Knowledge (XXG)

Nanolithography

Source 📝

588:) which in turn is used to generate micro patterns and microstructures. The techniques described below are limited to one stage. The consequent patterning on the same surfaces is difficult due to misalignment problems. The soft lithography isn't suitable for production of semiconductor-based devices as it's not complementary for metal deposition and etching. The methods are commonly used for chemical patterning. 258: 25: 1462: 392:
Optical Lithography (or photolithography) is one of the most important and prevalent sets of techniques in the nanolithography field. Optical lithography contains several important derivative techniques, all that use very short light wavelengths in order to change the solubility of certain molecules,
353:
Since then, photolithography has become the most commercially successful technique, capable of producing sub-100 nm patterns. There are several techniques associated with the field, each designed to serve its many uses in the medical and semiconductor industries. Breakthroughs in this field
433:
Quantum optical lithography (QOL), is a diffraction-unlimited method able to write at 1 nm resolution by optical means, using a red laser diode (λ = 650 nm). Complex patterns like geometrical figures and letters were obtained at 3 nm resolution on resist substrate. The method was applied to
643:(NIL), and its variants, such as Step-and-Flash Imprint Lithography and laser assisted directed imprint (LADI) are promising nanopattern replication technologies where patterns are created by mechanical deformation of imprint resists, typically monomer or polymer formations that are 345:
techniques have been around since the late 18th century, none were applied to nanoscale structures until the mid-1950s. With evolution of the semiconductor industry, demand for techniques capable of producing micro- and nano-scale structures skyrocketed.
354:
contribute significantly to the advancement of nanotechnology, and are increasingly important today as demand for smaller and smaller computer chips increases. Further areas of research deal with physical limitations of the field, energy harvesting, and
489:
have as a goal an increase of throughput for semiconductor mass-production. EBL can be utilized for selective protein nanopatterning on a solid substrate, aimed for ultrasensitive sensing. Resists for EBL can be hardened using
545:
This technique uses a focused beam of high energy (MeV) protons to pattern resist material at nanodimensions and has been shown to be capable of producing high-resolution patterning well below the 100 nm mark.
562:
or broad beam of energetic lightweight ions (like He) for transferring pattern to a surface. Using Ion Beam Proximity Lithography (IBL) nano-scale features can be transferred on non-planar surfaces.
1111:
Parikh, D.; Craver, B.; Nounu, H.N.; Fong, F.O.; Wolfe, J.C. (2008). "Nanoscale pattern definition on nonplanar surfaces using ion beam proximity lithography and conformal plasma-deposited resist".
1372: 1046:
Soh, Hyongsok T.; Guarini, Kathryn Wilder; Quate, Calvin F. (2001), Soh, Hyongsok T.; Guarini, Kathryn Wilder; Quate, Calvin F. (eds.), "Introduction to Scanning Probe Lithography",
366:
From Greek, the word nanolithography can be broken up into three parts: "nano" meaning dwarf, "lith" meaning stone, and "graphy" meaning to write, or "tiny writing onto stone."
886:
Pavel, E; Jinga, S; Vasile, B S; Dinescu, A; Marinescu, V; Trusca, R; Tosa, N (2014). "Quantum Optical Lithography from 1 nm resolution to pattern transfer on silicon wafer".
425:(NGL) technique due to its ability to produce structures accurately down below 30 nanometers at high throughput rates which makes it a viable option for commercial purposes. 337:
The NL has evolved from the need to increase the number of sub-micrometer features (e.g. transistors, capacitors etc.) in an integrated circuit in order to keep up with
473:
of the resist and subsequent selective removal of material by immersion in a solvent, sub-10 nm resolutions have been achieved. This form of direct-write,
515:, either by etching away unwanted material, or by directly-writing new material onto a substrate. Some of the important techniques in this category include 1408: 1113: 317:
The modern term reflects on a design of structures built in range of 10 to 10 meters, i.e. nanometer scale. Essentially, the field is a derivative of
286: 1563: 857: 1297:
Wolfe, J.C.; Craver, B.P. (2008). "Neutral particle lithography: a simple solution to charge-related artefacts in ion beam proximity printing".
1511: 804: 681:
define the spatial distribution and shape of the applied magnetic field. The second component is ferromagnetic nanoparticles (analog to the
212: 1145: 398: 524: 393:
causing them to wash away in solution, leaving behind a desired structure. Several optical lithography techniques require the use of
1063: 491: 108: 381: 207: 42: 528: 418: 1143:
Bardea, A.; Yoffe, A. (2017). "Magneto–Lithography, a Simple and Inexpensive Method for High Throughput, Surface Patterning".
89: 520: 46: 703:
which deposits a narrow track of chemical from a reservoir onto the substrate according to the movement pattern programmed.
61: 725:) as evaporation masks. This method has been used to fabricate arrays of gold nanodots with precisely controlled spacings. 1401: 279: 187: 751:
excitations to generate beyond-diffraction limit patterns, benefiting from subwavelength field confinement properties of
406: 68: 733:
Neutral particle lithography (NPL) uses a broad beam of energetic neutral particle for pattern transfer on a surface.
619: 422: 144: 1451: 921:
Pavel, E; Prodan, G; Marinescu, V; Trusca, R (2019). "Recent advances in 3- to 10-nm quantum optical lithography".
508: 503: 35: 1501: 1436: 752: 742: 718: 512: 486: 462: 448: 75: 1394: 772:
is a resist-less and parallel method of fabricating nanometer scale patterns using nanometer-size apertures as
272: 858:"ASML: Press – Press Releases – ASML reaches agreement for delivery of minimum of 15 EUV lithography systems" 1476: 1446: 1441: 1324:
Xie, Zhihua; Yu, Weixing; Wang, Taisheng; et al. (31 May 2011). "Plasmonic nanolithography: a review".
640: 635: 516: 466: 410: 57: 1516: 712: 380:
As of 2021 photolithography is the most heavily used technique in mass production of microelectronics and
453:
Electron beam lithography (EBL) or electron-beam direct-write lithography (EBDW) scans a focused beam of
964:
Pavel, E; Marinescu, V; Lungulescu, M (2019). "Graphene nanopatterning by Quantum Optical Lithography".
608: 511:(SPL) is another set of techniques for patterning at the nanometer-scale down to individual atoms using 394: 999:
Shafagh, Reza; Vastesson, Alexander; Guo, Weijin; van der Wijngaart, Wouter; Haraldsson, Tommy (2018).
677:
on the substrate using paramagnetic metal masks call "magnetic mask". Magnetic mask which is analog to
865: 1491: 1263: 1201: 1154: 930: 895: 581: 555: 482: 474: 149: 1521: 1481: 769: 764: 652: 540: 384:. It is characterized by both high production throughput and small-sized features of the patterns. 1496: 1341: 1279: 1170: 1028: 981: 946: 694: 668: 644: 350:
was applied to these structures for the first time in 1958 beginning the age of nanolithography.
262: 1486: 1229: 1059: 1020: 810: 800: 414: 685:) that are assembled onto the substrate according to the field induced by the magnetic mask. 310:
dealing with the engineering (patterning e.g. etching, depositing, writing, printing etc) of
82: 1506: 1431: 1333: 1306: 1271: 1219: 1209: 1162: 1122: 1091: 1051: 1012: 973: 938: 934: 903: 571: 559: 402: 375: 347: 326: 322: 202: 321:, only covering very small structures. All NL methods can be categorized into four groups: 1542: 1367: 1000: 748: 129: 1248: 828: 1310: 1267: 1205: 1158: 899: 1537: 1378: 1224: 1189: 674: 338: 307: 197: 154: 1096: 1079: 1557: 1362: 1345: 985: 950: 659:. Nanoimprint lithography is capable of producing patterns at sub-10 nm levels. 240: 235: 172: 1283: 1174: 1032: 907: 700: 656: 1188:
Loh, O.Y.; Ho, A.M.; Rim, J.E.; Kohli, P.; Patankar, N.A.; Espinosa, H.D. (2008).
1001:"E-Beam Nanostructuring and Direct Click Biofunctionalization of Thiol–Ene Resist" 1247:
Hatzor-de Picciotto, A.; Wissner-Gross, A.D.; Lavallee, G.; Weiss, P.S. (2007).
1055: 977: 722: 682: 648: 458: 342: 318: 24: 1166: 257: 1337: 1275: 1126: 942: 597: 470: 230: 192: 814: 1214: 1190:"Electric field-induced direct delivery of proteins by a nanofountain probe" 1016: 678: 585: 577: 478: 355: 311: 1233: 1024: 554:
This set of techniques include ion- and electron-projection lithographies.
1461: 794: 477:
has high resolution and low throughput, limiting single-column e-beams to
454: 177: 773: 699:
A nanofountain probe is a micro-fluidic device similar in concept to a
531:. Dip-pen nanolithography is the most widely used of these techniques. 1382: 1249:"Arrays of Cu(2+)-complexed organic clusters grown on gold nano dots" 421:(EUVL). This last technique is considered to be the most important 1386: 1390: 584:. Elastomers are used to make a stamp, mold, or mask (akin to 18: 651:
light during imprinting. This technique can be combined with
409:(OPC). Some of the included techniques in this set include 1050:, Microsystems, vol. 7, Springer US, pp. 1–22, 580:
materials made from different chemical compounds such as
457:
on a surface covered with an electron-sensitive film or
16:
Used to create structures that only measure nanometers
796:
Advances in imaging and electron physics. Volume 164
1530: 1469: 1424: 49:. Unsourced material may be challenged and removed. 1194:Proceedings of the National Academy of Sciences 673:Magnetolithography (ML) is based on applying a 1402: 280: 8: 417:, light coupling nanolithography (LCM), and 1409: 1395: 1387: 852: 850: 848: 829:"Jay W. Lathrop | Computer History Museum" 434:nanopattern graphene at 20 nm resolution. 306:) is a growing field of techniques within 287: 273: 120: 1223: 1213: 1114:Journal of Microelectromechanical Systems 1095: 469:) to draw custom shapes. By changing the 109:Learn how and when to remove this message 1371:) is being considered for deletion. See 314:-scale structures on various materials. 785: 249: 221: 163: 135: 128: 481:fabrication, low-volume production of 1138: 1136: 7: 329:and other miscellaneous techniques. 213:List of semiconductor scale examples 47:adding citations to reliable sources 1256:Journal of Experimental Nanoscience 1146:IEEE Transactions on Nanotechnology 399:resolution enhancement technologies 525:thermal scanning probe lithography 14: 1375:to help reach a consensus. › 492:sequential infiltration synthesis 487:Multiple-electron beam approaches 1460: 485:, and research and development. 256: 208:Semiconductor device fabrication 23: 908:10.1016/j.optlastec.2014.01.016 529:local oxidation nanolithography 419:extreme ultraviolet lithography 124:Part of a series of articles on 34:needs additional citations for 1564:Lithography (microfabrication) 721:of spheres (typically made of 521:thermochemical nanolithography 1: 1311:10.1088/0022-3727/41/2/024007 1097:10.1016/S1369-7021(07)70129-3 923:J. Micro/Nanolith. MEMS MOEMS 799:. Amsterdam: Academic Press. 729:Neutral particle lithography 717:Nanosphere lithography uses 550:Charged-particle lithography 407:optical proximity correction 1056:10.1007/978-1-4757-3331-0_1 978:10.1016/j.ijleo.2019.163532 747:Plasmonic lithography uses 620:Multilayer soft lithography 614:Multilayer soft lithography 429:Quantum optical lithography 423:next generation lithography 164:Solid-state nanoelectronics 145:Molecular scale electronics 136:Single-molecule electronics 1580: 1167:10.1109/TNANO.2017.2672925 1048:Scanning Probe Lithography 762: 753:surface plasmon polaritons 740: 710: 692: 666: 633: 617: 606: 595: 569: 538: 509:Scanning probe lithography 504:Scanning probe lithography 501: 498:Scanning probe lithography 446: 373: 1458: 1338:10.1007/s11468-011-9237-0 1276:10.1080/17458080600925807 1127:10.1109/JMEMS.2008.921730 1078:Watt, Frank (June 2007). 943:10.1117/1.JMM.18.2.020501 793:Hawkes, Peter W. (2010). 743:Plasmonic nanolithography 719:self-assembled monolayers 449:Electron beam lithography 443:Electron-beam lithography 1373:templates for discussion 625:Miscellaneous techniques 325:, scanning lithography, 1477:Molecular self-assembly 1215:10.1073/pnas.0806651105 1017:10.1021/acsnano.8b03709 935:2019JMM&M..18b0501P 833:www.computerhistory.org 641:Nanoimprint lithography 636:Nanoimprint lithography 630:Nanoimprint lithography 517:dip-pen nanolithography 411:multiphoton lithography 1299:J. Phys. D: Appl. Phys 713:Nanosphere lithography 707:Nanosphere lithography 576:Soft lithography uses 263:Electronics portal 1080:"Proton Beam Writing" 737:Plasmonic lithography 609:Microcontact printing 603:Microcontact printing 483:semiconductor devices 382:semiconductor devices 689:Nanofountain drawing 582:polydimethylsiloxane 556:Ion beam lithography 475:maskless lithography 438:Scanning lithography 150:Molecular logic gate 43:improve this article 1268:2007JENan...2....3P 1206:2008PNAS..10516438L 1159:2017ITNan..16..439B 900:2014OptLT..60...80P 770:Stencil lithography 765:Stencil lithography 759:Stencil lithography 541:Proton beam writing 535:Proton beam writing 388:Optical lithography 1497:Magnetolithography 695:Nanofountain probe 669:Magnetolithography 663:Magnetolithography 222:Related approaches 1551: 1550: 1011:(10): 9940–9946. 888:Opt Laser Technol 806:978-0-12-381313-8 415:X-Ray lithography 403:phase-shift masks 323:photo lithography 297: 296: 119: 118: 111: 93: 58:"Nanolithography" 1571: 1464: 1411: 1404: 1397: 1388: 1350: 1349: 1321: 1315: 1314: 1294: 1288: 1287: 1253: 1244: 1238: 1237: 1227: 1217: 1200:(43): 16438–43. 1185: 1179: 1178: 1140: 1131: 1130: 1108: 1102: 1101: 1099: 1075: 1069: 1068: 1043: 1037: 1036: 996: 990: 989: 961: 955: 954: 918: 912: 911: 883: 877: 876: 874: 873: 864:. Archived from 854: 843: 842: 840: 839: 825: 819: 818: 790: 653:contact printing 592:PDMS lithography 572:Soft lithography 566:Soft lithography 395:liquid immersion 376:Photolithography 370:Photolithography 348:Photolithography 327:soft lithography 289: 282: 275: 261: 260: 203:Multigate device 121: 114: 107: 103: 100: 94: 92: 51: 27: 19: 1579: 1578: 1574: 1573: 1572: 1570: 1569: 1568: 1554: 1553: 1552: 1547: 1543:Nanoelectronics 1526: 1465: 1456: 1420: 1418:Nanolithography 1415: 1376: 1359: 1354: 1353: 1323: 1322: 1318: 1296: 1295: 1291: 1251: 1246: 1245: 1241: 1187: 1186: 1182: 1142: 1141: 1134: 1110: 1109: 1105: 1084:Materials Today 1077: 1076: 1072: 1066: 1045: 1044: 1040: 998: 997: 993: 963: 962: 958: 920: 919: 915: 885: 884: 880: 871: 869: 856: 855: 846: 837: 835: 827: 826: 822: 807: 792: 791: 787: 782: 767: 761: 749:surface plasmon 745: 739: 731: 715: 709: 697: 691: 671: 665: 638: 632: 627: 622: 616: 611: 605: 600: 594: 574: 568: 552: 543: 537: 513:scanning probes 506: 500: 451: 445: 440: 431: 390: 378: 372: 364: 335: 300:Nanolithography 293: 255: 245: 217: 183:Nanolithography 159: 155:Molecular wires 130:Nanoelectronics 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1577: 1575: 1567: 1566: 1556: 1555: 1549: 1548: 1546: 1545: 1540: 1538:Nanotechnology 1534: 1532: 1528: 1527: 1525: 1524: 1519: 1514: 1512:Laser printing 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1473: 1471: 1467: 1466: 1459: 1457: 1455: 1454: 1452:Scanning probe 1449: 1444: 1439: 1434: 1428: 1426: 1422: 1421: 1416: 1414: 1413: 1406: 1399: 1391: 1379:Nanotechnology 1360: 1358: 1357:External links 1355: 1352: 1351: 1332:(3): 565–580. 1316: 1289: 1239: 1180: 1153:(3): 439–444. 1132: 1121:(3): 735–740. 1103: 1070: 1064: 1038: 991: 956: 913: 878: 844: 820: 805: 784: 783: 781: 778: 763:Main article: 760: 757: 741:Main article: 738: 735: 730: 727: 711:Main article: 708: 705: 693:Main article: 690: 687: 675:magnetic field 667:Main article: 664: 661: 634:Main article: 631: 628: 626: 623: 618:Main article: 615: 612: 607:Main article: 604: 601: 596:Main article: 593: 590: 570:Main article: 567: 564: 551: 548: 539:Main article: 536: 533: 502:Main article: 499: 496: 447:Main article: 444: 441: 439: 436: 430: 427: 397:and a host of 389: 386: 374:Main article: 371: 368: 363: 360: 334: 331: 308:nanotechnology 295: 294: 292: 291: 284: 277: 269: 266: 265: 252: 251: 247: 246: 244: 243: 238: 233: 227: 224: 223: 219: 218: 216: 215: 210: 205: 200: 195: 190: 185: 180: 175: 169: 166: 165: 161: 160: 158: 157: 152: 147: 141: 138: 137: 133: 132: 126: 125: 117: 116: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1576: 1565: 1562: 1561: 1559: 1544: 1541: 1539: 1536: 1535: 1533: 1529: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1474: 1472: 1468: 1463: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1437:Electron beam 1435: 1433: 1430: 1429: 1427: 1423: 1419: 1412: 1407: 1405: 1400: 1398: 1393: 1392: 1389: 1385: 1384: 1380: 1374: 1370: 1369: 1364: 1356: 1347: 1343: 1339: 1335: 1331: 1327: 1320: 1317: 1312: 1308: 1305:(2): 024007. 1304: 1300: 1293: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1250: 1243: 1240: 1235: 1231: 1226: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1184: 1181: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1147: 1139: 1137: 1133: 1128: 1124: 1120: 1116: 1115: 1107: 1104: 1098: 1093: 1089: 1085: 1081: 1074: 1071: 1067: 1065:9781475733310 1061: 1057: 1053: 1049: 1042: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 995: 992: 987: 983: 979: 975: 971: 967: 960: 957: 952: 948: 944: 940: 936: 932: 929:(2): 020501. 928: 924: 917: 914: 909: 905: 901: 897: 893: 889: 882: 879: 868:on 2015-05-18 867: 863: 859: 853: 851: 849: 845: 834: 830: 824: 821: 816: 812: 808: 802: 798: 797: 789: 786: 779: 777: 775: 771: 766: 758: 756: 754: 750: 744: 736: 734: 728: 726: 724: 720: 714: 706: 704: 702: 696: 688: 686: 684: 680: 676: 670: 662: 660: 658: 654: 650: 646: 642: 637: 629: 624: 621: 613: 610: 602: 599: 591: 589: 587: 583: 579: 573: 565: 563: 561: 557: 549: 547: 542: 534: 532: 530: 526: 522: 518: 514: 510: 505: 497: 495: 493: 488: 484: 480: 476: 472: 468: 464: 460: 456: 450: 442: 437: 435: 428: 426: 424: 420: 416: 412: 408: 404: 400: 396: 387: 385: 383: 377: 369: 367: 361: 359: 357: 351: 349: 344: 340: 332: 330: 328: 324: 320: 315: 313: 309: 305: 301: 290: 285: 283: 278: 276: 271: 270: 268: 267: 264: 259: 254: 253: 248: 242: 241:Nanomechanics 239: 237: 236:Nanophotonics 234: 232: 229: 228: 226: 225: 220: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 173:Nanocircuitry 171: 170: 168: 167: 162: 156: 153: 151: 148: 146: 143: 142: 140: 139: 134: 131: 127: 123: 122: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1417: 1377: 1366: 1329: 1325: 1319: 1302: 1298: 1292: 1259: 1255: 1242: 1197: 1193: 1183: 1150: 1144: 1118: 1112: 1106: 1090:(6): 20–29. 1087: 1083: 1073: 1047: 1041: 1008: 1004: 994: 969: 965: 959: 926: 922: 916: 891: 887: 881: 870:. Retrieved 866:the original 862:www.asml.com 861: 836:. Retrieved 832: 823: 795: 788: 774:shadow-masks 768: 746: 732: 716: 701:fountain pen 698: 672: 657:cold welding 639: 575: 553: 544: 507: 452: 432: 391: 379: 365: 352: 343:lithographic 336: 316: 303: 299: 298: 182: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1522:Proton beam 1447:Multiphoton 1442:Nanoimprint 1361:‹ The 1262:(1): 3–11. 723:polystyrene 683:Photoresist 647:by heat or 339:Moore's Law 319:lithography 198:Moore's law 99:August 2021 1517:Nanosphere 1326:Plasmonics 972:: 163532. 872:2015-05-11 838:2019-03-18 780:References 598:PDMS stamp 471:solubility 405:(PSM) and 231:Nanoionics 193:Nanosensor 69:newspapers 1502:Plasmonic 1346:119720143 986:214577433 951:164513730 894:: 80–84. 815:704352532 679:photomask 586:photomask 578:elastomer 479:photomask 455:electrons 362:Etymology 356:photonics 312:nanometer 178:Nanowires 1558:Category 1531:See also 1492:Ion beam 1363:template 1284:55435913 1234:18946047 1175:47338008 1033:52271550 1025:30212184 1005:ACS Nano 341:. While 1482:Stencil 1432:Optical 1365:below ( 1264:Bibcode 1225:2575438 1202:Bibcode 1155:Bibcode 931:Bibcode 896:Bibcode 560:focused 558:uses a 494:(SIS). 333:History 250:Portals 83:scholar 1383:Curlie 1368:Curlie 1344:  1282:  1232:  1222:  1173:  1062:  1031:  1023:  984:  949:  813:  803:  527:, and 461:(e.g. 459:resist 85:  78:  71:  64:  56:  1487:X-ray 1470:Other 1342:S2CID 1280:S2CID 1252:(PDF) 1171:S2CID 1029:S2CID 982:S2CID 966:Optik 947:S2CID 645:cured 401:like 90:JSTOR 76:books 1507:Soft 1425:Main 1230:PMID 1060:ISBN 1021:PMID 811:OCLC 801:ISBN 655:and 463:PMMA 188:NEMS 62:news 1381:at 1334:doi 1307:doi 1272:doi 1220:PMC 1210:doi 1198:105 1163:doi 1123:doi 1092:doi 1052:doi 1013:doi 974:doi 970:203 939:doi 904:doi 467:HSQ 465:or 45:by 1560:: 1340:. 1328:. 1303:41 1301:. 1278:. 1270:. 1258:. 1254:. 1228:. 1218:. 1208:. 1196:. 1192:. 1169:. 1161:. 1151:16 1149:. 1135:^ 1119:17 1117:. 1088:10 1086:. 1082:. 1058:, 1027:. 1019:. 1009:12 1007:. 1003:. 980:. 968:. 945:. 937:. 927:18 925:. 902:. 892:60 890:. 860:. 847:^ 831:. 809:. 776:. 755:. 649:UV 523:, 519:, 413:, 358:. 304:NL 1410:e 1403:t 1396:v 1348:. 1336:: 1330:6 1313:. 1309:: 1286:. 1274:: 1266:: 1260:2 1236:. 1212:: 1204:: 1177:. 1165:: 1157:: 1129:. 1125:: 1100:. 1094:: 1054:: 1035:. 1015:: 988:. 976:: 953:. 941:: 933:: 910:. 906:: 898:: 875:. 841:. 817:. 302:( 288:e 281:t 274:v 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Nanolithography"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.