Knowledge (XXG)

Plug flow

Source 📝

489: 57:
An advantage of the plug flow model is that no part of the solution of the problem can be perpetuated "upstream". This allows one to calculate the exact solution to the differential equation knowing only the initial conditions. No further iteration is required. Each "plug" can be solved
375: 249: 369: 178: 303: 39:. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no 484:{\displaystyle {1 \over {\sqrt {\mathit {f}}}}=-2.0\log _{10}\left({\frac {\epsilon /D}{3.7}}+{\frac {2.51}{{\text{Re}}{\sqrt {\mathit {f}}}}}\right),{\text{(turbulent flow)}}} 547: 119: 54:
that need to be integrated to find the reactor conversion and outlet temperatures. Other simplifications used are perfect radial mixing and a homogeneous bed structure.
736: 673: 696: 622: 591: 716: 646: 571: 512: 94:
caused by the pipe wall is so thin that it is negligible. Plug flow will be achieved if the sublayer thickness is much less than the pipe diameter (
184: 309: 814: 789: 64: 131: 255: 780:
Massey, Bernard; Ward-Smith, John (1999). "6.2 Steady laminar flow in circular pipes: The Hagen-Poiseuille law".
859: 760: 50:. Essentially no back mixing is assumed with "plugs" of fluid passing through the reactor. This results in 831: 755: 739: 515: 70:
The flow model in which the velocity profile consists of the fully developed boundary layer is known as
51: 525: 97: 721: 651: 810: 785: 678: 625: 550: 91: 47: 28: 600: 576: 36: 20: 742:
of the pipe. In this regime the pressure drop is a result of inertia-dominated turbulent
701: 631: 556: 497: 40: 46:
The plug flow model has many practical applications. One example is in the design of
853: 743: 75: 805:
Munson, Bruce R.; Young, Donald F.; Okiishi, Theodore H. (2006). "Section 8.4".
519: 71: 79: 594: 63: 244:{\displaystyle u^{*}=\left({\frac {\tau _{w}}{\rho }}\right)^{1/2}} 32: 364:{\displaystyle {\frac {\Delta P}{L}}={\frac {f\rho V^{2}}{2D}}} 459: 387: 58:
independently provided the previous plug's state is known.
746:
rather than viscosity-dominated laminar shear stress.
724: 704: 681: 654: 634: 603: 579: 559: 528: 500: 378: 312: 258: 187: 134: 100: 648:is the average velocity of the plug (in the pipe), 730: 710: 690: 667: 640: 616: 585: 565: 541: 506: 483: 363: 297: 243: 173:{\displaystyle \delta _{s}={\frac {5\nu }{u^{*}}}} 172: 113: 90:For flows in pipes, if flow is turbulent then the 298:{\displaystyle \tau _{w}={\frac {D\Delta P}{4L}}} 8: 723: 703: 680: 659: 653: 633: 608: 602: 578: 558: 533: 527: 499: 476: 458: 456: 451: 445: 428: 422: 408: 386: 384: 379: 377: 344: 331: 313: 311: 272: 263: 257: 231: 227: 212: 206: 192: 186: 162: 148: 139: 133: 105: 99: 43:adjacent to the inner wall of the pipe. 772: 628:(not an actual velocity of the fluid), 784:(7th ed.). Cheltenham: Thornes. 698:is the pressure loss down the length 7: 809:(5th ed.). Hoboken, NJ: Wiley. 16:Simple model of fluid flow in a pipe 682: 316: 278: 14: 832:"Pressure Drop Along Pipe Length" 518:(from the above equation or the 62: 807:Fundamentals of fluid mechanics 675:is the shear on the wall, and 1: 542:{\displaystyle \delta _{s}} 114:{\displaystyle \delta _{s}} 876: 78:, the velocity profile is 731:{\displaystyle \epsilon } 668:{\displaystyle \tau _{w}} 27:is a simple model of the 691:{\displaystyle \Delta P} 761:Plug flow reactor model 732: 712: 692: 669: 642: 618: 587: 573:is the pipe diameter, 567: 543: 508: 485: 365: 299: 245: 174: 115: 52:differential equations 834:. Engineers Edge, LLC 756:Hagen-Poiseuille flow 733: 713: 693: 670: 643: 619: 617:{\displaystyle u^{*}} 588: 586:{\displaystyle \rho } 568: 544: 516:Darcy friction factor 509: 486: 366: 300: 246: 175: 116: 722: 702: 679: 652: 632: 601: 577: 557: 526: 498: 376: 310: 256: 185: 132: 98: 782:Mechanics of fluids 740:relative roughness 728: 708: 688: 665: 638: 614: 583: 563: 539: 504: 481: 361: 295: 241: 170: 111: 711:{\displaystyle L} 641:{\displaystyle V} 626:friction velocity 566:{\displaystyle D} 507:{\displaystyle f} 479: 466: 463: 454: 440: 393: 391: 359: 326: 293: 221: 168: 76:laminar pipe flow 48:chemical reactors 867: 844: 843: 841: 839: 830:Engineers Edge. 827: 821: 820: 802: 796: 795: 777: 737: 735: 734: 729: 717: 715: 714: 709: 697: 695: 694: 689: 674: 672: 671: 666: 664: 663: 647: 645: 644: 639: 623: 621: 620: 615: 613: 612: 592: 590: 589: 584: 572: 570: 569: 564: 548: 546: 545: 540: 538: 537: 513: 511: 510: 505: 490: 488: 487: 482: 480: 478:(turbulent flow) 477: 472: 468: 467: 465: 464: 462: 457: 455: 452: 446: 441: 436: 432: 423: 413: 412: 394: 392: 390: 385: 380: 370: 368: 367: 362: 360: 358: 350: 349: 348: 332: 327: 322: 314: 304: 302: 301: 296: 294: 292: 284: 273: 268: 267: 250: 248: 247: 242: 240: 239: 235: 226: 222: 217: 216: 207: 197: 196: 179: 177: 176: 171: 169: 167: 166: 157: 149: 144: 143: 120: 118: 117: 112: 110: 109: 92:laminar sublayer 66: 29:velocity profile 875: 874: 870: 869: 868: 866: 865: 864: 850: 849: 848: 847: 837: 835: 829: 828: 824: 817: 804: 803: 799: 792: 779: 778: 774: 769: 752: 720: 719: 700: 699: 677: 676: 655: 650: 649: 630: 629: 604: 599: 598: 575: 574: 555: 554: 529: 524: 523: 496: 495: 450: 424: 421: 417: 404: 374: 373: 351: 340: 333: 315: 308: 307: 285: 274: 259: 254: 253: 208: 202: 201: 188: 183: 182: 158: 150: 135: 130: 129: 101: 96: 95: 88: 21:fluid mechanics 17: 12: 11: 5: 873: 871: 863: 862: 860:Fluid dynamics 852: 851: 846: 845: 822: 815: 797: 790: 771: 770: 768: 765: 764: 763: 758: 751: 748: 727: 707: 687: 684: 662: 658: 637: 611: 607: 582: 562: 536: 532: 503: 492: 491: 475: 471: 461: 449: 444: 439: 435: 431: 427: 420: 416: 411: 407: 403: 400: 397: 389: 383: 371: 357: 354: 347: 343: 339: 336: 330: 325: 321: 318: 305: 291: 288: 283: 280: 277: 271: 266: 262: 251: 238: 234: 230: 225: 220: 215: 211: 205: 200: 195: 191: 180: 165: 161: 156: 153: 147: 142: 138: 108: 104: 87: 84: 68: 67: 41:boundary layer 15: 13: 10: 9: 6: 4: 3: 2: 872: 861: 858: 857: 855: 833: 826: 823: 818: 816:9780471675822 812: 808: 801: 798: 793: 791:9780748740437 787: 783: 776: 773: 766: 762: 759: 757: 754: 753: 749: 747: 745: 741: 725: 718:of the pipe. 705: 685: 660: 656: 635: 627: 609: 605: 596: 580: 560: 552: 534: 530: 521: 517: 501: 473: 469: 447: 442: 437: 433: 429: 425: 418: 414: 409: 405: 401: 398: 395: 381: 372: 355: 352: 345: 341: 337: 334: 328: 323: 319: 306: 289: 286: 281: 275: 269: 264: 260: 252: 236: 232: 228: 223: 218: 213: 209: 203: 198: 193: 189: 181: 163: 159: 154: 151: 145: 140: 136: 128: 127: 126: 124: 106: 102: 93: 86:Determination 85: 83: 81: 77: 73: 65: 61: 60: 59: 55: 53: 49: 44: 42: 38: 35:flowing in a 34: 30: 26: 22: 836:. Retrieved 825: 806: 800: 781: 775: 744:shear stress 493: 122: 89: 69: 56: 45: 24: 18: 553:thickness, 520:Moody Chart 726:ϵ 683:Δ 657:τ 610:∗ 581:ρ 531:δ 426:ϵ 415:⁡ 399:− 338:ρ 317:Δ 279:Δ 261:τ 219:ρ 210:τ 194:∗ 164:∗ 155:ν 137:δ 103:δ 80:parabolic 72:pipe flow 25:plug flow 854:Category 838:17 April 750:See also 551:sublayer 121:<< 738:is the 624:is the 595:density 593:is the 549:is the 514:is the 813:  788:  494:where 74:. In 767:Notes 33:fluid 31:of a 840:2018 811:ISBN 786:ISBN 448:2.51 37:pipe 522:), 438:3.7 406:log 402:2.0 125:). 19:In 856:: 597:, 453:Re 410:10 82:. 23:, 842:. 819:. 794:. 706:L 686:P 661:w 636:V 606:u 561:D 535:s 502:f 474:, 470:) 460:f 443:+ 434:D 430:/ 419:( 396:= 388:f 382:1 356:D 353:2 346:2 342:V 335:f 329:= 324:L 320:P 290:L 287:4 282:P 276:D 270:= 265:w 237:2 233:/ 229:1 224:) 214:w 204:( 199:= 190:u 160:u 152:5 146:= 141:s 123:D 107:s

Index

fluid mechanics
velocity profile
fluid
pipe
boundary layer
chemical reactors
differential equations

pipe flow
laminar pipe flow
parabolic
laminar sublayer
Darcy friction factor
Moody Chart
sublayer
density
friction velocity
relative roughness
shear stress
Hagen-Poiseuille flow
Plug flow reactor model
ISBN
9780748740437
ISBN
9780471675822
"Pressure Drop Along Pipe Length"
Category
Fluid dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.