Knowledge (XXG)

Plasmonic nanolithography

Source πŸ“

64: 182: 130: 1167: 187: 186: 183: 188: 185: 246:
and other plasmonic nanostructures such as nanogaps have been used as masks for lithography; etching in this case can be achieved through either through photomasking principles or enhanced local heating in the vicinity of the nanostructure due to the LSP resonances. Lin et al. also used localized
226:
grating through silver superlens photolithography at 380 nm, while Shi et al. simulated a 20 nm lithography resolution at 193 nm wavelength with an aluminum superlens. Srituravanich et al. has developed a mechanically adjustable, hovering plasmonic lens for maskless near-field nanolithography,
242:(LSP) enhancements from embedded plasmonic scanning probes to expose the photoresist. Wang et al. experimentally demonstrated 100 nm field confinement with this method. Kim et al. has developed a ~50 nm resolution scanning probe with a patterning speed of ~10 mm/s. 153:
is exposed to SPPs that propagate from the mask. Photomasks with holes enable grating coupling of SPPs; the fields only propagate for nanometers. Srituravanich et al. has demonstrated the lithographic process experimentally with a 2D
184: 158:
hole array mask; 90 nm hole arrays were produced at 365 nm wavelength, which is beyond diffraction limit. Zayats and Smolyaninov utilized a multi-layered metal film mask to enhance the subwavelength
178:. Despite offering high resolution and throughput, plasmonic contact lithography is regarded as an expensive and complex method; contamination due to contact is also a limiting factor. 109:
shorter than the free-space wavelength of the inbound light, additionally ensuring subwavelength field confinement. Nevertheless, the excitation of SPPs necessitate momentum mismatch;
927:
Fedoruk, Michael; Meixner, Marco; Carretero-Palacios, Sol; LohmΓΌller, Theobald (2013). "Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles".
589: 1001:
Lin, Linhan; Li, Jingang Li; Li, Wei; Yogeesh, Maruthi N.; et al. (2018). "Optothermoplasmonic Nanolithography for On-Demand Patterning of 2D Materials".
752:
Heltzel, Alex; Theppakuttai, Senthil; Chen, S.C.; Howell, John R. (6 December 2007). "Surface plasmon-based nanopatterning assisted by gold nanospheres".
654:
Srituravanich, Werayut; Pan, Liang; Wang, Yuan; Sun, Cheng (12 October 2008). "Flying plasmonic lens in the near field for high-speed nanolithography".
1113: 1061: 900: 263:
effects of LSP resonances were also used as a catalyst in lithographic processes: Saito et al. demonstrated selective etching of silver nanocubes on
174:
were also suggested as alternative apertures. A version of the method, named as surface plasmon interference nanolithography by Liu et al., uses SPP
1268: 1216: 367: 218:. Many superlens designs, such as Pendry's thin silver film or Fang et al.'s superlens, benefit from plasmonic excitations to focus 789:
Wang, Yuan; Srituravanich, Werayut; Sun, Cheng; Zhang, Xiang (2008). "Plasmonic nearfield scanning probe with high transmission".
1032: 898:
Ueno, Kosei; Takabatake, Satoaki; Nishijima, Yoshiaki; et al. (2010). "Nanogap-Assisted Surface Plasmon Nanolithography".
1030:
Tan, Che; Qin, Chu; Sadtler, Bryce; Sadtler, Bryce (2017). "Light-directed growth of metal and semiconductor nanostructures".
268: 1106: 1003: 208: 1156: 235: 63: 44: 1141: 280: 248: 239: 196: 118: 102: 72: 36: 1059:
Saito, Koichiro; Tanabe, Ichiro; Tatsuma, Tetsu (2016). "Site-Selective Plasmonic Etching of Silver Nanocubes".
1099: 754: 227:
whereas another maskless approach by Pan et al. uses a "multi-stage plasmonic lens" for progressive coupling.
1181: 1151: 1146: 554: 552:
Chaturvedi1, Pratik; Wu, Wei; Logeeswaran, VJ; et al. (25 January 2010). "A smooth optical superlens".
385: 327:
Xie, Zhihua; Yu, Weixing; Wang, Taisheng; et al. (31 May 2011). "Plasmonic nanolithography: a review".
285: 383:
Shao, D. B.; Chen, S. C. (2005). "Surface-plasmon-assisted nanoscale photolithography by polarized light".
1221: 808: 295: 290: 222:
of incoming light beyond the diffraction limit. Chaturvedi et al. has demonstrated the imaging of a 30 nm
656: 583: 505: 1196: 859: 800: 665: 618: 563: 460: 423: 412:
Srituravanich, Werayut; Fang, Nicholas; Sun, Cheng; et al. (2004). "Plasmonic nanolithography".
256: 231: 78: 813: 1273: 1226: 1186: 966: 142: 114: 1201: 705: 449:
Liu, Zhao-Wei; Wei, Qi-Huo; Zhang, Xiang (2005). "Surface plasmon interference nanolithography".
90: 48: 117:
coupling methods are common. For plasmonic nanolithography processes, this is achieved through
43:
that propagate in between planar dielectric-metal layers in the optical regime, can bypass the
1191: 1078: 983: 946: 877: 826: 771: 734: 681: 636: 534: 499:
Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr., Kimani C. (2016).
476: 363: 175: 167: 1211: 1136: 1070: 1041: 1012: 975: 938: 909: 867: 818: 763: 724: 714: 673: 626: 571: 524: 514: 468: 431: 394: 336: 264: 192: 98: 52: 28: 1247: 1122: 32: 767: 863: 804: 669: 622: 567: 464: 427: 1242: 850: 729: 700: 609: 529: 500: 260: 243: 219: 204: 110: 1262: 171: 40: 791: 451: 414: 82: 501:"Towards do-it-yourself planar optical components using plasmon-assisted etching" 1074: 215: 150: 149:, on which the SPPs are excited. Similar to common photolithographic processes, 129: 964:
Wang, Shuangshuang; Ding, Tao (2019). "Plasmon-assisted nanojet lithography".
340: 106: 101:
that decay perpendicularly to the interface where the propagation occurs. The
699:
Pan, Liang; Park, Yongshik; Xiong, Yi; Ulin-Avila, Erick (29 November 2011).
211: 163: 146: 134: 1082: 1016: 987: 950: 881: 830: 775: 738: 685: 677: 640: 538: 480: 1166: 195:
via plasmon-assisted etching. In this scheme, etching is achieved through
929: 872: 845: 631: 604: 359: 259:
monolayers in a process termed as "optothermoplasmonic nanolithography."
252: 223: 159: 519: 354:
Maradudin, Alexei A.; Sambles, J. Roy; Barnes, William L., eds. (2014).
145:, a modification on the evanescent near-field lithography, uses a metal 1045: 979: 94: 942: 913: 822: 719: 575: 472: 435: 398: 155: 86: 1091: 180: 846:"Plasmonic nano lithography with a high scan speed contact probe" 1095: 605:"193nm superlens imaging structure for 20nm lithography node" 844:
Kim, Yongwoo; Kim, Seok; Jung, Howon; et al. (2009).
81:
that propagate in between two surfaces with sign-changing
39:(SPPs) to fabricate nanoscale structures. SPPs, which are 247:
thermal excitations in gold nanoparticles to fabricate
67:
Schematic representation of a surface plasmon polariton
701:"Maskless plasmonic lithography at 22 nm resolution" 1235: 1174: 1129: 603:Shi, Zhong; Kochergin, Vladimir; Wang, Fei (2009). 322: 320: 318: 316: 314: 312: 310: 893: 891: 494: 492: 490: 1107: 8: 588:: CS1 maint: numeric names: authors list ( 51:that acts as a bottleneck for conventional 1114: 1100: 1092: 234:form of photolithography that is based on 1062:The Journal of Physical Chemistry Letters 901:The Journal of Physical Chemistry Letters 871: 812: 728: 718: 630: 528: 518: 203:Planar lens imaging nanolithography uses 128: 62: 306: 77:Surface plasmon polaritons are surface 581: 162:; such structures can be realized by 7: 85:. They originate from coupling of 14: 269:plasmon-induced charge separation 1165: 1033:Journal of Materials Chemistry C 199:resonances in gold nanoantennas. 214:, which were first proposed by 1269:Lithography (microfabrication) 768:10.1088/0957-4484/19/02/025305 230:Plasmonic direct writing is a 1: 1004:Advanced Functional Materials 103:dispersion relation for SPPs 1075:10.1021/acs.jpclett.6b02393 267:substrates by the means of 1290: 249:two-dimensional structures 236:scanning probe lithography 105:permits the excitation of 70: 37:surface plasmon polaritons 25:plasmonic photolithography 1163: 341:10.1007/s11468-011-9237-0 281:Electron-beam lithography 240:localized surface plasmon 73:Surface plasmon polariton 17:Plasmonic nanolithography 1182:Molecular self-assembly 555:Applied Physics Letters 386:Applied Physics Letters 286:Nanoimprint lithography 1017:10.1002/adfm.201803990 678:10.1038/nnano.2008.303 296:Plasmonic metamaterial 291:Nanosphere lithography 200: 138: 68: 31:process that utilizes 657:Nature Nanotechnology 506:Nature Communications 191: 176:interference patterns 133:A general scheme for 132: 79:electromagnetic waves 66: 21:plasmonic lithography 873:10.1364/OE.17.019476 632:10.1364/OE.17.011309 257:molybdenum disulfide 164:thin film deposition 35:excitations such as 864:2009OExpr..1719476K 858:(22): 19476–19485. 805:2008NanoL...8.3041W 670:2008NatNa...3..733S 623:2009OExpr..1711309S 568:2010ApPhL..96d3102C 520:10.1038/ncomms10468 465:2005NanoL...5..957L 428:2004NanoL...4.1085S 143:contact lithography 91:plasma oscillations 1202:Magnetolithography 1046:10.1039/C7TC00379J 980:10.1039/C8NR08834A 706:Scientific Reports 617:(3): 11309–11314. 251:such as patterned 244:Gold nanoparticles 238:; the method uses 220:Fourier components 201: 139: 121:and perforations. 69: 49:optical resolution 1256: 1255: 1069:(21): 4363–4368. 1040:(23): 5628–5642. 974:(19): 9593–9597. 943:10.1021/nn402124p 914:10.1021/jz9002923 823:10.1021/nl8023824 720:10.1038/srep00175 576:10.1063/1.3293448 473:10.1021/nl0506094 436:10.1021/nl049573q 399:10.1063/1.1951052 356:Modern Plasmonics 189: 119:surface roughness 99:evanescent fields 97:. SPPs result in 45:diffraction limit 1281: 1169: 1116: 1109: 1102: 1093: 1087: 1086: 1056: 1050: 1049: 1027: 1021: 1020: 998: 992: 991: 961: 955: 954: 937:(9): 7648–7653. 924: 918: 917: 895: 886: 885: 875: 841: 835: 834: 816: 799:(9): 3041–3045. 786: 780: 779: 749: 743: 742: 732: 722: 696: 690: 689: 651: 645: 644: 634: 600: 594: 593: 587: 579: 549: 543: 542: 532: 522: 496: 485: 484: 446: 440: 439: 422:(6): 1085–1088. 409: 403: 402: 380: 374: 373: 362:. p. 1–23. 351: 345: 344: 324: 265:titanium dioxide 205:plasmonic lenses 193:Optical trapping 190: 168:Bowtie apertures 53:photolithography 29:nanolithographic 1289: 1288: 1284: 1283: 1282: 1280: 1279: 1278: 1259: 1258: 1257: 1252: 1248:Nanoelectronics 1231: 1170: 1161: 1125: 1123:Nanolithography 1120: 1090: 1058: 1057: 1053: 1029: 1028: 1024: 1011:(41): 1870299. 1000: 999: 995: 963: 962: 958: 926: 925: 921: 897: 896: 889: 843: 842: 838: 814:10.1.1.862.5284 788: 787: 783: 751: 750: 746: 698: 697: 693: 664:(12): 733–737. 653: 652: 648: 602: 601: 597: 580: 551: 550: 546: 498: 497: 488: 448: 447: 443: 411: 410: 406: 382: 381: 377: 370: 353: 352: 348: 326: 325: 308: 304: 277: 181: 127: 93:, quantized as 75: 61: 33:surface plasmon 19:(also known as 12: 11: 5: 1287: 1285: 1277: 1276: 1271: 1261: 1260: 1254: 1253: 1251: 1250: 1245: 1243:Nanotechnology 1239: 1237: 1233: 1232: 1230: 1229: 1224: 1219: 1217:Laser printing 1214: 1209: 1204: 1199: 1194: 1189: 1184: 1178: 1176: 1172: 1171: 1164: 1162: 1160: 1159: 1157:Scanning probe 1154: 1149: 1144: 1139: 1133: 1131: 1127: 1126: 1121: 1119: 1118: 1111: 1104: 1096: 1089: 1088: 1051: 1022: 993: 956: 919: 908:(3): 657–662. 887: 851:Optics Express 836: 781: 755:Nanotechnology 744: 691: 646: 610:Optics Express 595: 544: 486: 459:(5): 957–961. 441: 404: 393:(25): 253107. 375: 368: 346: 335:(3): 565–580. 305: 303: 300: 299: 298: 293: 288: 283: 276: 273: 209:negative-index 126: 123: 83:permittivities 71:Main article: 60: 57: 13: 10: 9: 6: 4: 3: 2: 1286: 1275: 1272: 1270: 1267: 1266: 1264: 1249: 1246: 1244: 1241: 1240: 1238: 1234: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1183: 1180: 1179: 1177: 1173: 1168: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1142:Electron beam 1140: 1138: 1135: 1134: 1132: 1128: 1124: 1117: 1112: 1110: 1105: 1103: 1098: 1097: 1094: 1084: 1080: 1076: 1072: 1068: 1064: 1063: 1055: 1052: 1047: 1043: 1039: 1035: 1034: 1026: 1023: 1018: 1014: 1010: 1006: 1005: 997: 994: 989: 985: 981: 977: 973: 969: 968: 960: 957: 952: 948: 944: 940: 936: 932: 931: 923: 920: 915: 911: 907: 903: 902: 894: 892: 888: 883: 879: 874: 869: 865: 861: 857: 853: 852: 847: 840: 837: 832: 828: 824: 820: 815: 810: 806: 802: 798: 794: 793: 785: 782: 777: 773: 769: 765: 762:(2): 025305. 761: 757: 756: 748: 745: 740: 736: 731: 726: 721: 716: 712: 708: 707: 702: 695: 692: 687: 683: 679: 675: 671: 667: 663: 659: 658: 650: 647: 642: 638: 633: 628: 624: 620: 616: 612: 611: 606: 599: 596: 591: 585: 577: 573: 569: 565: 562:(4): 043102. 561: 557: 556: 548: 545: 540: 536: 531: 526: 521: 516: 512: 508: 507: 502: 495: 493: 491: 487: 482: 478: 474: 470: 466: 462: 458: 454: 453: 445: 442: 437: 433: 429: 425: 421: 417: 416: 408: 405: 400: 396: 392: 388: 387: 379: 376: 371: 369:9780444595263 365: 361: 358:. Amsterdam: 357: 350: 347: 342: 338: 334: 330: 323: 321: 319: 317: 315: 313: 311: 307: 301: 297: 294: 292: 289: 287: 284: 282: 279: 278: 274: 272: 270: 266: 262: 261:Photochemical 258: 254: 250: 245: 241: 237: 233: 228: 225: 221: 217: 213: 210: 206: 198: 194: 179: 177: 173: 169: 165: 161: 157: 152: 148: 144: 136: 131: 124: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 74: 65: 58: 56: 54: 50: 46: 42: 41:surface waves 38: 34: 30: 26: 22: 18: 1206: 1066: 1060: 1054: 1037: 1031: 1025: 1008: 1002: 996: 971: 965: 959: 934: 928: 922: 905: 899: 855: 849: 839: 796: 792:Nano Letters 790: 784: 759: 753: 747: 713:(175): 175. 710: 704: 694: 661: 655: 649: 614: 608: 598: 584:cite journal 559: 553: 547: 513:(7): 10468. 510: 504: 456: 452:Nano Letters 450: 444: 419: 415:Nano Letters 413: 407: 390: 384: 378: 355: 349: 332: 328: 229: 202: 140: 76: 24: 20: 16: 15: 1227:Proton beam 1152:Multiphoton 1147:Nanoimprint 216:John Pendry 212:superlenses 151:photoresist 137:lithography 107:wavelengths 1274:Plasmonics 1263:Categories 1222:Nanosphere 329:Plasmonics 302:References 141:Plasmonic 1207:Plasmonic 967:Nanoscale 809:CiteSeerX 166:methods. 147:photomask 135:photomask 1236:See also 1197:Ion beam 1083:27767323 988:31063168 951:23941522 930:ACS Nano 882:19997168 831:18720976 776:21817542 739:22355690 686:19057593 641:19582044 539:26814026 481:15884902 360:Elsevier 275:See also 253:graphene 232:maskless 224:chromium 172:nanogaps 160:aperture 95:plasmons 1187:Stencil 1137:Optical 860:Bibcode 801:Bibcode 730:3240963 666:Bibcode 619:Bibcode 564:Bibcode 530:4737853 461:Bibcode 424:Bibcode 125:Methods 115:grating 87:photons 47:on the 27:) is a 1081:  986:  949:  880:  829:  811:  774:  737:  727:  684:  639:  537:  527:  479:  366:  156:silver 59:Theory 1192:X-ray 1175:Other 111:prism 1212:Soft 1130:Main 1079:PMID 984:PMID 947:PMID 878:PMID 827:PMID 772:PMID 735:PMID 682:PMID 637:PMID 590:link 535:PMID 477:PMID 364:ISBN 255:and 170:and 113:and 1071:doi 1042:doi 1013:doi 976:doi 939:doi 910:doi 868:doi 819:doi 764:doi 725:PMC 715:doi 674:doi 627:doi 572:doi 525:PMC 515:doi 469:doi 432:doi 395:doi 337:doi 207:or 197:LSP 89:to 23:or 1265:: 1077:. 1065:. 1036:. 1009:28 1007:. 982:. 972:11 970:. 945:. 933:. 904:. 890:^ 876:. 866:. 856:17 854:. 848:. 825:. 817:. 807:. 795:. 770:. 760:19 758:. 733:. 723:. 709:. 703:. 680:. 672:. 660:. 635:. 625:. 615:17 613:. 607:. 586:}} 582:{{ 570:. 560:96 558:. 533:. 523:. 509:. 503:. 489:^ 475:. 467:. 455:. 430:. 418:. 391:86 389:. 331:. 309:^ 271:. 55:. 1115:e 1108:t 1101:v 1085:. 1073:: 1067:7 1048:. 1044:: 1038:5 1019:. 1015:: 990:. 978:: 953:. 941:: 935:7 916:. 912:: 906:1 884:. 870:: 862:: 833:. 821:: 803:: 797:8 778:. 766:: 741:. 717:: 711:1 688:. 676:: 668:: 662:3 643:. 629:: 621:: 592:) 578:. 574:: 566:: 541:. 517:: 511:7 483:. 471:: 463:: 457:5 438:. 434:: 426:: 420:4 401:. 397:: 372:. 343:. 339:: 333:6

Index

nanolithographic
surface plasmon
surface plasmon polaritons
surface waves
diffraction limit
optical resolution
photolithography

Surface plasmon polariton
electromagnetic waves
permittivities
photons
plasma oscillations
plasmons
evanescent fields
dispersion relation for SPPs
wavelengths
prism
grating
surface roughness

photomask
contact lithography
photomask
photoresist
silver
aperture
thin film deposition
Bowtie apertures
nanogaps

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑