Knowledge (XXG)

Polarization ripples

Source 📝

17: 79:
structures with periodicity larger than the laser beam's wavelength (i.e. grooves) that are formed perpendicularly to the subwavelength-sized ripples; the proposed physical mechanism assumes the erasing of periodic energy deposition followed by the formation of hydrothermal convection rolls that propagate parallel to the electric field polarisation.
78:
An alternative mechanism that assumes the synergy of electron excitation and capillary wave solidification has been also proposed to explain both the formation of ripples and the observed ripple periodicity. An extension of the mechanism was also proposed to account for the development of periodic
74:
The set of resonant mechanisms leading to formation of ripple is defined by the strong link between ripple periodicity and laser wavelength. It includes the excitation of surface electromagnetic wave such as surface plasmon polariton, and surface waves excited by an isolated defect or surface
47:. Moreover, the ripples can reach far sub-wavelength periodicities until 100 nm as recently observed in titanium. The "cumulative" changes occurring from pulse to pulse in the material properties are still under investigation. 307:
Derrien, Thibault .J.-Y.; Torres, R.; Sarnet, T.; Sentis, M.; Itina, T.E. (1 October 2011). "Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments".
27:
are parallel oscillations which have been observed since the 1960s on the bottom of pulsed laser irradiation of semiconductors. They have the property to be very dependent to the orientation of the laser electric field.
94:
Their interest is about potential applications in building microfluidic channels, changing the color of materials, modifying local electrical properties, and building sub-diffraction-limit optical
16: 402:
Tsibidis, G.D.; Fotakis, M.; Stratakis, E. (2015). "From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures".
157:
Bonse, J. (2013). "Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti: sapphire femtosecond laser pulses in air".
272:
Guosheng, Zhou; Fauchet, P.; Siegman, A. (1 November 1982). "Growth of spontaneous periodic surface structures on solids during laser illumination".
447:
Emel'yanov, V.I. (2009). "The Kuramoto-Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer".
357:; Fotakis, C. (2012). "Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions". 86:
is often mentioned to support different theories such as defect accumulation, or ultrafast modification of the atomic lattice.
66:
the non-resonant mechanisms, more related with thermal consequences of the irradiation of the target by the laser, like
59:
the resonant mechanisms, which are based on electromagnetic aspects, as periodic energy deposition due to roughness, as
60: 55:
The formation mechanisms are still under debate. However, two types of formation mechanisms can be underlined:
83: 233:"Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses" 569: 537: 498: 456: 421: 376: 327: 281: 244: 205: 166: 131: 232: 95: 411: 366: 354: 317: 32: 545: 506: 464: 429: 384: 335: 289: 252: 213: 174: 139: 122:
Birnbaum, Milton (November 1965). "Semiconductor Surface Damage Produced by Ruby Lasers".
67: 525: 541: 502: 460: 425: 380: 331: 285: 248: 209: 170: 135: 40: 563: 483: 102: 484:"Influence of irradiation dose on laser-induced surface nanostructures on silicon" 510: 339: 193: 44: 433: 388: 468: 178: 293: 217: 20:
Scheme of periodic structures of nearly 300 nm deep with a period of 800 nm.
257: 549: 143: 36: 416: 371: 322: 15: 192:
Sipe, J.E.; J.F. Young; J.S. Preston; H.M. Van Driel (1983).
82:
The analogy of the structure shape with the solution of
194:"Laser-induced periodic surface structure. I. Theory" 75:
roughness, especially under femtosecond irradiation
526:"Colorizing metals with femtosecond laser pulses" 353:Tsibidis, G.D.; Barberoglou, M.; Loukakos, P.A.; 105:formation process by femtosecond irradiation. 482:Varlamova, Olga; Juergen Reif (August 2013). 8: 101:They also constitute the first stage of the 415: 370: 321: 256: 63:excitation during the laser illumination; 35:, such structures have been observed on 114: 524:Vorobyev, A. Y.; Chunlei Guo (2008). 7: 14: 231:Miyaji, G.; K. Miyazaki (2008). 31:Since the wide availability of 84:Kuramoto-Sivashinsky equations 1: 511:10.1016/j.apsusc.2012.10.140 340:10.1016/j.apsusc.2011.10.084 70:formed in the melted layer. 586: 434:10.1103/PhysRevB.92.041405 389:10.1103/PhysRevB.86.115316 124:Journal of Applied Physics 469:10.1134/S1054660X0903030X 179:10.1007/s00339-012-7140-y 61:surface plasmon polariton 294:10.1103/PhysRevB.26.5366 218:10.1103/PhysRevB.27.1141 530:Applied Physics Letters 491:Applied Surface Science 310:Applied Surface Science 21: 19: 258:10.1364/OE.16.016265 96:diffraction gratings 51:Formation mechanisms 25:Polarization ripples 542:2008ApPhL..92d1914V 503:2013ApSS..278...62V 461:2009LaPhy..19..538E 426:2015PhRvB..92d1405T 381:2012PhRvB..86k5316T 332:2012ApSS..258.9487D 286:1982PhRvB..26.5366G 249:2008OExpr..1616265M 243:(20): 16265–16271. 210:1983PhRvB..27.1141S 171:2013ApPhA.110..547B 136:1965JAP....36.3688B 33:femtosecond lasers 22: 550:10.1063/1.2834902 404:Physical Review B 359:Physical Review B 316:(23): 9487–9490. 280:(10): 5366–5381. 274:Physical Review B 198:Physical Review B 159:Applied Physics A 144:10.1063/1.1703071 130:(11): 3688–3689. 577: 554: 553: 521: 515: 514: 488: 479: 473: 472: 444: 438: 437: 419: 410:(4): 041405(R). 399: 393: 392: 374: 350: 344: 343: 325: 304: 298: 297: 269: 263: 262: 260: 228: 222: 221: 204:(2): 1141–1154. 189: 183: 182: 154: 148: 147: 119: 585: 584: 580: 579: 578: 576: 575: 574: 560: 559: 558: 557: 523: 522: 518: 486: 481: 480: 476: 446: 445: 441: 401: 400: 396: 352: 351: 347: 306: 305: 301: 271: 270: 266: 230: 229: 225: 191: 190: 186: 156: 155: 151: 121: 120: 116: 111: 92: 68:capillary waves 53: 12: 11: 5: 583: 581: 573: 572: 562: 561: 556: 555: 516: 474: 455:(3): 538–543. 439: 394: 365:(11): 115316. 345: 299: 264: 237:Optics Express 223: 184: 165:(3): 547–551. 149: 113: 112: 110: 107: 91: 88: 72: 71: 64: 52: 49: 43:, but also on 41:semiconductors 13: 10: 9: 6: 4: 3: 2: 582: 571: 568: 567: 565: 551: 547: 543: 539: 536:(4): 041914. 535: 531: 527: 520: 517: 512: 508: 504: 500: 496: 492: 485: 478: 475: 470: 466: 462: 458: 454: 450: 449:Laser Physics 443: 440: 435: 431: 427: 423: 418: 413: 409: 405: 398: 395: 390: 386: 382: 378: 373: 368: 364: 360: 356: 355:Stratakis, E. 349: 346: 341: 337: 333: 329: 324: 319: 315: 311: 303: 300: 295: 291: 287: 283: 279: 275: 268: 265: 259: 254: 250: 246: 242: 238: 234: 227: 224: 219: 215: 211: 207: 203: 199: 195: 188: 185: 180: 176: 172: 168: 164: 160: 153: 150: 145: 141: 137: 133: 129: 125: 118: 115: 108: 106: 104: 103:Black Silicon 99: 97: 89: 87: 85: 80: 76: 69: 65: 62: 58: 57: 56: 50: 48: 46: 42: 38: 34: 29: 26: 18: 533: 529: 519: 494: 490: 477: 452: 448: 442: 407: 403: 397: 362: 358: 348: 313: 309: 302: 277: 273: 267: 240: 236: 226: 201: 197: 187: 162: 158: 152: 127: 123: 117: 100: 93: 90:Applications 81: 77: 73: 54: 30: 24: 23: 570:Oscillation 45:dielectrics 417:1505.04381 109:References 497:: 62–66. 372:1109.2568 323:1108.1685 564:Category 538:Bibcode 499:Bibcode 457:Bibcode 422:Bibcode 377:Bibcode 328:Bibcode 282:Bibcode 245:Bibcode 206:Bibcode 167:Bibcode 132:Bibcode 37:metals 487:(PDF) 412:arXiv 367:arXiv 318:arXiv 546:doi 507:doi 495:278 465:doi 430:doi 385:doi 336:doi 314:258 290:doi 253:doi 214:doi 175:doi 163:110 140:doi 566:: 544:. 534:92 532:. 528:. 505:. 493:. 489:. 463:. 453:19 451:. 428:. 420:. 408:92 406:. 383:. 375:. 363:86 361:. 334:. 326:. 312:. 288:. 278:26 276:. 251:. 241:16 239:. 235:. 212:. 202:27 200:. 196:. 173:. 161:. 138:. 128:36 126:. 98:. 39:, 552:. 548:: 540:: 513:. 509:: 501:: 471:. 467:: 459:: 436:. 432:: 424:: 414:: 391:. 387:: 379:: 369:: 342:. 338:: 330:: 320:: 296:. 292:: 284:: 261:. 255:: 247:: 220:. 216:: 208:: 181:. 177:: 169:: 146:. 142:: 134::

Index


femtosecond lasers
metals
semiconductors
dielectrics
surface plasmon polariton
capillary waves
Kuramoto-Sivashinsky equations
diffraction gratings
Black Silicon
Bibcode
1965JAP....36.3688B
doi
10.1063/1.1703071
Bibcode
2013ApPhA.110..547B
doi
10.1007/s00339-012-7140-y
"Laser-induced periodic surface structure. I. Theory"
Bibcode
1983PhRvB..27.1141S
doi
10.1103/PhysRevB.27.1141
"Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses"
Bibcode
2008OExpr..1616265M
doi
10.1364/OE.16.016265
Bibcode
1982PhRvB..26.5366G

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.