Knowledge

Physical modelling synthesis

Source đź“ť

77:, there would be a mathematical model of how striking the drumhead injects energy into a two-dimensional membrane. Incorporating this, a larger model would simulate the properties of the membrane (mass density, stiffness, etc.), its coupling with the resonance of the cylindrical body of the drum, and the conditions at its boundaries (a rigid termination to the drum's body), describing its movement over time and thus its generation of sound. 84:, though the energy excitation in this case is provided by the slip-stick behavior of the bow against the string, the width of the bow, the resonance and damping behavior of the strings, the transfer of string vibrations through the bridge, and finally, the resonance of the soundboard in response to those vibrations. 146:
While the efficiency of digital waveguide synthesis made physical modelling feasible on common DSP hardware and native processors, the convincing emulation of physical instruments often requires the introduction of non-linear elements, scattering junctions, etc. In these cases, digital waveguides are
69:
Modelling attempts to replicate laws of physics that govern sound production, and will typically have several parameters, some of which are constants that describe the physical materials and dimensions of the instrument, while others are time-dependent functions describing the player's interaction
370: 508: 251:
Cadoz, C.; Luciani A; Florens JL (1993). "CORDIS-ANIMA : a Modeling and Simulation System for Sound and Image Synthesis: The General Formalism".
278:
Englert, Marina; Madazio, Glaucya; Gielow, Ingrid; Lucero, Jorge; Behlau, Mara (2017). "Perceptual Error Analysis of Human and Synthesized Voices".
387: 140:
in 1989 to jointly develop digital waveguide synthesis; subsequently, most patents related to the technology are owned by Stanford or Yamaha.
367: 634: 501: 346: 165: 119: 711: 529: 494: 143:
The first commercially available physical modelling synthesizer made using waveguide synthesis was the Yamaha VL1 in 1994.
706: 573: 675: 619: 534: 314: 170: 123: 624: 614: 539: 196:
Hiller, L.; Ruiz, P. (1971). "Synthesizing Musical Sounds by Solving the Wave Equation for Vibrating Objects".
127: 596: 420:
C. Webb and S. Bilbao, "On the limits of real-time physical modelling synthesis with a modular environment"
569: 183: 104: 549: 368:
http://contentdm.lib.byu.edu/cdm4/item_viewer.php?CISOROOT=/ETD&CISOPTR=976&CISOBOX=1&REC=19
685: 559: 395: 99:
oscillation and associated laryngeal airflow, and the consequent acoustic wave propagation along the
151:, finite element or wave digital filter methods, increasing the computational demands of the model. 667: 657: 581: 137: 644: 586: 554: 224: 133: 58: 46: 107:
to control the vocal tract shape in terms of the position of the lips, tongue and other organs.
680: 629: 544: 452: 444: 295: 178: 115: 478: 343: 122:, the subsequent refinement and generalization of the algorithm into the extremely efficient 591: 287: 216: 17: 652: 374: 350: 34: 118:
of the wave equation by Hiller and Ruiz in 1971, it was not until the development of the
207:
Karplus, K.; Strong, A. (1983). "Digital synthesis of plucked string and drum timbres".
700: 439: 291: 517: 470: 100: 96: 88: 456: 448: 111: 54: 318: 299: 95:
sounds. In this case, the synthesizer includes mathematical models of the
130:
power in the late 1980s that commercial implementations became feasible.
50: 38: 486: 239: 228: 70:
with the instrument, such as plucking a string, or covering toneholes.
92: 81: 220: 80:
Similar stages to be modelled can be found in instruments such as a
42: 421: 409: 148: 74: 490: 480:
Music synthesis approaches sound quality of real instruments
259:(1). Computer Music Journal, MIT Press 1993, Vol. 17, No. 1. 87:
In addition, the same concept has been applied to simulate
344:
http://www.harmony-central.com/Computer/synth-history.html
443:. No. 32. Future Publishing. June 1995. p. 80. 27:
Methods used to generate sound waveforms using a computer
126:
by Julius O. Smith III and others, and the increase in
110:
Although physical modelling was not a new concept in
364:
Objective Test Methods for Waveguide Audio Synthesis
666: 643: 605: 568: 473:
A Basic Introduction to Digital Waveguide Synthesis
215:(2). Computer Music Journal, Vol. 7, No. 2: 43–55. 57:to simulate a physical source of sound, usually a 155:Technologies associated with physical modelling 502: 366:. Masters Thesis - Brigham Young University, 114:and synthesis, having been implemented using 8: 509: 495: 487: 482:— Stanford University's 1994 news release 160:Examples of physical modelling synthesis: 198:Journal of the Audio Engineering Society 270: 238:Julius O. Smith III (December 2010). 73:For example, to model the sound of a 7: 45:to be generated is computed using a 103:. Further, it may also contain an 25: 241:Physical Audio Signal Processing 116:finite difference approximations 437:"The next generation, part 1". 166:Karplus-Strong string synthesis 422:http://www.physicalaudio.co.uk 410:http://www.ness.music.ed.ac.uk 1: 292:10.1016/j.jvoice.2016.12.015 31:Physical modelling synthesis 394:. July 1994. Archived from 315:"ASTRA Project on the Grid" 171:Digital waveguide synthesis 124:digital waveguide synthesis 18:Physical modeling synthesis 728: 525: 175:Mass-interaction networks 120:Karplus-Strong algorithm 471:Julius. O Smith III's 313:Vicinanza , D (2007). 253:Computer Music Journal 209:Computer Music Journal 184:Articulatory synthesis 712:Sound synthesis types 635:Karplus–Strong string 286:(4): 516.e5–516.e18. 37:methods in which the 686:Software synthesizer 530:Frequency modulation 147:often combined with 707:Japanese inventions 668:Digital synthesizer 138:Stanford University 65:General methodology 645:Analog synthesizer 607:Physical modelling 373:2011-06-11 at the 349:2012-04-18 at the 340:Wave of the Future 105:articulatory model 59:musical instrument 47:mathematical model 694: 693: 681:Scanned synthesis 620:Digital waveguide 535:Linear arithmetic 408:The NESS project 179:Formant synthesis 16:(Redirected from 719: 615:Banded waveguide 540:Phase distortion 511: 504: 497: 488: 460: 424: 418: 412: 406: 400: 399: 384: 378: 360: 354: 336: 330: 329: 327: 326: 317:. Archived from 310: 304: 303: 280:Journal of Voice 275: 260: 245: 232: 201: 136:contracted with 21: 727: 726: 722: 721: 720: 718: 717: 716: 697: 696: 695: 690: 676:Analog modeling 662: 653:Graphical sound 639: 601: 564: 521: 518:Sound synthesis 515: 467: 436: 433: 431:Further reading 428: 427: 419: 415: 407: 403: 398:on 8 June 2015. 386: 385: 381: 375:Wayback Machine 361: 357: 351:Wayback Machine 337: 333: 324: 322: 312: 311: 307: 277: 276: 272: 267: 250: 237: 221:10.2307/3680062 206: 195: 192: 157: 67: 35:sound synthesis 28: 23: 22: 15: 12: 11: 5: 725: 723: 715: 714: 709: 699: 698: 692: 691: 689: 688: 683: 678: 672: 670: 664: 663: 661: 660: 655: 649: 647: 641: 640: 638: 637: 632: 627: 625:Direct digital 622: 617: 611: 609: 603: 602: 600: 599: 594: 589: 584: 578: 576: 566: 565: 563: 562: 557: 552: 547: 542: 537: 532: 526: 523: 522: 516: 514: 513: 506: 499: 491: 485: 484: 476: 466: 465:External links 463: 462: 461: 432: 429: 426: 425: 413: 401: 392:Sound On Sound 379: 355: 338:Johnstone, B: 331: 305: 269: 268: 266: 263: 262: 261: 247: 246: 234: 233: 203: 202: 191: 188: 187: 186: 181: 176: 173: 168: 156: 153: 66: 63: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 724: 713: 710: 708: 705: 704: 702: 687: 684: 682: 679: 677: 674: 673: 671: 669: 665: 659: 656: 654: 651: 650: 648: 646: 642: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 612: 610: 608: 604: 598: 597:Concatenative 595: 593: 590: 588: 585: 583: 580: 579: 577: 575: 571: 567: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 527: 524: 519: 512: 507: 505: 500: 498: 493: 492: 489: 483: 481: 477: 475: 474: 469: 468: 464: 458: 454: 450: 446: 442: 441: 435: 434: 430: 423: 417: 414: 411: 405: 402: 397: 393: 389: 383: 380: 376: 372: 369: 365: 359: 356: 352: 348: 345: 341: 335: 332: 321:on 2013-11-04 320: 316: 309: 306: 301: 297: 293: 289: 285: 281: 274: 271: 264: 258: 254: 249: 248: 243: 242: 236: 235: 230: 226: 222: 218: 214: 210: 205: 204: 199: 194: 193: 189: 185: 182: 180: 177: 174: 172: 169: 167: 164: 163: 162: 161: 154: 152: 150: 144: 141: 139: 135: 131: 129: 125: 121: 117: 113: 108: 106: 102: 98: 94: 90: 85: 83: 78: 76: 71: 64: 62: 60: 56: 52: 48: 44: 40: 36: 32: 19: 606: 570:Sample-based 479: 472: 440:Future Music 438: 416: 404: 396:the original 391: 388:"Yamaha VL1" 382: 363: 358: 339: 334: 323:. Retrieved 319:the original 308: 283: 279: 273: 256: 252: 240: 212: 208: 197: 159: 158: 145: 142: 132: 109: 86: 79: 72: 68: 30: 29: 550:Subtractive 362:Wood, S G: 101:vocal tract 49:, a set of 701:Categories 560:Distortion 457:1032779031 325:2013-10-23 190:References 97:vocal fold 55:algorithms 33:refers to 582:Wavetable 449:0967-0378 265:Footnotes 112:acoustics 51:equations 587:Granular 555:Additive 371:Archived 347:Archived 300:28089485 39:waveform 658:Modular 630:Formant 574:Sampler 545:Scanned 377:, 2007. 353:, 1993. 229:3680062 41:of the 592:Vector 455:  447:  298:  227:  134:Yamaha 93:speech 82:violin 520:types 225:JSTOR 89:voice 43:sound 453:OCLC 445:ISSN 296:PMID 257:17/1 149:FDTD 91:and 75:drum 53:and 572:or 288:doi 217:doi 128:DSP 703:: 451:. 390:. 342:. 294:. 284:31 282:. 255:. 223:. 211:. 61:. 510:e 503:t 496:v 459:. 328:. 302:. 290:: 244:. 231:. 219:: 213:7 200:. 20:)

Index

Physical modeling synthesis
sound synthesis
waveform
sound
mathematical model
equations
algorithms
musical instrument
drum
violin
voice
speech
vocal fold
vocal tract
articulatory model
acoustics
finite difference approximations
Karplus-Strong algorithm
digital waveguide synthesis
DSP
Yamaha
Stanford University
FDTD
Karplus-Strong string synthesis
Digital waveguide synthesis
Formant synthesis
Articulatory synthesis
doi
10.2307/3680062
JSTOR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑