Knowledge (XXG)

Piwi-interacting RNA

Source πŸ“

237:
different transposons, including multiple Gypsies), all facing the same direction. Indeed, piRNAs are all found in clusters throughout animal genomes; these clusters may contain as few as ten or many thousands of piRNAs matching different, phased transposon fragments. This led to the idea in 2007 that in germlines a pool of primary piRNAs is processed from long single-stranded transcripts encoded by piRNA clusters in the opposite orientation of the transposons, so that the piRNAs can anneal to and complement the transposon-encoded transcripts, thereby triggering their degradation. Any transposon landing in the correct orientation in such a cluster will make the individual more or less immune to that transposon, and such an advantageous mutation will spread quickly through the population. The original mutations in the flamenco locus inhibited the transcription of the master transcript, thereby deactivating this defense system.
470:
Aub and Ago3 target cleavage triggers the 'phased' loading of piRNA into Piwi. Phasing begins with the targeting and cleavage of a complementary target by either Aub or Ago3 associated with a 'responder' piRNA. Once cleaved, the targeted transcript is then processed further by a mechanism believed to require the mitochondrial-associated endonuclease, Zucchini, which leads to the loading of Piwi protein with sequential fragments of the targeted transcript. In this way, the Aub or Ago3 'responder' piRNA sequence cleaves a complementary target that is then sliced at periodic intervals of approximately 27 nucleotides that are sequentially loaded into Piwi protein. Once loaded with piRNA, Piwi then enters the germ cell nucleus to co-transcriptionally silence nascent transcripts with complementarity to its piRNA guide. It is currently unknown whether phasing occurs in other organisms.
425:
the main factor in targeting deleterious transcripts through complementarity. Conversely, Ago3 piRNA sequences are predominantly of sense orientation to transposable element transcripts and are derived from the product of Aub cleavage of transposon mRNA. As such, Ago3 piRNA lack the ability to target transposable element transcripts directly. Therefore, it was proposed that Ago3 piRNA guide the production of piRNA that are loaded into Aub by targeting newly exported piRNA cluster transcripts. Several lines of evidence support the effect of Ago3 on the production of Aub piRNA, in particular from examining the piRNA repertoire in
4713: 449:) was also shown to interact with both Aub and Ago3 through its Tudor domains while also binding itself through its N-terminal Krimper domain. Specifically, Krimper interacts with Ago3 in its piRNA-unloaded state, while its interaction with Aub is dependent on the symmetrical dimethylation of arginine residues in the N-terminal region of Aub. In Silkmoth germ cells, it was proposed that 326: 317:, a species of yeast, as well in some plants, neither of which have been observed to contain the Piwi subfamily of Argonaute proteins. It has been observed that both rasiRNA and piRNA are maternally linked, but more specifically it is the Piwi protein subfamily that is maternally linked and therefore leads to the observation that rasiRNA and piRNA are maternally linked. 745:-based methods have been developed in response to this difficulty. However, research has also revealed that a number of annotated piRNAs may be false positives; for instance, a majority of piRNAs that were expressed in somatic non-gonadal tissues were considered to derive from non-coding RNA fragments. 469:
piRNA pathway can be separated into two branches: the cytoplasmic branch consisting of Aub and Ago3 operating the Ping-Pong mechanism, and the nuclear branch, pertaining to the co-transcriptional silencing of genomic loci by Piwi in the nucleus. Through complementary strategies, two studies show that
424:
or in mouse remains to be understood, but a leading hypothesis is that the interaction between Aub and Ago3 allows for a cyclic refinement of piRNA that are best suited to target active transposon sequences. Aub piRNA are primarily antisense to transposable element transcripts and are believed to be
600:. However, in mosquitoes the PIWI family of proteins has expanded and some PIWI proteins have been identified as antiviral such as Piwi4. As such virus infections in mosquitoes commonly produce virus-derived piRNAs in diverse positive-sense RNA, negative-sense RNA and single-stranded DNA viruses. 419:
where the piRNA associated with the two cytoplasmic Piwi proteins, Aubergine (Aub) and Argonaute-3 (Ago3) exhibited a high frequency of sequence complementarity over exactly 10 nucleotides at their 5β€² ends. This relationship is known as the "ping-pong signature" and is also observed in associated
310:
and some unicellular eukaryotes but its presence in mammals has not been determined, unlike piRNA which has been observed in many species of invertebrates and vertebrates including mammals; however, since proteins which associate with rasiRNA are found in both vertebrates and invertebrates, it is
236:
in the germline and by 2003 the idea had emerged that vestiges of transposons might produce dsRNAs required for the silencing of "live" transposons. Sequencing of the 200,000-bp flamenco locus was difficult, as it turned out to be packed with transposable element fragments (104 insertions of 42
248:
genome in the mid-20th century, and, through interbreeding, within decades all wild fruit flies worldwide (though not the reproductively isolated lab strains) contained the same P-element. Repression of further P-element activity, spreading near-simultaneously, appears to have occurred by the
1935:
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (July 2006). "A novel class of small RNAs bind to MILI protein in mouse testes".
643:
that are known to bind symmetrically dimethylated arginine residues (sDMA) present in methylation motifs of Piwi proteins. Piwi proteins are symmetrically dimethylated by the PRMT5 methylosome complex, consisting of Valois (MEP50) and Capsulèen (dart5; PRMT5).
740:
platform sequencing. These techniques allow analysis of highly complex and heterogeneous RNA populations like piRNAs. Due to their small size, expression and amplification of small RNAs can be challenging, so specialised
549:. Three piwi subfamily proteins – MIWI, MIWI2, and MILI – have been found to be essential for spermatogenesis in mice. piRNAs direct the piwi proteins to their transposon targets. A decrease or absence of PIWI 406:
across species. Ping-pong signatures have been identified in very primitive animals such as sponges and cnidarians, pointing to the existence of the ping-pong cycle already in the early branches of metazoans.
553:
is correlated with an increased expression of transposons. Transposons have a high potential to cause deleterious effects on their hosts and, in fact, mutations in piRNA pathways have been found to reduce
498:
to transposon sequences, suggesting that transposons are targets of the piRNAs. In mammals, it appears that the activity of piRNAs in transposon silencing is most important during the development of the
456:
It is likely that the mechanism of Ping-Pong is primarily coordinated by Krimper but factors such as Kumo/Qin and Vasa, in addition to other factors have necessary functions in the Ping-Pong mechanism.
1431:
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. (April 2007). "A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish".
1300:
Carmen L, Michela B, Rosaria V, Gabriella M (2009). "Existence of snoRNA, microRNA, piRNA characteristics in a novel non-coding RNA: x-ncRNA and its biological implication in Homo sapiens".
1614:
Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, TavarΓ© S, Miska EA (July 2008).
3474:
Anne J, Mechler BM (May 2005). "Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase CapsulΓ©en".
341:
only, and this may indicate that they are the product of long single stranded precursor molecules. A primary processing pathway is suggested to be the only pathway used to produce
2473:
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD (May 2009).
3315:"Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells" 337:
of piRNAs is not yet fully understood, although possible mechanisms have been proposed. piRNAs show a significant strand bias, that is, they are derived from one strand of
3838:"Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes" 624:
Genetic screens examining fertility defects identified a number of proteins that are not Piwi-clade Argonautes, yet produce the same sterility phenotypes as Piwi mutants.
109:
in 2001. By 2008, it was still unclear how piRNAs are generated, but potential methods had been suggested, and it was certain their biogenesis pathway is distinct from
3411: 3299: 3234: 3168: 3103: 3026: 306:. Unlike the Ago subfamily which is present in animals, plants, and fission yeast, the Piwi subfamily has only been found in animals. RasiRNA has been observed in 369:
at the tenth position. Since the piRNA involved in the ping pong cycle directs its attacks on transposon transcripts, the ping pong cycle acts only at the level of
3364:"Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs" 2667:
Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, CoutΓ© Y, Conn S, Kadlec J, Sachidanandam R, Kaksonen M, Cusack S, Ephrussi A, Pillai RS (June 2014).
2089:, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (April 2007). "A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish". 184:. This 3’ modification is a 2’-O-methylation; the reason for this modification is not clear, but it has been suggested that it increases piRNA stability. 616:
effects. The activity of specific piRNAs in the epigenetic process also requires interactions between piwi proteins and HP1a, as well as other factors.
1371:
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (July 2006). "A distinct small RNA pathway silences selfish genetic elements in the germline".
3668:
Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (July 2006). "Characterization of the piRNA complex from rat testes".
596:
ovarian somatic sheet (OSS) cells. Subsequent experimental studies have demonstrated that the piRNA pathway is not required for antiviral defence in
4308: 31: 4046: 365:
from the 5’ end of the primary piRNA, producing the secondary piRNA. These secondary piRNAs are targeted toward sequences that possess an
1616:"Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline" 3748:
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (July 2006). "A germline-specific class of small RNAs binds mammalian Piwi proteins".
2142:
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (July 2006). "A germline-specific class of small RNAs binds mammalian Piwi proteins".
1987:
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (May 2008).
855:"Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties" 166:
have a 5’ monophosphate and a 3’ modification that acts to block either the 2’ or 3’ oxygen; this has also been confirmed to exist in
154: 2916: 353:. Also proposed is a β€˜Ping Pong’ mechanism wherein primary piRNAs recognise their complementary targets and cause the recruitment of 90:(miRNA) in size (26–31 nucleotides as opposed to 21–24 nt), lack of sequence conservation, increased complexity, and independence of 4394: 68: 4681: 4152: 1002:"Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response" 4686: 4080: 126: 1195:"Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline" 436:
was reported to coordinate the loading of Ago3 with piRNA, in addition to interacting with both Aub and Ago3. However, the
279:, although they only seem to be required in males. In invertebrates, piRNAs have been detected in both the male and female 4583: 4469: 3425:
Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (May 2009).
953:"Delving into the diversity of silencing pathways. Symposium on MicroRNAs and siRNAs: biological functions and mechanisms" 526: 75:
and other spurious or repeat-derived transcripts, but can also be involved in the regulation of other genetic elements in
482:
function across species contributes to the difficulty in establishing the functionality of piRNAs. However, like other
4696: 4691: 4676: 4301: 2359:
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (October 2008).
4039: 733: 905:
Siomi MC, Sato K, Pezic D, Aravin AA (April 2011). "PIWI-interacting small RNAs: the vanguard of genome defence".
742: 313: 311:
possible that active rasiRNA exist and have yet to be observed in other animals. RasiRNAs have been observed in
3617:"Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues" 2806:
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, TΓ³th KF (February 2013).
2308: 1046:"History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster" 294:, suggesting that piRNA pathways may function in both of these areas and, therefore, may have multiple effects. 4265: 370: 346: 145:
and modes of action do vary somewhat between species, a number of features are conserved. piRNAs have no clear
1139:
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (May 2004).
2579:"Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper" 2253:
Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (September 2008).
2193:
Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (March 2004).
1582:
Lin H, Yin H, Beyret E, Findley S, Deng W (2008). "The role of the piRNA pathway in stem cell self-renewal".
4742: 2924: 1484:
Kirino Y, Mourelatos Z (April 2007). "Mouse Piwi-interacting RNAs are 2β€²-O-methylated at their 3β€² termini".
392: 204: 168: 2710:"Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis" 2085:
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E,
432:
The molecular mechanism that underpins Ping-Pong likely involves several piRNA pathway associated factors.
82:
piRNAs are mostly created from loci that function as transposon traps which provide a kind of RNA-mediated
4716: 4409: 4294: 4090: 4007: 505: 379: 162: 4593: 4437: 4182: 4032: 3405: 3293: 3228: 3162: 3097: 3020: 566: 2808:"Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state" 2759:"Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production" 2525:
Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD (November 2011).
584:
which are required to recognise and silence transposons, but this relationship is not well understood.
2416:
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (March 2007).
1324:"Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans" 4628: 4611: 4019: 3757: 3677: 3057: 2980: 2871: 2429: 2372: 2151: 2000: 1945: 1683: 1380: 1206: 569:(endo-siRNA) may have comparable and even redundant functionality in transposon control in mammalian 420:
piRNA from Mili and Miwi2 proteins isolated from mouse testes. The proposed function of Ping-Pong in
72: 2626:
Sato K, Iwasaki YW, Shibuya A, Carninci P, Tsuchizawa Y, Ishizu H, Siomi MC, Siomi H (August 2015).
4623: 4606: 4464: 4347: 4162: 4111: 3879:
Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ (April 2007).
1837:"Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing" 592:
In Dipterans viral-derived piRNAs derived from positive-sense RNA viruses were first identified in
403: 216: 211: 146: 3427:"Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability" 4517: 4512: 4387: 4192: 4187: 3881:"MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline" 3781: 3701: 3499: 3393: 2949: 2455: 2341: 2224: 2175: 2124: 1969: 1509: 1466: 1404: 1353: 1232: 1000:
Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE (January 2007).
930: 737: 397: 396:
contain adenine at their tenth position, and this has been interpreted as possible evidence of a
2255:"A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice" 4601: 4563: 4556: 4507: 4459: 4197: 4106: 3982: 3947: 3902: 3867: 3824: 3773: 3736: 3693: 3646: 3597: 3548: 3491: 3456: 3385: 3344: 3281: 3216: 3150: 3085: 3008: 2941: 2897: 2837: 2788: 2739: 2690: 2649: 2628:"Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline" 2608: 2577:
Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, Patel DJ, Aravin AA (August 2015).
2556: 2504: 2447: 2398: 2333: 2309:"Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila" 2284: 2216: 2167: 2116: 2067: 2026: 1961: 1917: 1866: 1817: 1761: 1709: 1645: 1561: 1501: 1458: 1396: 1345: 1282: 1224: 1172: 1121: 1077: 1023: 982: 922: 884: 832: 577: 83: 383:, for instance, does have piRNAs, but does not appear to use the ping pong mechanism at all. 187:
More than 50,000 unique piRNA sequences have been discovered in mice and more than 13,000 in
4427: 3972: 3937: 3927: 3892: 3857: 3849: 3836:
Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (July 2006).
3814: 3806: 3765: 3726: 3685: 3636: 3628: 3587: 3579: 3538: 3530: 3483: 3446: 3438: 3375: 3334: 3326: 3271: 3261: 3206: 3198: 3185:
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E; et al. (2017).
3140: 3130: 3075: 3065: 2998: 2988: 2933: 2887: 2879: 2827: 2819: 2778: 2770: 2729: 2721: 2680: 2639: 2598: 2590: 2546: 2538: 2494: 2486: 2437: 2388: 2380: 2323: 2274: 2266: 2206: 2159: 2106: 2098: 2057: 2016: 2008: 1953: 1907: 1897: 1856: 1848: 1807: 1799: 1751: 1743: 1699: 1691: 1635: 1627: 1591: 1551: 1543: 1493: 1448: 1440: 1388: 1335: 1272: 1214: 1162: 1152: 1111: 1067: 1057: 1013: 972: 964: 914: 874: 866: 822: 784: 2527:"Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains" 2307:
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (March 2007).
4551: 4522: 4234: 2475:"Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies" 2111: 1886:"proTRACβ€”a software for probabilistic piRNA cluster detection, visualization and analysis" 1453: 550: 510: 233: 232:
proposed that double-stranded (ds) RNA-mediated silencing is implicated in the control of
149:
motifs, due to the fact that the length of a piRNA varies between species (from 21 to 31
3761: 3681: 3061: 2984: 2875: 2433: 2418:"A slicer-mediated mechanism for repeat-associated siRNA 5β€² end formation in Drosophila" 2376: 2155: 2004: 1949: 1687: 1670:
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (November 2008).
1384: 1322:
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (December 2006).
1210: 191:. It is thought that there are many hundreds of thousands of different piRNA species in 4643: 4546: 4363: 3942: 3915: 3862: 3837: 3819: 3794: 3641: 3616: 3592: 3567: 3543: 3518: 3451: 3426: 3339: 3314: 3276: 3249: 3211: 3186: 3145: 3118: 3080: 3041: 3003: 2969:"Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs" 2968: 2892: 2859: 2832: 2807: 2783: 2758: 2734: 2709: 2603: 2578: 2551: 2526: 2499: 2474: 2393: 2360: 2279: 2254: 2021: 1988: 1912: 1885: 1861: 1836: 1812: 1787: 1756: 1731: 1704: 1671: 1640: 1615: 1556: 1531: 1072: 1045: 977: 952: 879: 854: 487: 253: 45: 3119:"Comparative genomics of small RNA regulatory pathway components in vector mosquitoes" 2211: 2194: 1219: 1194: 1167: 1140: 870: 4731: 4578: 4568: 4449: 4404: 4382: 4218: 4147: 4075: 4070: 2086: 1989:"Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes" 522: 495: 437: 358: 3705: 3397: 3187:"Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses" 2953: 2669:"RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts" 2459: 2228: 2128: 1513: 1470: 1408: 1357: 1236: 4737: 4661: 4481: 4399: 4318: 4275: 4085: 4016:– a software for probabilistic piRNA cluster detection, visualization, and analysis 3785: 3503: 2345: 2179: 1973: 934: 640: 546: 400: 287: 138: 2062: 2045: 1116: 1099: 3897: 3880: 3266: 2644: 2627: 2594: 2542: 2270: 1631: 1157: 1018: 1001: 827: 810: 4573: 3715:"Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes" 3380: 3363: 1852: 1595: 1193:
Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (July 2001).
581: 224:. The site of the mutations that made these Gypsies "dance" was thus called the 64: 4001: 3583: 3534: 2685: 2668: 2490: 2361:"Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals" 2328: 2102: 1803: 1747: 1547: 1444: 1340: 1323: 789: 772: 4633: 4342: 4337: 4332: 4239: 4213: 4013: 3632: 2937: 2883: 613: 563: 491: 362: 334: 150: 142: 134: 3202: 1100:"Identification and characterization of small RNAs involved in RNA silencing" 1062: 968: 732:
Major advances in the study of piRNA have been achieved thanks to the use of
453:
protein coordinates the Ping-Pong mechanism of Silkmoth Aub (Siwi) and Ago3.
302:
There are at least three Argonaute (Ago) subfamilies that have been found in
4497: 4270: 4244: 4126: 4116: 3689: 3135: 3070: 2993: 2774: 2725: 2442: 2417: 1695: 1672:"An epigenetic role for maternally inherited piRNAs in transposon silencing" 1392: 693: 555: 542: 538: 534: 483: 450: 387: 342: 325: 303: 291: 260:
and vertebrate piRNAs have been located in areas lacking any protein-coding
241: 173: 76: 60: 3986: 3951: 3906: 3871: 3828: 3777: 3740: 3697: 3650: 3601: 3552: 3495: 3460: 3389: 3348: 3285: 3220: 3154: 3089: 3012: 2945: 2901: 2841: 2823: 2792: 2743: 2694: 2653: 2612: 2560: 2508: 2451: 2402: 2337: 2288: 2220: 2171: 2120: 2071: 2030: 1965: 1921: 1902: 1870: 1821: 1765: 1713: 1649: 1565: 1505: 1462: 1400: 1349: 1286: 1228: 1176: 1125: 1081: 1027: 986: 926: 888: 836: 4004:– a software for finding ping-pong signatures and ping-pong cycle activity 4651: 4502: 4432: 4286: 4167: 3330: 445: 280: 221: 101:
Double-stranded RNAs capable of silencing repeat elements, then known as
87: 3853: 3810: 3769: 3731: 3714: 2384: 2163: 2012: 1957: 1141:"Genetic and functional diversification of small RNA pathways in plants" 429:
ovaries that are mutant for Ago3 and the Tudor-domain protein Kumo/Qin.
4656: 4177: 4121: 3977: 3960: 1277: 1260: 374: 366: 350: 276: 157: 52: 3487: 3040:
Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F, Saleh MC (2016).
4671: 4666: 4616: 4249: 4157: 3916:"To be or not to be a piRNA: genomic origin and processing of piRNAs" 2860:"A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis" 1497: 570: 500: 272: 207: 192: 160:
is common to piRNAs in both vertebrates and invertebrates. piRNAs in
17: 3442: 918: 329:
The ping-pong mechanism for the biogenesis of the 5β€² end of rasiRNA.
203:
In the early 1980s, it was discovered that a single mutation in the
86:
against transposon expansions and invasions. They are distinct from
3932: 3519:"A PCR-based method for detection and quantification of small RNAs" 2046:"Tiny RNA: Where do we come from? What are we? Where are we going?" 4474: 4131: 324: 261: 124: 114: 110: 91: 537:. These are active in the testes of mammals and are required for 240:
A historical example of invasion and Piwi response is known: the
530: 479: 354: 177: 125: 95: 56: 4290: 4028: 4024: 3250:"PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes" 951:
Dorner S, Eulalio A, Huntzinger E, Izaurralde E (August 2007).
608:
piRNAs can be transmitted maternally, and based on research in
415:
The piRNA Ping-Pong pathway was first proposed from studies in
4536: 4454: 4419: 4374: 4357: 4056: 2915:
Ozata DM, Gainetdinov I, Zoch A, Phillip D, Zamore PD (2019).
2195:"RISC assembly defects in the Drosophila RNAi mutant armitage" 338: 286:
At the cellular level, piRNAs have been found within both the
181: 48: 2967:
Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX; et al. (2010).
373:. One or both of these mechanisms may be acting in different 1732:"Mighty Piwis defend the germline against genome intruders" 63:
proteins. These piRNA complexes are mostly involved in the
3795:"A novel class of small RNAs in mouse spermatogenic cells" 3566:
Tang F, Hayashi K, Kaneda M, Lao K, Surani MA (May 2008).
533:
proteins that are part of a family of proteins called the
252:
piRNA clusters in genomes can now readily be detected via
129:
Proposed piRNA structure, with the 3β€² end 2β€²-O-methylation
27:
Largest class of small non-coding RNA molecules in animals
3517:
Ro S, Park C, Jin J, Sanders KM, Yan W (December 2006).
3042:"piRNA pathway is not required for antiviral defense in 2917:"PIWI-interacting RNAs: small RNAs with big functions" 117:, while rasiRNA is now considered a piRNA subspecies. 30:"piRNA" redirects here. For the software package, see 51:
molecules expressed in animal cells. piRNAs form RNA-
2757:
Han BW, Wang W, Li C, Weng Z, Zamore PD (May 2015).
4642: 4592: 4535: 4490: 4418: 4373: 4356: 4325: 4258: 4227: 4206: 4140: 4099: 4063: 4010:– a web resource on classified and clustered piRNAs 3572:
Biochemical and Biophysical Research Communications
3523:
Biochemical and Biophysical Research Communications
3568:"A sensitive multiplex assay for piRNA expression" 268:have been identified amidst protein-coding genes. 349:resulting in piRNAs with a tendency to target 5’ 3914:Le Thomas A, TΓ³th KF, Aravin AA (January 2014). 3793:Grivna ST, Beyret E, Wang Z, Lin H (July 2006). 2572: 2570: 1044:Goriaux C, ThΓ©ron E, Brasset E, Vaury C (2014). 345:piRNAs; in this mechanism, piRNA precursors are 3362:Parry R, Bishop C, De Hayr L, Asgari S (2019). 3180: 3178: 3117:Campbell CL, Black WC, Hess AM, Foy BD (2008). 2520: 2518: 1302:Journal of Bioinformatics and Sequence Analysis 635:Many factors required for the piRNA pathway in 612:, piRNAs may be involved in maternally derived 1254: 1252: 1250: 1248: 1246: 900: 898: 4302: 4040: 2302: 2300: 2298: 1261:"Biogenesis and germline functions of piRNAs" 386:A significant number of piRNAs identified in 8: 3410:: CS1 maint: multiple names: authors list ( 3298:: CS1 maint: multiple names: authors list ( 3233:: CS1 maint: multiple names: authors list ( 3167:: CS1 maint: multiple names: authors list ( 3102:: CS1 maint: multiple names: authors list ( 3025:: CS1 maint: multiple names: authors list ( 1665: 1663: 1661: 1659: 210:could specifically activate all copies of a 94:for biogenesis, at least in animals. (Plant 3615:Tosar JP, Rovira C, Cayota A (2018-01-22). 2708:Mohn F, Handler D, Brennecke J (May 2015). 1725: 1723: 1259:Klattenhoff C, Theurkauf W (January 2008). 767: 765: 763: 761: 759: 757: 98:may play a role in rasi/piRNA biogenesis.) 4370: 4309: 4295: 4287: 4047: 4033: 4025: 2248: 2246: 2244: 2242: 2240: 2238: 1525: 1523: 1426: 1424: 1422: 1420: 1418: 809:Seto AG, Kingston RE, Lau NC (June 2007). 478:The wide variation in piRNA sequences and 3976: 3941: 3931: 3896: 3861: 3818: 3730: 3640: 3591: 3542: 3450: 3379: 3338: 3275: 3265: 3210: 3144: 3134: 3079: 3069: 3002: 2992: 2891: 2831: 2782: 2733: 2684: 2643: 2602: 2550: 2498: 2441: 2392: 2327: 2278: 2210: 2110: 2061: 2020: 1911: 1901: 1884:Rosenkranz D, Zischler H (January 2012). 1860: 1811: 1781: 1779: 1777: 1775: 1755: 1703: 1639: 1555: 1530:Faehnle CR, Joshua-Tor L (October 2007). 1486:Nature Structural & Molecular Biology 1452: 1339: 1276: 1218: 1188: 1186: 1166: 1156: 1115: 1071: 1061: 1039: 1037: 1017: 976: 878: 826: 788: 3248:Miesen P, Joosten J, van Rij RP (2016). 946: 944: 562:. Further, it is thought that piRNA and 2853: 2851: 1788:"Small RNAs as guardians of the genome" 1317: 1315: 848: 846: 753: 620:Accessory proteins of the piRNA pathway 486:, piRNAs are thought to be involved in 103:repeat associated small interfering RNA 32:Partition function for Interacting RNAs 3403: 3291: 3226: 3160: 3095: 3018: 1786:Malone CD, Hannon GJ (February 2009). 1609: 1607: 1605: 1577: 1575: 1093: 1091: 804: 802: 800: 3961:"piRNAs: from biogenesis to function" 3959:Weick EM, Miska EA (September 2014). 1730:O'Donnell KA, Boeke JD (April 2007). 907:Nature Reviews Molecular Cell Biology 853:Monga I, Banerjee I (November 2019). 811:"The coming of age for Piwi proteins" 736:techniques, such as Solexa, 454, and 509:and humans, piRNAs are necessary for 271:In mammals, piRNAs are found both in 7: 1532:"Argonautes confront new small RNAs" 133:piRNAs have been identified in both 55:complexes through interactions with 1536:Current Opinion in Chemical Biology 1098:Aravin A, Tuschl T (October 2005). 576:piRNAs appear to affect particular 25: 4433:Micro 871:10.2174/1389202920666191129112705 361:of the transcript at a point ten 4712: 4711: 4153:Cis-natural antisense transcript 490:, specifically the silencing of 44:) is the largest class of small 4388:precursor, heterogenous nuclear 4081:Signal recognition particle RNA 4518:Trans-acting small interfering 4482:Enhancer RNAs 4400:Transfer 2858:Wang G, Reinke V (June 2008). 2112:11858/00-001M-0000-0012-E169-6 1454:11858/00-001M-0000-0012-E169-6 706:nuclear piRNA pathway proteins 357:proteins. This results in the 249:Piwi-interacting RNA pathway. 1: 4405:Ribosomal 4383:Messenger 2212:10.1016/S0092-8674(04)00218-1 2063:10.1016/j.tplants.2008.05.005 1220:10.1016/S0960-9822(01)00299-8 1117:10.1016/j.febslet.2005.08.009 529:(RISC). piRNAs interact with 527:RNA-induced silencing complex 494:. The majority of piRNAs are 3898:10.1016/j.devcel.2007.03.001 3267:10.1371/journal.ppat.1006017 2645:10.1016/j.molcel.2015.06.024 2595:10.1016/j.molcel.2015.07.017 2543:10.1016/j.molcel.2011.10.011 2271:10.1016/j.molcel.2008.09.003 1632:10.1016/j.molcel.2008.06.003 1158:10.1371/journal.pbio.0020104 1019:10.1016/j.devcel.2006.12.001 828:10.1016/j.molcel.2007.05.021 105:(rasiRNA), were proposed in 3381:10.1016/j.virol.2018.12.006 1853:10.1534/genetics.115.184119 1835:Kelleher ES (August 2016). 1596:10.1016/j.ydbio.2008.05.048 4759: 4584:Multicopy single-stranded 4428:Interferential 4240:Reverse transcribing virus 3584:10.1016/j.bbrc.2008.03.035 3535:10.1016/j.bbrc.2006.10.105 3313:Parry R, Asgari S (2018). 2686:10.1016/j.cell.2014.05.018 2491:10.1016/j.cell.2009.04.027 2329:10.1016/j.cell.2007.01.043 2103:10.1016/j.cell.2007.03.026 1804:10.1016/j.cell.2009.01.045 1748:10.1016/j.cell.2007.03.028 1548:10.1016/j.cbpa.2007.08.032 1445:10.1016/j.cell.2007.03.026 1341:10.1016/j.cell.2006.10.040 790:10.1016/j.cell.2006.07.012 773:"Molecular Biology Select" 734:next-generation sequencing 29: 4707: 4498:Guide 3633:10.1038/s42003-017-0001-7 2938:10.1038/s41576-018-0073-3 2884:10.1016/j.cub.2008.05.009 783:(2): 223–225. July 2006. 314:Schizosaccharomyces pombe 4460:Small nuclear 4020:piRNA cluster – database 3203:10.1128/mSphere.00144-17 3050:Proc Natl Acad Sci U S A 2973:Proc Natl Acad Sci U S A 1063:10.3389/fgene.2014.00257 969:10.1038/sj.embor.7401015 525:via the formation of an 4574:Genomic 4207:Cis-regulatory elements 4178:Repeat-associated siRNA 3842:Genes & Development 3799:Genes & Development 3719:Genes & Development 3690:10.1126/science.1130164 3136:10.1186/1471-2164-9-425 3071:10.1073/pnas.1607952113 3044:Drosophila melanogaster 2994:10.1073/pnas.0911353107 2925:Nature Reviews Genetics 2812:Genes & Development 2775:10.1126/science.aaa1264 2726:10.1126/science.aaa1039 2443:10.1126/science.1140494 2050:Trends in Plant Science 1696:10.1126/science.1165171 1393:10.1126/science.1129333 598:Drosophila melanogaster 246:Drosophila melanogaster 212:retrovirus-like element 169:Drosophila melanogaster 4677:Artificial chromosomes 4465:Small nucleolar 4091:Transfer-messenger RNA 3713:Kim VN (August 2006). 3621:Communications Biology 2824:10.1101/gad.209841.112 2044:Ruvkun G (July 2008). 1903:10.1186/1471-2105-13-5 688:piRNA pathway proteins 330: 163:Caenorhabditis elegans 153:), and the bias for a 130: 4470:Small Cajal Body RNAs 4183:Small interfering RNA 1584:Developmental Biology 1050:Frontiers in Genetics 631:Tudor domain proteins 567:small interfering RNA 328: 244:transposon invaded a 128: 73:transposable elements 4523:Subgenomic messenger 4438:Small interfering 4410:Transfer-messenger 4173:Piwi-interacting RNA 3331:10.1128/JVI.00224-18 676:Brother of Yb (BoYB) 521:piRNA has a role in 69:post-transcriptional 38:Piwi-interacting RNA 4112:Small nucleolar RNA 3854:10.1101/gad.1425706 3811:10.1101/gad.1434406 3770:10.1038/nature04917 3762:2006Natur.442..199G 3732:10.1101/gad.1456106 3682:2006Sci...313..363L 3062:2016PNAS..113E4218P 2985:2010PNAS..107.1606W 2876:2008CBio...18..861W 2434:2007Sci...315.1587G 2428:(5818): 1587–1590. 2385:10.1038/nature07415 2377:2008Natur.455.1193G 2371:(7217): 1193–1197. 2164:10.1038/nature04917 2156:2006Natur.442..199G 2013:10.1038/nature06904 2005:2008Natur.453..534T 1958:10.1038/nature04916 1950:2006Natur.442..203A 1688:2008Sci...322.1387B 1682:(5906): 1387–1392. 1385:2006Sci...313..320V 1211:2001CBio...11.1017A 679:Sister of Yb (SoYB) 147:secondary structure 4552:Chloroplast 4395:modified Messenger 4358:Ribonucleic acids 4193:Trans-acting siRNA 4188:Small temporal RNA 4163:Long noncoding RNA 3978:10.1242/dev.094037 3885:Developmental Cell 1890:BMC Bioinformatics 1278:10.1242/dev.006486 1006:Developmental Cell 604:Epigenetic effects 578:methyltransferases 331: 228:. In 2001, Aravin 131: 4725: 4724: 4602:Xeno 4564:Complementary 4537:Deoxyribonucleic 4531: 4530: 4508:Small hairpin 4284: 4283: 4198:Short hairpin RNA 4107:Small nuclear RNA 4064:Protein synthesis 3971:(18): 3458–3471. 3848:(13): 1732–1743. 3805:(13): 1709–1714. 3756:(7099): 199–202. 3725:(15): 1993–1997. 3676:(5785): 363–367. 3488:10.1242/dev.01809 2769:(6236): 817–821. 2720:(6236): 812–817. 2150:(7099): 199–202. 1999:(7194): 534–538. 1944:(7099): 203–207. 1379:(5785): 320–324. 1205:(13): 1017–1027. 1110:(26): 5830–5840. 588:Antiviral effects 580:that perform the 84:adaptive immunity 16:(Redirected from 4750: 4715: 4714: 4692:Yeast 4513:Small temporal 4443:Piwi-interacting 4371: 4367: 4348:Deoxynucleotides 4311: 4304: 4297: 4288: 4049: 4042: 4035: 4026: 3990: 3980: 3955: 3945: 3935: 3910: 3900: 3875: 3865: 3832: 3822: 3789: 3744: 3734: 3709: 3655: 3654: 3644: 3612: 3606: 3605: 3595: 3578:(4): 1190–1194. 3563: 3557: 3556: 3546: 3514: 3508: 3507: 3471: 3465: 3464: 3454: 3422: 3416: 3415: 3409: 3401: 3383: 3359: 3353: 3352: 3342: 3310: 3304: 3303: 3297: 3289: 3279: 3269: 3260:(12): e1006017. 3245: 3239: 3238: 3232: 3224: 3214: 3182: 3173: 3172: 3166: 3158: 3148: 3138: 3114: 3108: 3107: 3101: 3093: 3083: 3073: 3056:(29): E4218-27. 3037: 3031: 3030: 3024: 3016: 3006: 2996: 2964: 2958: 2957: 2921: 2912: 2906: 2905: 2895: 2855: 2846: 2845: 2835: 2803: 2797: 2796: 2786: 2754: 2748: 2747: 2737: 2705: 2699: 2698: 2688: 2679:(7): 1698–1711. 2664: 2658: 2657: 2647: 2623: 2617: 2616: 2606: 2574: 2565: 2564: 2554: 2522: 2513: 2512: 2502: 2470: 2464: 2463: 2445: 2413: 2407: 2406: 2396: 2356: 2350: 2349: 2331: 2322:(6): 1089–1103. 2313: 2304: 2293: 2292: 2282: 2250: 2233: 2232: 2214: 2190: 2184: 2183: 2139: 2133: 2132: 2114: 2082: 2076: 2075: 2065: 2041: 2035: 2034: 2024: 1984: 1978: 1977: 1932: 1926: 1925: 1915: 1905: 1881: 1875: 1874: 1864: 1847:(4): 1513–1531. 1832: 1826: 1825: 1815: 1783: 1770: 1769: 1759: 1727: 1718: 1717: 1707: 1667: 1654: 1653: 1643: 1611: 1600: 1599: 1579: 1570: 1569: 1559: 1527: 1518: 1517: 1498:10.1038/nsmb1218 1481: 1475: 1474: 1456: 1428: 1413: 1412: 1368: 1362: 1361: 1343: 1334:(6): 1193–1207. 1319: 1310: 1309: 1297: 1291: 1290: 1280: 1256: 1241: 1240: 1222: 1190: 1181: 1180: 1170: 1160: 1136: 1130: 1129: 1119: 1095: 1086: 1085: 1075: 1065: 1041: 1032: 1031: 1021: 997: 991: 990: 980: 948: 939: 938: 902: 893: 892: 882: 859:Current Genomics 850: 841: 840: 830: 806: 795: 794: 792: 769: 720:SetDB1 (Eggless) 698:Maelstrom (Mael) 654:Spindle-E (SpnE) 448: 234:retrotransposons 199:History and loci 21: 4758: 4757: 4753: 4752: 4751: 4749: 4748: 4747: 4728: 4727: 4726: 4721: 4703: 4644:Cloning vectors 4638: 4624:Locked 4588: 4538: 4527: 4486: 4414: 4361: 4360: 4352: 4321: 4315: 4285: 4280: 4254: 4235:Retrotransposon 4223: 4202: 4141:Gene regulation 4136: 4095: 4059: 4053: 3998: 3993: 3958: 3913: 3878: 3835: 3792: 3747: 3712: 3667: 3663: 3661:Further reading 3658: 3614: 3613: 3609: 3565: 3564: 3560: 3516: 3515: 3511: 3473: 3472: 3468: 3443:10.1038/ncb1872 3424: 3423: 3419: 3402: 3361: 3360: 3356: 3312: 3311: 3307: 3290: 3247: 3246: 3242: 3225: 3184: 3183: 3176: 3159: 3116: 3115: 3111: 3094: 3039: 3038: 3034: 3017: 2966: 2965: 2961: 2919: 2914: 2913: 2909: 2870:(12): 861–867. 2864:Current Biology 2857: 2856: 2849: 2805: 2804: 2800: 2756: 2755: 2751: 2707: 2706: 2702: 2666: 2665: 2661: 2625: 2624: 2620: 2576: 2575: 2568: 2524: 2523: 2516: 2472: 2471: 2467: 2415: 2414: 2410: 2358: 2357: 2353: 2311: 2306: 2305: 2296: 2252: 2251: 2236: 2192: 2191: 2187: 2141: 2140: 2136: 2084: 2083: 2079: 2043: 2042: 2038: 1986: 1985: 1981: 1934: 1933: 1929: 1883: 1882: 1878: 1834: 1833: 1829: 1785: 1784: 1773: 1729: 1728: 1721: 1669: 1668: 1657: 1613: 1612: 1603: 1581: 1580: 1573: 1529: 1528: 1521: 1483: 1482: 1478: 1430: 1429: 1416: 1370: 1369: 1365: 1321: 1320: 1313: 1299: 1298: 1294: 1258: 1257: 1244: 1199:Current Biology 1192: 1191: 1184: 1138: 1137: 1133: 1097: 1096: 1089: 1043: 1042: 1035: 999: 998: 994: 950: 949: 942: 919:10.1038/nrm3089 904: 903: 896: 852: 851: 844: 808: 807: 798: 771: 770: 755: 751: 730: 708: 690: 633: 622: 610:D. melanogaster 606: 590: 560:D. melanogaster 551:gene expression 545:development in 519: 511:spermatogenesis 476: 463: 444: 413: 393:D. melanogaster 323: 300: 258:D. melanogaster 256:methods. While 201: 189:D. melanogaster 141:, and although 123: 121:Characteristics 35: 28: 23: 22: 15: 12: 11: 5: 4756: 4754: 4746: 4745: 4743:Non-coding RNA 4740: 4730: 4729: 4723: 4722: 4720: 4719: 4708: 4705: 4704: 4702: 4701: 4700: 4699: 4694: 4689: 4684: 4674: 4669: 4664: 4659: 4654: 4648: 4646: 4640: 4639: 4637: 4636: 4631: 4629:Peptide 4626: 4621: 4620: 4619: 4614: 4609: 4607:Glycol 4598: 4596: 4590: 4589: 4587: 4586: 4581: 4576: 4571: 4566: 4561: 4560: 4559: 4554: 4543: 4541: 4533: 4532: 4529: 4528: 4526: 4525: 4520: 4515: 4510: 4505: 4500: 4494: 4492: 4488: 4487: 4485: 4484: 4479: 4478: 4477: 4472: 4467: 4462: 4452: 4447: 4446: 4445: 4440: 4435: 4424: 4422: 4416: 4415: 4413: 4412: 4407: 4402: 4397: 4392: 4391: 4390: 4379: 4377: 4368: 4354: 4353: 4351: 4350: 4345: 4340: 4335: 4329: 4327: 4323: 4322: 4319:nucleic acids 4316: 4314: 4313: 4306: 4299: 4291: 4282: 4281: 4279: 4278: 4273: 4268: 4266:Telomerase RNA 4262: 4260: 4256: 4255: 4253: 4252: 4247: 4242: 4237: 4231: 4229: 4225: 4224: 4222: 4221: 4216: 4210: 4208: 4204: 4203: 4201: 4200: 4195: 4190: 4185: 4180: 4175: 4170: 4165: 4160: 4155: 4150: 4144: 4142: 4138: 4137: 4135: 4134: 4129: 4124: 4119: 4114: 4109: 4103: 4101: 4100:RNA processing 4097: 4096: 4094: 4093: 4088: 4083: 4078: 4073: 4067: 4065: 4061: 4060: 4054: 4052: 4051: 4044: 4037: 4029: 4023: 4022: 4017: 4011: 4005: 3997: 3996:External links 3994: 3992: 3991: 3956: 3933:10.1186/gb4154 3920:Genome Biology 3911: 3891:(4): 503–514. 3876: 3833: 3790: 3745: 3710: 3664: 3662: 3659: 3657: 3656: 3607: 3558: 3529:(3): 756–763. 3509: 3482:(9): 2167–77. 3466: 3431:Nat. Cell Biol 3417: 3354: 3305: 3240: 3174: 3109: 3032: 2979:(4): 1606–11. 2959: 2907: 2847: 2818:(4): 390–399. 2798: 2749: 2700: 2659: 2638:(4): 553–563. 2632:Molecular Cell 2618: 2589:(4): 564–575. 2583:Molecular Cell 2566: 2537:(4): 572–584. 2531:Molecular Cell 2514: 2485:(3): 509–521. 2465: 2408: 2351: 2294: 2265:(6): 785–799. 2259:Molecular Cell 2234: 2205:(6): 831–841. 2185: 2134: 2077: 2056:(7): 313–316. 2036: 1979: 1927: 1876: 1827: 1798:(4): 656–668. 1771: 1719: 1655: 1620:Molecular Cell 1601: 1571: 1542:(5): 569–577. 1519: 1492:(4): 347–348. 1476: 1414: 1363: 1311: 1292: 1242: 1182: 1131: 1087: 1033: 992: 963:(8): 723–729. 940: 913:(4): 246–258. 894: 865:(7): 508–518. 842: 821:(5): 603–609. 815:Molecular Cell 796: 752: 750: 747: 729: 726: 725: 724: 721: 718: 715: 712: 707: 701: 700: 699: 696: 689: 682: 681: 680: 677: 674: 667: 664: 663:Vreteno (Vret) 661: 658: 655: 652: 649: 632: 626: 621: 618: 605: 602: 589: 586: 518: 515: 503:, and in both 488:gene silencing 475: 472: 462: 459: 412: 409: 322: 319: 299: 298:Classification 296: 254:bioinformatics 226:flamenco locus 220:in the female 200: 197: 122: 119: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4755: 4744: 4741: 4739: 4736: 4735: 4733: 4718: 4710: 4709: 4706: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4679: 4678: 4675: 4673: 4670: 4668: 4665: 4663: 4660: 4658: 4655: 4653: 4650: 4649: 4647: 4645: 4641: 4635: 4632: 4630: 4627: 4625: 4622: 4618: 4615: 4613: 4612:Threose 4610: 4608: 4605: 4604: 4603: 4600: 4599: 4597: 4595: 4591: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4569:Deoxyribozyme 4567: 4565: 4562: 4558: 4557:Mitochondrial 4555: 4553: 4550: 4549: 4548: 4545: 4544: 4542: 4540: 4534: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4495: 4493: 4489: 4483: 4480: 4476: 4473: 4471: 4468: 4466: 4463: 4461: 4458: 4457: 4456: 4453: 4451: 4448: 4444: 4441: 4439: 4436: 4434: 4431: 4430: 4429: 4426: 4425: 4423: 4421: 4417: 4411: 4408: 4406: 4403: 4401: 4398: 4396: 4393: 4389: 4386: 4385: 4384: 4381: 4380: 4378: 4376: 4375:Translational 4372: 4369: 4365: 4359: 4355: 4349: 4346: 4344: 4341: 4339: 4336: 4334: 4331: 4330: 4328: 4324: 4320: 4312: 4307: 4305: 4300: 4298: 4293: 4292: 4289: 4277: 4274: 4272: 4269: 4267: 4264: 4263: 4261: 4257: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4232: 4230: 4226: 4220: 4219:SECIS element 4217: 4215: 4212: 4211: 4209: 4205: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4148:Antisense RNA 4146: 4145: 4143: 4139: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4113: 4110: 4108: 4105: 4104: 4102: 4098: 4092: 4089: 4087: 4084: 4082: 4079: 4077: 4076:Ribosomal RNA 4074: 4072: 4071:Messenger RNA 4069: 4068: 4066: 4062: 4058: 4050: 4045: 4043: 4038: 4036: 4031: 4030: 4027: 4021: 4018: 4015: 4012: 4009: 4006: 4003: 4000: 3999: 3995: 3988: 3984: 3979: 3974: 3970: 3966: 3962: 3957: 3953: 3949: 3944: 3939: 3934: 3929: 3925: 3921: 3917: 3912: 3908: 3904: 3899: 3894: 3890: 3886: 3882: 3877: 3873: 3869: 3864: 3859: 3855: 3851: 3847: 3843: 3839: 3834: 3830: 3826: 3821: 3816: 3812: 3808: 3804: 3800: 3796: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3746: 3742: 3738: 3733: 3728: 3724: 3720: 3716: 3711: 3707: 3703: 3699: 3695: 3691: 3687: 3683: 3679: 3675: 3671: 3666: 3665: 3660: 3652: 3648: 3643: 3638: 3634: 3630: 3626: 3622: 3618: 3611: 3608: 3603: 3599: 3594: 3589: 3585: 3581: 3577: 3573: 3569: 3562: 3559: 3554: 3550: 3545: 3540: 3536: 3532: 3528: 3524: 3520: 3513: 3510: 3505: 3501: 3497: 3493: 3489: 3485: 3481: 3477: 3470: 3467: 3462: 3458: 3453: 3448: 3444: 3440: 3436: 3432: 3428: 3421: 3418: 3413: 3407: 3399: 3395: 3391: 3387: 3382: 3377: 3373: 3369: 3365: 3358: 3355: 3350: 3346: 3341: 3336: 3332: 3328: 3324: 3320: 3316: 3309: 3306: 3301: 3295: 3287: 3283: 3278: 3273: 3268: 3263: 3259: 3255: 3251: 3244: 3241: 3236: 3230: 3222: 3218: 3213: 3208: 3204: 3200: 3196: 3192: 3188: 3181: 3179: 3175: 3170: 3164: 3156: 3152: 3147: 3142: 3137: 3132: 3128: 3124: 3120: 3113: 3110: 3105: 3099: 3091: 3087: 3082: 3077: 3072: 3067: 3063: 3059: 3055: 3051: 3047: 3045: 3036: 3033: 3028: 3022: 3014: 3010: 3005: 3000: 2995: 2990: 2986: 2982: 2978: 2974: 2970: 2963: 2960: 2955: 2951: 2947: 2943: 2939: 2935: 2932:(2): 89–108. 2931: 2927: 2926: 2918: 2911: 2908: 2903: 2899: 2894: 2889: 2885: 2881: 2877: 2873: 2869: 2865: 2861: 2854: 2852: 2848: 2843: 2839: 2834: 2829: 2825: 2821: 2817: 2813: 2809: 2802: 2799: 2794: 2790: 2785: 2780: 2776: 2772: 2768: 2764: 2760: 2753: 2750: 2745: 2741: 2736: 2731: 2727: 2723: 2719: 2715: 2711: 2704: 2701: 2696: 2692: 2687: 2682: 2678: 2674: 2670: 2663: 2660: 2655: 2651: 2646: 2641: 2637: 2633: 2629: 2622: 2619: 2614: 2610: 2605: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2571: 2567: 2562: 2558: 2553: 2548: 2544: 2540: 2536: 2532: 2528: 2521: 2519: 2515: 2510: 2506: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2469: 2466: 2461: 2457: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2423: 2419: 2412: 2409: 2404: 2400: 2395: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2355: 2352: 2347: 2343: 2339: 2335: 2330: 2325: 2321: 2317: 2310: 2303: 2301: 2299: 2295: 2290: 2286: 2281: 2276: 2272: 2268: 2264: 2260: 2256: 2249: 2247: 2245: 2243: 2241: 2239: 2235: 2230: 2226: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2189: 2186: 2181: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2138: 2135: 2130: 2126: 2122: 2118: 2113: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2078: 2073: 2069: 2064: 2059: 2055: 2051: 2047: 2040: 2037: 2032: 2028: 2023: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1983: 1980: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1931: 1928: 1923: 1919: 1914: 1909: 1904: 1899: 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1814: 1809: 1805: 1801: 1797: 1793: 1789: 1782: 1780: 1778: 1776: 1772: 1767: 1763: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1726: 1724: 1720: 1715: 1711: 1706: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1664: 1662: 1660: 1656: 1651: 1647: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1608: 1606: 1602: 1597: 1593: 1589: 1585: 1578: 1576: 1572: 1567: 1563: 1558: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1524: 1520: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1480: 1477: 1472: 1468: 1464: 1460: 1455: 1450: 1446: 1442: 1438: 1434: 1427: 1425: 1423: 1421: 1419: 1415: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1367: 1364: 1359: 1355: 1351: 1347: 1342: 1337: 1333: 1329: 1325: 1318: 1316: 1312: 1308:(2): 031–040. 1307: 1303: 1296: 1293: 1288: 1284: 1279: 1274: 1270: 1266: 1262: 1255: 1253: 1251: 1249: 1247: 1243: 1238: 1234: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1187: 1183: 1178: 1174: 1169: 1164: 1159: 1154: 1150: 1146: 1142: 1135: 1132: 1127: 1123: 1118: 1113: 1109: 1105: 1101: 1094: 1092: 1088: 1083: 1079: 1074: 1069: 1064: 1059: 1055: 1051: 1047: 1040: 1038: 1034: 1029: 1025: 1020: 1015: 1011: 1007: 1003: 996: 993: 988: 984: 979: 974: 970: 966: 962: 958: 954: 947: 945: 941: 936: 932: 928: 924: 920: 916: 912: 908: 901: 899: 895: 890: 886: 881: 876: 872: 868: 864: 860: 856: 849: 847: 843: 838: 834: 829: 824: 820: 816: 812: 805: 803: 801: 797: 791: 786: 782: 778: 774: 768: 766: 764: 762: 760: 758: 754: 748: 746: 744: 739: 735: 728:Investigation 727: 722: 719: 716: 713: 710: 709: 705: 702: 697: 695: 692: 691: 687: 683: 678: 675: 672: 668: 665: 662: 659: 656: 653: 650: 647: 646: 645: 642: 641:Tudor domains 638: 630: 627: 625: 619: 617: 615: 611: 603: 601: 599: 595: 587: 585: 583: 579: 574: 572: 568: 565: 561: 557: 552: 548: 547:invertebrates 544: 540: 536: 532: 528: 524: 523:RNA silencing 517:RNA silencing 516: 514: 512: 508: 507: 502: 497: 493: 489: 485: 481: 473: 471: 468: 461:piRNA Phasing 460: 458: 454: 452: 447: 442: 439: 438:Tudor protein 435: 430: 428: 423: 418: 410: 408: 405: 402: 399: 395: 394: 389: 384: 382: 381: 376: 372: 371:transcription 368: 364: 360: 356: 352: 348: 344: 340: 336: 327: 320: 318: 316: 315: 309: 305: 297: 295: 293: 289: 284: 282: 278: 274: 269: 267: 263: 259: 255: 250: 247: 243: 238: 235: 231: 227: 223: 219: 218: 213: 209: 206: 198: 196: 194: 190: 185: 183: 179: 175: 171: 170: 165: 164: 159: 156: 152: 148: 144: 140: 139:invertebrates 136: 127: 120: 118: 116: 112: 108: 104: 99: 97: 93: 89: 85: 80: 78: 74: 71:silencing of 70: 66: 62: 58: 54: 50: 47: 43: 39: 33: 19: 4687:Bacterial 4662:Lambda phage 4442: 4326:Constituents 4276:List of RNAs 4172: 4086:Transfer RNA 3968: 3964: 3923: 3919: 3888: 3884: 3845: 3841: 3802: 3798: 3753: 3749: 3722: 3718: 3673: 3669: 3624: 3620: 3610: 3575: 3571: 3561: 3526: 3522: 3512: 3479: 3475: 3469: 3437:(5): 652–8. 3434: 3430: 3420: 3406:cite journal 3371: 3367: 3357: 3322: 3318: 3308: 3294:cite journal 3257: 3253: 3243: 3229:cite journal 3194: 3190: 3163:cite journal 3126: 3123:BMC Genomics 3122: 3112: 3098:cite journal 3053: 3049: 3043: 3035: 3021:cite journal 2976: 2972: 2962: 2929: 2923: 2910: 2867: 2863: 2815: 2811: 2801: 2766: 2762: 2752: 2717: 2713: 2703: 2676: 2672: 2662: 2635: 2631: 2621: 2586: 2582: 2534: 2530: 2482: 2478: 2468: 2425: 2421: 2411: 2368: 2364: 2354: 2319: 2315: 2262: 2258: 2202: 2198: 2188: 2147: 2143: 2137: 2097:(1): 69–82. 2094: 2090: 2080: 2053: 2049: 2039: 1996: 1992: 1982: 1941: 1937: 1930: 1893: 1889: 1879: 1844: 1840: 1830: 1795: 1791: 1742:(1): 37–44. 1739: 1735: 1679: 1675: 1626:(1): 79–90. 1623: 1619: 1587: 1583: 1539: 1535: 1489: 1485: 1479: 1439:(1): 69–82. 1436: 1432: 1376: 1372: 1366: 1331: 1327: 1305: 1301: 1295: 1268: 1264: 1202: 1198: 1148: 1145:PLOS Biology 1144: 1134: 1107: 1104:FEBS Letters 1103: 1053: 1049: 1012:(1): 45–55. 1009: 1005: 995: 960: 957:EMBO Reports 956: 910: 906: 862: 858: 818: 814: 780: 776: 731: 711:Rhino (HP1D) 703: 685: 670: 636: 634: 628: 623: 609: 607: 597: 593: 591: 582:methylations 575: 559: 520: 504: 477: 466: 464: 455: 440: 433: 431: 426: 421: 416: 414: 401:biosynthetic 391: 385: 378: 332: 312: 307: 301: 285: 270: 265: 264:, piRNAs in 257: 251: 245: 239: 229: 225: 215: 202: 188: 186: 167: 161: 132: 106: 102: 100: 81: 41: 37: 36: 4682:P1-derived 4450:Antisense 4343:Nucleotides 4338:Nucleosides 4333:Nucleobases 4002:PingPongPro 3965:Development 3476:Development 3254:PLOS Pathog 1265:Development 1151:(5): E104. 660:Tejas (Tej) 648:Tudor (Tud) 492:transposons 363:nucleotides 347:transcribed 151:nucleotides 135:vertebrates 59:-subfamily 4732:Categories 4634:Morpholino 4547:Organellar 4455:Processual 4420:Regulatory 4364:non-coding 4214:Riboswitch 4158:CRISPR RNA 4008:piRNA Bank 3926:(1): 204. 3374:: 89–100. 1590:(2): 479. 1271:(1): 3–9. 749:References 704:Drosophila 686:Drosophila 684:Non-Tudor 637:Drosophila 629:Drosophila 614:epigenetic 594:Drosophila 564:endogenous 535:Argonautes 506:C. elegans 484:small RNAs 467:Drosophila 427:Drosophila 422:Drosophila 417:Drosophila 380:C. elegans 335:biogenesis 321:Biogenesis 308:Drosophila 304:eukaryotes 266:C. elegans 143:biogenesis 107:Drosophila 65:epigenetic 46:non-coding 4594:Analogues 4579:Hachimoji 4362:(coding, 4317:Types of 4271:Vault RNA 4245:RNA virus 4228:Parasites 4127:RNase MRP 4117:Guide RNA 4055:Types of 556:fertility 543:stem-cell 539:germ-cell 496:antisense 411:Ping Pong 404:mechanism 398:conserved 388:zebrafish 343:pachytene 292:cytoplasm 281:germlines 242:P-element 205:fruit fly 174:zebrafish 77:germ line 61:Argonaute 4717:Category 4652:Phagemid 4503:Ribozyme 4168:MicroRNA 3987:25183868 3952:24467990 3907:17395546 3872:16766679 3829:16766680 3778:16751776 3741:16882976 3706:21150160 3698:16778019 3651:30271890 3627:(1): 2. 3602:18348866 3553:17084816 3496:15800004 3461:19377467 3398:58572380 3390:30583288 3368:Virology 3349:29950416 3286:28033427 3221:28497119 3155:18801182 3090:27357659 3013:20080648 2954:53565676 2946:30446728 2902:18501605 2842:23392610 2793:25977554 2744:25977553 2695:24910301 2654:26212455 2613:26295961 2561:22099305 2509:19395009 2460:11513777 2452:17322028 2403:18830242 2338:17346786 2289:18922463 2229:17588448 2221:15035985 2172:16751776 2129:13373509 2121:17418787 2087:Moens CB 2072:18562240 2031:18404147 1966:16751777 1922:22233380 1896:(5): 5. 1871:27516614 1841:Genetics 1822:19239887 1766:17418784 1714:19039138 1650:18571451 1566:17928262 1514:31193964 1506:17384647 1471:13373509 1463:17418787 1409:40471466 1401:16809489 1358:16838469 1350:17174894 1287:18032451 1237:14767819 1229:11470406 1177:15024409 1126:16153643 1082:25136352 1028:17199040 987:17599087 927:21427766 889:32655289 837:17560367 738:Illumina 723:SuVar3–9 714:Deadlock 651:Qin/Kumo 639:contain 474:Function 359:cleavage 351:uridines 222:germline 88:microRNA 4657:Plasmid 4122:RNase P 4014:proTRAC 3943:4053809 3863:1522070 3820:1522066 3786:3185036 3758:Bibcode 3678:Bibcode 3670:Science 3642:6052916 3593:3855189 3544:1934510 3504:6810484 3452:2746449 3340:6096813 3319:J Virol 3277:5198996 3212:5415634 3191:mSphere 3146:2566310 3129:: 425. 3081:4961201 3058:Bibcode 3004:2824396 2981:Bibcode 2893:2494713 2872:Bibcode 2833:3589556 2784:4545291 2763:Science 2735:4988486 2714:Science 2604:4545750 2552:3236501 2500:2768572 2430:Bibcode 2422:Science 2394:3837422 2373:Bibcode 2346:2246942 2280:2730041 2180:3185036 2152:Bibcode 2022:2981145 2001:Bibcode 1974:4379895 1946:Bibcode 1913:3293768 1862:4981261 1813:2792755 1757:4122227 1705:2805124 1684:Bibcode 1676:Science 1641:3353317 1557:2077831 1381:Bibcode 1373:Science 1207:Bibcode 1073:4120762 1056:: 257. 978:1978081 935:5710813 880:7327968 671:fs(1)Yb 657:Krimper 571:oocytes 441:krimper 375:species 367:adenine 288:nucleus 277:ovaries 214:called 193:mammals 158:uridine 79:cells. 53:protein 4672:Fosmid 4667:Cosmid 4617:Hexose 4539:acids 4491:Others 4250:Viroid 3985:  3950:  3940:  3905:  3870:  3860:  3827:  3817:  3784:  3776:  3750:Nature 3739:  3704:  3696:  3649:  3639:  3600:  3590:  3551:  3541:  3502:  3494:  3459:  3449:  3396:  3388:  3347:  3337:  3325:(17). 3284:  3274:  3219:  3209:  3153:  3143:  3088:  3078:  3011:  3001:  2952:  2944:  2900:  2890:  2840:  2830:  2791:  2781:  2742:  2732:  2693:  2652:  2611:  2601:  2559:  2549:  2507:  2497:  2458:  2450:  2401:  2391:  2365:Nature 2344:  2336:  2287:  2277:  2227:  2219:  2178:  2170:  2144:Nature 2127:  2119:  2070:  2029:  2019:  1993:Nature 1972:  1964:  1938:Nature 1920:  1910:  1869:  1859:  1820:  1810:  1764:  1754:  1712:  1702:  1648:  1638:  1564:  1554:  1512:  1504:  1469:  1461:  1407:  1399:  1356:  1348:  1285:  1235:  1227:  1175:  1168:350667 1165:  1124:  1080:  1070:  1026:  985:  975:  933:  925:  887:  877:  835:  717:Cutoff 501:embryo 446:A1ZAC4 273:testes 230:et al. 208:genome 180:, and 4697:Human 4475:Y RNA 4259:Other 4132:Y RNA 3782:S2CID 3702:S2CID 3500:S2CID 3394:S2CID 3197:(3). 2950:S2CID 2920:(PDF) 2456:S2CID 2342:S2CID 2312:(PDF) 2225:S2CID 2176:S2CID 2125:S2CID 1970:S2CID 1510:S2CID 1467:S2CID 1405:S2CID 1354:S2CID 1233:S2CID 931:S2CID 262:genes 217:Gypsy 115:siRNA 111:miRNA 92:Dicer 42:piRNA 18:PiRNA 3983:PMID 3948:PMID 3903:PMID 3868:PMID 3825:PMID 3774:PMID 3737:PMID 3694:PMID 3647:PMID 3598:PMID 3549:PMID 3492:PMID 3457:PMID 3412:link 3386:PMID 3345:PMID 3300:link 3282:PMID 3235:link 3217:PMID 3169:link 3151:PMID 3104:link 3086:PMID 3027:link 3009:PMID 2942:PMID 2898:PMID 2838:PMID 2789:PMID 2740:PMID 2691:PMID 2673:Cell 2650:PMID 2609:PMID 2557:PMID 2505:PMID 2479:Cell 2448:PMID 2399:PMID 2334:PMID 2316:Cell 2285:PMID 2217:PMID 2199:Cell 2168:PMID 2117:PMID 2091:Cell 2068:PMID 2027:PMID 1962:PMID 1918:PMID 1867:PMID 1818:PMID 1792:Cell 1762:PMID 1736:Cell 1710:PMID 1646:PMID 1562:PMID 1502:PMID 1459:PMID 1433:Cell 1397:PMID 1346:PMID 1328:Cell 1283:PMID 1225:PMID 1173:PMID 1122:PMID 1078:PMID 1024:PMID 983:PMID 923:PMID 885:PMID 833:PMID 777:Cell 694:Vasa 669:Yb ( 666:Papi 541:and 531:piwi 480:piwi 465:The 451:Vasa 390:and 355:piwi 333:The 290:and 275:and 182:rats 178:mice 137:and 113:and 96:Dcl2 67:and 57:piwi 4738:RNA 4057:RNA 3973:doi 3969:141 3938:PMC 3928:doi 3893:doi 3858:PMC 3850:doi 3815:PMC 3807:doi 3766:doi 3754:442 3727:doi 3686:doi 3674:313 3637:PMC 3629:doi 3588:PMC 3580:doi 3576:369 3539:PMC 3531:doi 3527:351 3484:doi 3480:132 3447:PMC 3439:doi 3376:doi 3372:528 3335:PMC 3327:doi 3272:PMC 3262:doi 3207:PMC 3199:doi 3141:PMC 3131:doi 3076:PMC 3066:doi 3054:113 2999:PMC 2989:doi 2977:107 2934:doi 2888:PMC 2880:doi 2828:PMC 2820:doi 2779:PMC 2771:doi 2767:348 2730:PMC 2722:doi 2718:348 2681:doi 2677:157 2640:doi 2599:PMC 2591:doi 2547:PMC 2539:doi 2495:PMC 2487:doi 2483:137 2438:doi 2426:315 2389:PMC 2381:doi 2369:455 2324:doi 2320:128 2275:PMC 2267:doi 2207:doi 2203:116 2160:doi 2148:442 2107:hdl 2099:doi 2095:129 2058:doi 2017:PMC 2009:doi 1997:453 1954:doi 1942:442 1908:PMC 1898:doi 1857:PMC 1849:doi 1845:203 1808:PMC 1800:doi 1796:136 1752:PMC 1744:doi 1740:129 1700:PMC 1692:doi 1680:322 1636:PMC 1628:doi 1592:doi 1588:319 1552:PMC 1544:doi 1494:doi 1449:hdl 1441:doi 1437:129 1389:doi 1377:313 1336:doi 1332:127 1273:doi 1269:135 1215:doi 1163:PMC 1153:doi 1112:doi 1108:579 1068:PMC 1058:doi 1014:doi 973:PMC 965:doi 915:doi 875:PMC 867:doi 823:doi 785:doi 781:126 743:PCR 558:in 434:Qin 339:DNA 49:RNA 4734:: 3981:. 3967:. 3963:. 3946:. 3936:. 3924:15 3922:. 3918:. 3901:. 3889:12 3887:. 3883:. 3866:. 3856:. 3846:20 3844:. 3840:. 3823:. 3813:. 3803:20 3801:. 3797:. 3780:. 3772:. 3764:. 3752:. 3735:. 3723:20 3721:. 3717:. 3700:. 3692:. 3684:. 3672:. 3645:. 3635:. 3623:. 3619:. 3596:. 3586:. 3574:. 3570:. 3547:. 3537:. 3525:. 3521:. 3498:. 3490:. 3478:. 3455:. 3445:. 3435:11 3433:. 3429:. 3408:}} 3404:{{ 3392:. 3384:. 3370:. 3366:. 3343:. 3333:. 3323:92 3321:. 3317:. 3296:}} 3292:{{ 3280:. 3270:. 3258:12 3256:. 3252:. 3231:}} 3227:{{ 3215:. 3205:. 3193:. 3189:. 3177:^ 3165:}} 3161:{{ 3149:. 3139:. 3125:. 3121:. 3100:}} 3096:{{ 3084:. 3074:. 3064:. 3052:. 3048:. 3023:}} 3019:{{ 3007:. 2997:. 2987:. 2975:. 2971:. 2948:. 2940:. 2930:20 2928:. 2922:. 2896:. 2886:. 2878:. 2868:18 2866:. 2862:. 2850:^ 2836:. 2826:. 2816:27 2814:. 2810:. 2787:. 2777:. 2765:. 2761:. 2738:. 2728:. 2716:. 2712:. 2689:. 2675:. 2671:. 2648:. 2636:59 2634:. 2630:. 2607:. 2597:. 2587:59 2585:. 2581:. 2569:^ 2555:. 2545:. 2535:44 2533:. 2529:. 2517:^ 2503:. 2493:. 2481:. 2477:. 2454:. 2446:. 2436:. 2424:. 2420:. 2397:. 2387:. 2379:. 2367:. 2363:. 2340:. 2332:. 2318:. 2314:. 2297:^ 2283:. 2273:. 2263:31 2261:. 2257:. 2237:^ 2223:. 2215:. 2201:. 2197:. 2174:. 2166:. 2158:. 2146:. 2123:. 2115:. 2105:. 2093:. 2066:. 2054:13 2052:. 2048:. 2025:. 2015:. 2007:. 1995:. 1991:. 1968:. 1960:. 1952:. 1940:. 1916:. 1906:. 1894:13 1892:. 1888:. 1865:. 1855:. 1843:. 1839:. 1816:. 1806:. 1794:. 1790:. 1774:^ 1760:. 1750:. 1738:. 1734:. 1722:^ 1708:. 1698:. 1690:. 1678:. 1674:. 1658:^ 1644:. 1634:. 1624:31 1622:. 1618:. 1604:^ 1586:. 1574:^ 1560:. 1550:. 1540:11 1538:. 1534:. 1522:^ 1508:. 1500:. 1490:14 1488:. 1465:. 1457:. 1447:. 1435:. 1417:^ 1403:. 1395:. 1387:. 1375:. 1352:. 1344:. 1330:. 1326:. 1314:^ 1304:. 1281:. 1267:. 1263:. 1245:^ 1231:. 1223:. 1213:. 1203:11 1201:. 1197:. 1185:^ 1171:. 1161:. 1147:. 1143:. 1120:. 1106:. 1102:. 1090:^ 1076:. 1066:. 1052:. 1048:. 1036:^ 1022:. 1010:12 1008:. 1004:. 981:. 971:. 959:. 955:. 943:^ 929:. 921:. 911:12 909:. 897:^ 883:. 873:. 863:20 861:. 857:. 845:^ 831:. 819:26 817:. 813:. 799:^ 779:. 775:. 756:^ 573:. 513:. 377:; 283:. 195:. 176:, 172:, 155:5’ 4366:) 4310:e 4303:t 4296:v 4048:e 4041:t 4034:v 3989:. 3975:: 3954:. 3930:: 3909:. 3895:: 3874:. 3852:: 3831:. 3809:: 3788:. 3768:: 3760:: 3743:. 3729:: 3708:. 3688:: 3680:: 3653:. 3631:: 3625:1 3604:. 3582:: 3555:. 3533:: 3506:. 3486:: 3463:. 3441:: 3414:) 3400:. 3378:: 3351:. 3329:: 3302:) 3288:. 3264:: 3237:) 3223:. 3201:: 3195:2 3171:) 3157:. 3133:: 3127:9 3106:) 3092:. 3068:: 3060:: 3046:" 3029:) 3015:. 2991:: 2983:: 2956:. 2936:: 2904:. 2882:: 2874:: 2844:. 2822:: 2795:. 2773:: 2746:. 2724:: 2697:. 2683:: 2656:. 2642:: 2615:. 2593:: 2563:. 2541:: 2511:. 2489:: 2462:. 2440:: 2432:: 2405:. 2383:: 2375:: 2348:. 2326:: 2291:. 2269:: 2231:. 2209:: 2182:. 2162:: 2154:: 2131:. 2109:: 2101:: 2074:. 2060:: 2033:. 2011:: 2003:: 1976:. 1956:: 1948:: 1924:. 1900:: 1873:. 1851:: 1824:. 1802:: 1768:. 1746:: 1716:. 1694:: 1686:: 1652:. 1630:: 1598:. 1594:: 1568:. 1546:: 1516:. 1496:: 1473:. 1451:: 1443:: 1411:. 1391:: 1383:: 1360:. 1338:: 1306:1 1289:. 1275:: 1239:. 1217:: 1209:: 1179:. 1155:: 1149:2 1128:. 1114:: 1084:. 1060:: 1054:5 1030:. 1016:: 989:. 967:: 961:8 937:. 917:: 891:. 869:: 839:. 825:: 793:. 787:: 673:) 443:( 40:( 34:. 20:)

Index

PiRNA
Partition function for Interacting RNAs
non-coding
RNA
protein
piwi
Argonaute
epigenetic
post-transcriptional
transposable elements
germ line
adaptive immunity
microRNA
Dicer
Dcl2
miRNA
siRNA

vertebrates
invertebrates
biogenesis
secondary structure
nucleotides
5’
uridine
Caenorhabditis elegans
Drosophila melanogaster
zebrafish
mice
rats

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑