaInAsP microdisks".
905: 455: 2075: 1967: 1957: 1870: 1825: 162: 2222: 2151: 1985: 1739: 1713: 1650: 1563: 1494: 1243: 1209: 1200:
Hartmann, M.; BrandĂŁo, F.; Plenio, M. (2007). "Effective Spin Systems in Coupled Microcavities".
1139: 1010: 883:
Boriskina, S. V.; Dal Negro, L. (2010). "Self-referenced photonic molecule bio(chemical)sensor".
865: 839: 639: 621: 529: 501: 478: 427: 378: 363: 283: 257: 230: 196: 377:
Firstenberg, O.; Peyronel, T.; Liang, Q. Y.; Gorshkov, A. V.; Lukin, M. D.; Vuletić, V. (2013).
2252: 2247: 2217: 2176: 2065: 2017: 2002: 1865: 1685: 1642: 1599: 1532: 1463: 1414: 1365: 1322: 1235: 1182: 1131: 1053: 967: 918: 812: 734: 519: 468: 419: 330: 222: 167: 117: 1028:
Hara, Y.; Mukaiyama, T.; Takeda, K.; Kuwata-Gonokami, M. (2003). "Photonic molecule lasing".
2207: 1830: 1731: 1677: 1634: 1589: 1581: 1522: 1512: 1453: 1445: 1404: 1396: 1357: 1314: 1278: 1227: 1174: 1123: 1088: 1045: 1002: 957: 910: 857: 804: 769: 726: 678: 631: 597: 572: 564: 511: 460: 409: 401: 322: 275: 214: 78: 2197: 2050: 1787: 150:– which support confined surface plasmon states – have been termed ‘plasmonic molecules.” 703: 449:. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 216. p. 39. 1727: 1630: 1577: 1508: 1353: 1310: 1274: 1223: 1170: 1119: 1084: 1041: 998: 953: 896: 853: 800: 765: 722: 674: 560: 397: 318: 271: 210: 1995: 1990: 1947: 1880: 1875: 1594: 1551: 1527: 1482: 1458: 1433: 1409: 1384: 2277: 2232: 2212: 2135: 2095: 2030: 1962: 1885: 1743: 1654: 1552:"Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates" 1014: 287: 127: 105: 63: 1143: 869: 643: 533: 234: 2257: 2130: 2125: 2120: 2085: 2035: 1952: 1385:"Optimizing Gold Nanoparticle Cluster Configurations (n≀ 7) for Array Applications" 699: 482: 431: 147: 71: 31: 1483:"Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits" 1247: 1231: 218: 515: 364:"Seeing light in a new light: Scientists create never before seen form of matter" 2166: 2060: 1972: 1840: 1735: 773: 730: 326: 808: 568: 279: 2105: 2080: 2007: 1977: 1911: 1890: 1006: 601: 38: 464: 1517: 861: 43: 27: 1689: 1646: 1638: 1603: 1536: 1467: 1418: 1369: 1326: 1239: 1186: 1135: 1057: 971: 922: 816: 738: 423: 334: 226: 1756: 698:
Spreeuw, R. J. C.; van Druten, N. J.; Beijersbergen, M. W.; Eliel, E. R.;
2242: 2070: 1585: 1178: 1127: 1049: 962: 937: 914: 201: 56: 844: 683: 658: 500:. Springer Series in Optical Sciences. Vol. 156. pp. 393–421. 496:
Boriskina, S. V. (2010). "Photonic Molecules and Spectral Engineering".
414: 405: 2202: 2090: 2025: 1942: 1937: 1681: 1449: 1400: 1361: 1318: 1282: 1092: 635: 577: 1811: 37:
Researchers drew analogies between the phenomenon and the fictional "
23: 1718: 936:
Jiang, X.; Lin, Q.; Rosenberg, J.; Vahala, K.; Painter, O. (2009).
1820: 1806: 1568: 1499: 1214: 626: 506: 262: 120:, which are hybridized super-modes of the total coupled system. 59: 1760: 1816: 704:"Classical realization of a strongly driven two-level system" 938:"High-Q double-disk microcavities for cavity optomechanics" 659:"Polymeric photonic molecule super-mode lasers on silicon" 1432:
Yan, B.; Boriskina, S. V.; Reinhard, B. R. M. (2011).
1383:
Yan, B.; Boriskina, S. V.; Reinhard, B. R. M. (2011).
2190: 2144: 2016: 1930: 1904: 1848: 1799: 379:"Attractive photons in a quantum nonlinear medium" 99:Interacting optical cavities as photonic molecules 498:Photonic Microresonator Research and Applications 62:were pumped into a vacuum chamber. The cloud was 447:Frontiers in Planar Lightwave Circuit Technology 1487:Proceedings of the National Academy of Sciences 34:, and have been termed as photonic molecules. 1772: 1550:Boriskina, S. V.; Reinhard, B. R. M. (2011). 8: 592:Antia, Meher (1998). "A Molecule of Light". 832:Journal of the Optical Society of America B 1779: 1765: 1757: 1481:Boriskina, S. V.; Reinhard, B. M. (2011). 1717: 1593: 1567: 1526: 1516: 1498: 1457: 1408: 1213: 961: 904: 843: 682: 625: 576: 505: 454: 413: 261: 200: 179: 146:In complete analogy, clusters of metal 7: 618:Laser Resonators and Beam Control IX 366:. Science-daily.com. September 2013. 358: 356: 354: 352: 350: 348: 346: 344: 77:The effect is caused by a so-called 1438:The Journal of Physical Chemistry C 1389:The Journal of Physical Chemistry C 620:. Vol. 6452. pp. 64520X. 16:Theoretical natural state of matter 14: 663:Light: Science & Applications 143:information processing networks. 1839: 22:are a form of matter in which 1: 2228:Macroscopic quantum phenomena 1232:10.1103/PhysRevLett.99.160501 219:10.1103/PhysRevLett.98.153003 2238:Order and disorder (physics) 516:10.1007/978-1-4419-1744-7_16 108:coming together to form the 1736:10.1103/PhysRevA.105.022826 774:10.1103/PhysRevLett.81.2582 731:10.1103/PhysRevLett.65.2642 327:10.1103/PhysRevLett.69.3627 2305: 809:10.1103/PhysRevE.68.036611 569:10.1103/PhysRevA.70.051801 280:10.1103/PhysRevA.76.062709 1837: 1007:10.1007/s11467-013-0384-y 602:10.1103/PhysRevFocus.2.14 2263:Thermo-dielectric effect 2162:Enthalpy of vaporization 1856:Bose–Einstein condensate 465:10.1007/1-4020-4167-5_02 388:(Submitted manuscript). 106:hydrogen atomic orbitals 2157:Enthalpy of sublimation 1518:10.1073/pnas.1016181108 1202:Physical Review Letters 1073:Applied Physics Letters 862:10.1364/JOSAB.23.001565 754:Physical Review Letters 711:Physical Review Letters 307:Physical Review Letters 189:Physical Review Letters 26:bind together to form " 2172:Latent internal energy 1922:Color-glass condensate 1639:10.1002/adma.201202830 1982:Magnetically ordered 594:Physical Review Focus 85:Possible applications 1861:Fermionic condensate 1586:10.1364/OE.19.022305 1179:10.1364/OL.31.000921 1128:10.1364/OL.31.000338 1050:10.1364/OL.28.002437 987:Frontiers of Physics 963:10.1364/OE.17.020911 915:10.1364/OL.35.002496 32:atomic energy levels 2076:Chemical ionization 1968:Programmable matter 1958:Quantum spin liquid 1826:Supercritical fluid 1728:2022PhRvA.105b2826M 1631:2013AdM....25..115H 1578:2011OExpr..1922305B 1509:2011PNAS..108.3147B 1444:(50): 24437–24453. 1354:2012NanoL..12..364L 1311:2010NanoL..10.4680F 1275:2004NanoL...4..899N 1224:2007PhRvL..99p0501H 1171:2006OptL...31..921S 1120:2006OptL...31..338B 1085:2005ApPhL..86d1112N 1042:2003OptL...28.2437H 999:2013FrPhy...8..475H 954:2009OExpr..1720911J 897:2010OptL...35.2496B 854:2006JOSAB..23.1565B 801:2003PhRvE..68c6611L 766:1998PhRvL..81.2582B 723:1990PhRvL..65.2642S 684:10.1038/lsa.2013.38 675:2013LSA.....2E..82G 561:2004PhRvA..70e1801R 406:10.1038/nature12512 398:2013Natur.502...71F 319:1992PhRvL..69.3627D 272:2007PhRvA..76f2709S 211:2007PhRvL..98o3003S 163:Luminiferous aether 64:cooled using lasers 2223:Leidenfrost effect 2152:Enthalpy of fusion 1917:Quark–gluon plasma 1619:Advanced Materials 20:Photonic molecules 2271: 2270: 2253:Superheated vapor 2248:Superconductivity 2218:Equation of state 2066:Flash evaporation 2018:Phase transitions 2003:String-net liquid 1896:Photonic molecule 1866:Degenerate matter 1706:Physical Review A 1682:10.1021/nn204577v 1450:10.1021/jp207821t 1401:10.1021/jp112146d 1395:(11): 4578–4583. 1362:10.1021/nl203641z 1319:10.1021/nl1029732 1283:10.1021/nl049681c 1093:10.1063/1.1855388 789:Physical Review E 760:(12): 2582–2585. 717:(21): 2642–2645. 636:10.1117/12.714344 549:Physical Review A 525:978-1-4419-1743-0 474:978-1-4020-4164-8 313:(25): 3627–3630. 250:Physical Review A 168:Photoluminescence 118:hydrogen molecule 2296: 2289:Particle physics 2208:Compressed fluid 1843: 1788:States of matter 1781: 1774: 1767: 1758: 1748: 1747: 1721: 1700: 1694: 1693: 1665: 1659: 1658: 1614: 1608: 1607: 1597: 1571: 1562:(22): 22305–15. 1547: 1541: 1540: 1530: 1520: 1502: 1493:(8): 3147–3151. 1478: 1472: 1471: 1461: 1429: 1423: 1422: 1412: 1380: 1374: 1373: 1337: 1331: 1330: 1293: 1287: 1286: 1258: 1252: 1251: 1217: 1197: 1191: 1190: 1154: 1148: 1147: 1103: 1097: 1096: 1068: 1062: 1061: 1025: 1019: 1018: 982: 976: 975: 965: 933: 927: 926: 908: 880: 874: 873: 847: 827: 821: 820: 784: 778: 777: 749: 743: 742: 708: 695: 689: 688: 686: 654: 648: 647: 629: 612: 606: 605: 589: 583: 582: 580: 544: 538: 537: 509: 493: 487: 486: 458: 442: 436: 435: 417: 383: 374: 368: 367: 360: 339: 338: 298: 292: 291: 265: 245: 239: 238: 204: 202:quant-ph/0701170 184: 116:orbitals of the 79:Rydberg blockade 2304: 2303: 2299: 2298: 2297: 2295: 2294: 2293: 2274: 2273: 2272: 2267: 2198:Baryonic matter 2186: 2140: 2111:Saturated fluid 2051:Crystallization 2012: 1986:Antiferromagnet 1926: 1900: 1844: 1835: 1795: 1785: 1754: 1752: 1751: 1702: 1701: 1697: 1667: 1666: 1662: 1616: 1615: 1611: 1549: 1548: 1544: 1480: 1479: 1475: 1431: 1430: 1426: 1382: 1381: 1377: 1339: 1338: 1334: 1295: 1294: 1290: 1260: 1259: 1255: 1199: 1198: 1194: 1156: 1155: 1151: 1105: 1104: 1100: 1070: 1069: 1065: 1027: 1026: 1022: 984: 983: 979: 948:(23): 20911–9. 935: 934: 930: 906:10.1.1.470.1926 882: 881: 877: 845:physics/0603228 829: 828: 824: 786: 785: 781: 751: 750: 746: 706: 700:Woerdman, J. P. 697: 696: 692: 656: 655: 651: 614: 613: 609: 596:. Vol. 2. 591: 590: 586: 546: 545: 541: 526: 495: 494: 490: 475: 456:10.1.1.518.8691 444: 443: 439: 392:(7469): 71–75. 381: 376: 375: 371: 362: 361: 342: 300: 299: 295: 247: 246: 242: 186: 185: 181: 176: 159: 101: 87: 53: 17: 12: 11: 5: 2302: 2300: 2292: 2291: 2286: 2284:Atomic physics 2276: 2275: 2269: 2268: 2266: 2265: 2260: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2210: 2205: 2200: 2194: 2192: 2188: 2187: 2185: 2184: 2179: 2177:Trouton's rule 2174: 2169: 2164: 2159: 2154: 2148: 2146: 2142: 2141: 2139: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2098: 2093: 2088: 2083: 2078: 2073: 2068: 2063: 2058: 2053: 2048: 2046:Critical point 2043: 2038: 2033: 2028: 2022: 2020: 2014: 2013: 2011: 2010: 2005: 2000: 1999: 1998: 1993: 1988: 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1948:Liquid crystal 1945: 1940: 1934: 1932: 1928: 1927: 1925: 1924: 1919: 1914: 1908: 1906: 1902: 1901: 1899: 1898: 1893: 1888: 1883: 1881:Strange matter 1878: 1876:Rydberg matter 1873: 1868: 1863: 1858: 1852: 1850: 1846: 1845: 1838: 1836: 1834: 1833: 1828: 1823: 1814: 1809: 1803: 1801: 1797: 1796: 1786: 1784: 1783: 1776: 1769: 1761: 1750: 1749: 1695: 1660: 1625:(1): 115–119. 1609: 1556:Optics Express 1542: 1473: 1424: 1375: 1332: 1305:(11): 4680–5. 1288: 1269:(5): 899–903. 1253: 1208:(16): 160501. 1192: 1159:Optics Letters 1149: 1108:Optics Letters 1098: 1063: 1036:(24): 2437–9. 1030:Optics Letters 1020: 993:(5): 475–490. 977: 942:Optics Express 928: 891:(14): 2496–8. 885:Optics Letters 875: 822: 779: 744: 702:(1990-11-19). 690: 649: 607: 584: 539: 524: 488: 473: 437: 369: 340: 293: 240: 195:(15): 153003. 178: 177: 175: 172: 171: 170: 165: 158: 155: 132:ring resonator 128:optical fibers 100: 97: 86: 83: 72:Rydberg states 52: 49: 15: 13: 10: 9: 6: 4: 3: 2: 2301: 2290: 2287: 2285: 2282: 2281: 2279: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2233:Mpemba effect 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2213:Cooling curve 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2195: 2193: 2189: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2149: 2147: 2143: 2137: 2136:Vitrification 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2101:Recombination 2099: 2097: 2096:Melting point 2094: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2041:Critical line 2039: 2037: 2034: 2032: 2031:Boiling point 2029: 2027: 2024: 2023: 2021: 2019: 2015: 2009: 2006: 2004: 2001: 1997: 1994: 1992: 1989: 1987: 1984: 1983: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1963:Exotic matter 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1935: 1933: 1929: 1923: 1920: 1918: 1915: 1913: 1910: 1909: 1907: 1903: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1853: 1851: 1847: 1842: 1832: 1829: 1827: 1824: 1822: 1818: 1815: 1813: 1810: 1808: 1805: 1804: 1802: 1798: 1793: 1789: 1782: 1777: 1775: 1770: 1768: 1763: 1762: 1759: 1755: 1745: 1741: 1737: 1733: 1729: 1725: 1720: 1715: 1712:(2): 022826. 1711: 1707: 1699: 1696: 1691: 1687: 1683: 1679: 1676:(1): 951–60. 1675: 1671: 1664: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1613: 1610: 1605: 1601: 1596: 1591: 1587: 1583: 1579: 1575: 1570: 1565: 1561: 1557: 1553: 1546: 1543: 1538: 1534: 1529: 1524: 1519: 1514: 1510: 1506: 1501: 1496: 1492: 1488: 1484: 1477: 1474: 1469: 1465: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1428: 1425: 1420: 1416: 1411: 1406: 1402: 1398: 1394: 1390: 1386: 1379: 1376: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1333: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1292: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1216: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1150: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1114:(3): 338–40. 1113: 1109: 1102: 1099: 1094: 1090: 1086: 1082: 1079:(4): 041112. 1078: 1074: 1067: 1064: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 981: 978: 973: 969: 964: 959: 955: 951: 947: 943: 939: 932: 929: 924: 920: 916: 912: 907: 902: 898: 894: 890: 886: 879: 876: 871: 867: 863: 859: 855: 851: 846: 841: 837: 833: 826: 823: 818: 814: 810: 806: 802: 798: 795:(3): 036611. 794: 790: 783: 780: 775: 771: 767: 763: 759: 755: 748: 745: 740: 736: 732: 728: 724: 720: 716: 712: 705: 701: 694: 691: 685: 680: 676: 672: 668: 664: 660: 653: 650: 645: 641: 637: 633: 628: 623: 619: 611: 608: 603: 599: 595: 588: 585: 579: 574: 570: 566: 562: 558: 555:(5): 051801. 554: 550: 543: 540: 535: 531: 527: 521: 517: 513: 508: 503: 499: 492: 489: 484: 480: 476: 470: 466: 462: 457: 452: 448: 441: 438: 433: 429: 425: 421: 416: 411: 407: 403: 399: 395: 391: 387: 380: 373: 370: 365: 359: 357: 355: 353: 351: 349: 347: 345: 341: 336: 332: 328: 324: 320: 316: 312: 308: 304: 297: 294: 289: 285: 281: 277: 273: 269: 264: 259: 256:(6): 062709. 255: 251: 244: 241: 236: 232: 228: 224: 220: 216: 212: 208: 203: 198: 194: 190: 183: 180: 173: 169: 166: 164: 161: 160: 156: 154: 151: 149: 148:nanoparticles 144: 140: 137: 133: 130:to realize a 129: 124: 121: 119: 115: 111: 107: 98: 96: 93: 90: 84: 82: 80: 75: 73: 67: 65: 61: 58: 50: 48: 46: 45: 40: 35: 33: 29: 25: 21: 2258:Superheating 2131:Vaporization 2126:Triple point 2121:Supercooling 2086:Lambda point 2036:Condensation 1953:Time crystal 1931:Other states 1895: 1871:Quantum Hall 1753: 1709: 1705: 1698: 1673: 1669: 1663: 1622: 1618: 1612: 1559: 1555: 1545: 1490: 1486: 1476: 1441: 1437: 1427: 1392: 1388: 1378: 1348:(1): 364–9. 1345: 1342:Nano Letters 1341: 1335: 1302: 1299:Nano Letters 1298: 1291: 1266: 1263:Nano Letters 1262: 1256: 1205: 1201: 1195: 1165:(7): 921–3. 1162: 1158: 1152: 1111: 1107: 1101: 1076: 1072: 1066: 1033: 1029: 1023: 990: 986: 980: 945: 941: 931: 888: 884: 878: 835: 831: 825: 792: 788: 782: 757: 753: 747: 714: 710: 693: 666: 662: 652: 617: 610: 593: 587: 552: 548: 542: 497: 491: 446: 440: 415:1721.1/91605 389: 385: 372: 310: 306: 303:quantum wire 302: 296: 253: 249: 243: 192: 188: 182: 152: 145: 141: 136:polarization 125: 122: 102: 94: 91: 88: 76: 68: 54: 51:Construction 42: 36: 19: 18: 2167:Latent heat 2116:Sublimation 2061:Evaporation 1996:Ferromagnet 1991:Ferrimagnet 1973:Dark matter 1905:High energy 838:(8): 1565. 114:antibonding 2278:Categories 2182:Volatility 2145:Quantities 2106:Regelation 2081:Ionization 2056:Deposition 2008:Superglass 1978:Antimatter 1912:QCD matter 1891:Supersolid 1886:Superfluid 1849:Low energy 1719:2108.12027 669:(5): e82. 578:2262/29166 174:References 39:lightsaber 1744:237347078 1655:205247073 1569:1111.0022 1500:1110.6822 1215:0704.3056 1015:122299018 901:CiteSeerX 627:0704.2154 507:1207.1274 451:CiteSeerX 288:119608892 263:0707.4335 44:Star Wars 28:molecules 2243:Spinodal 2191:Concepts 2071:Freezing 1690:22148502 1670:ACS Nano 1647:23055393 1604:22109072 1537:21300898 1468:22299057 1419:21603065 1370:22122612 1327:20923179 1240:17995228 1187:16599212 1144:22088884 1136:16480201 1058:14690107 972:19997328 923:20634875 870:59580074 817:14524916 739:10042655 644:55006344 534:13276928 424:24067613 335:10046872 235:37715281 227:17501344 157:See also 57:rubidium 55:Gaseous 2203:Binodal 2091:Melting 2026:Boiling 1943:Crystal 1938:Colloid 1724:Bibcode 1627:Bibcode 1595:3298770 1574:Bibcode 1528:3044402 1505:Bibcode 1459:3268044 1410:3095971 1350:Bibcode 1307:Bibcode 1271:Bibcode 1220:Bibcode 1167:Bibcode 1116:Bibcode 1081:Bibcode 1038:Bibcode 995:Bibcode 950:Bibcode 893:Bibcode 850:Bibcode 797:Bibcode 762:Bibcode 719:Bibcode 671:Bibcode 557:Bibcode 483:8299535 432:1699899 394:Bibcode 315:Bibcode 268:Bibcode 207:Bibcode 110:bonding 41:" from 24:photons 1831:Plasma 1812:Liquid 1742:  1688:  1653:  1645:  1602:  1592:  1535:  1525:  1466:  1456:  1417:  1407:  1368:  1325:  1248:592659 1246:  1238:  1185:  1142:  1134:  1056:  1013:  970:  921:  903:  868:  815:  737:  642:  532:  522:  481:  471:  453:  430:  422:  386:Nature 333:  286:  233:  225:  1821:Vapor 1807:Solid 1800:State 1740:S2CID 1714:arXiv 1651:S2CID 1564:arXiv 1495:arXiv 1244:S2CID 1210:arXiv 1140:S2CID 1011:S2CID 866:S2CID 840:arXiv 707:(PDF) 640:S2CID 622:arXiv 530:S2CID 502:arXiv 479:S2CID 428:S2CID 382:(PDF) 284:S2CID 258:arXiv 231:S2CID 197:arXiv 60:atoms 1792:list 1686:PMID 1643:PMID 1600:PMID 1533:PMID 1464:PMID 1415:PMID 1366:PMID 1323:PMID 1236:PMID 1183:PMID 1132:PMID 1054:PMID 968:PMID 919:PMID 813:PMID 735:PMID 520:ISBN 469:ISBN 420:PMID 331:PMID 223:PMID 112:and 1817:Gas 1732:doi 1710:105 1678:doi 1635:doi 1590:PMC 1582:doi 1523:PMC 1513:doi 1491:108 1454:PMC 1446:doi 1442:115 1405:PMC 1397:doi 1393:115 1358:doi 1315:doi 1279:doi 1228:doi 1175:doi 1124:doi 1089:doi 1046:doi 1003:doi 958:doi 911:doi 858:doi 805:doi 770:doi 727:doi 679:doi 632:doi 598:doi 573:hdl 565:doi 512:doi 461:doi 410:hdl 402:doi 390:502 323:doi 305:". 276:doi 215:doi 2280:: 1819:/ 1738:. 1730:. 1722:. 1708:. 1684:. 1672:. 1649:. 1641:. 1633:. 1623:25 1621:. 1598:. 1588:. 1580:. 1572:. 1560:19 1558:. 1554:. 1531:. 1521:. 1511:. 1503:. 1489:. 1485:. 1462:. 1452:. 1440:. 1436:. 1413:. 1403:. 1391:. 1387:. 1364:. 1356:. 1346:12 1344:. 1321:. 1313:. 1303:10 1301:. 1277:. 1265:. 1242:. 1234:. 1226:. 1218:. 1206:99 1204:. 1181:. 1173:. 1163:31 1161:. 1138:. 1130:. 1122:. 1112:31 1110:. 1087:. 1077:86 1075:. 1052:. 1044:. 1034:28 1032:. 1009:. 1001:. 989:. 966:. 956:. 946:17 944:. 940:. 917:. 909:. 899:. 889:35 887:. 864:. 856:. 848:. 836:23 834:. 811:. 803:. 793:68 791:. 768:. 758:81 756:. 733:. 725:. 715:65 713:. 709:. 677:. 665:. 661:. 638:. 630:. 571:. 563:. 553:70 551:. 528:. 518:. 510:. 477:. 467:. 459:. 426:. 418:. 408:. 400:. 384:. 343:^ 329:. 321:. 311:69 309:. 282:. 274:. 266:. 254:76 252:. 229:. 221:. 213:. 205:. 193:98 191:. 47:. 1794:) 1790:( 1780:e 1773:t 1766:v 1746:. 1734:: 1726:: 1716:: 1692:. 1680:: 1674:6 1657:. 1637:: 1629:: 1606:. 1584:: 1576:: 1566:: 1539:. 1515:: 1507:: 1497:: 1470:. 1448:: 1421:. 1399:: 1372:. 1360:: 1352:: 1329:. 1317:: 1309:: 1285:. 1281:: 1273:: 1267:4 1250:. 1230:: 1222:: 1212:: 1189:. 1177:: 1169:: 1146:. 1126:: 1118:: 1095:. 1091:: 1083:: 1060:. 1048:: 1040:: 1017:. 1005:: 997:: 991:8 974:. 960:: 952:: 925:. 913:: 895:: 872:. 860:: 852:: 842:: 819:. 807:: 799:: 776:. 772:: 764:: 741:. 729:: 721:: 687:. 681:: 673:: 667:2 646:. 634:: 624:: 604:. 600:: 581:. 575:: 567:: 559:: 536:. 514:: 504:: 485:. 463:: 434:. 412:: 404:: 396:: 337:. 325:: 317:: 290:. 278:: 270:: 260:: 237:. 217:: 209:: 199::

Index

photons
molecules
atomic energy levels
lightsaber
Star Wars
rubidium
atoms
cooled using lasers
Rydberg states
Rydberg blockade
hydrogen atomic orbitals
bonding
antibonding
hydrogen molecule
optical fibers
ring resonator
polarization
nanoparticles
Luminiferous aether
Photoluminescence
arXiv
quant-ph/0701170
Bibcode
2007PhRvL..98o3003S
doi
10.1103/PhysRevLett.98.153003
PMID
17501344
S2CID
37715281

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑