Knowledge (XXG)

Polymer electrolytes

Source 📝

420:
amorphous version of the same electrolyte. It is believed there are multiple modes of ion transport. In crystalline polymer electrolyte, the organization of the chains promotes the formation of interchain "tunnels" in which the ion of interest is able to hop between coordination sites, while the counterion moves along the polymer chain. These tunnels allows control over anion and cation flow in crystalline polymer electrolytes because they highly ordered crystalline domains are selective to an ion exclude its counter ion allowing for their separation. This can increase conductivity in crystalline polymer electrolytes. In amorphous polymers that show enhanced conductivity, it is propose that the amorphous character enables greater movement of chains and this increases mobility of ions as their coordination is transient. The adjacent image illustrates a possible mechanisms for ion transport through short range chain ordering and motions in amorphous regions of polymer electrolytes.
490:, processability, robustness, and safety. Conventional inorganic and liquid electrolytes are rigid or fail to perform in situations requiring high strain or bending forces, which can fracture the electrolyte or the vessel containing the electrolyte. Polymers, typically mixed with a plasticizer do not have this problem, which increases their desirability. Additionally, the high processability of compatible polymers results in simpler design and construction of the chemical cell. Polymer electrolytes also resist electrode volume changes associated with the charge and discharge of a cell. As a part of this, polymer electrolytes have been demonstrated to better resist the development of destructive 440:, also known as dielectric spectroscopy, enables characterization of the conductivity and permittivity of both heterogeneous and homogenous polymer electrolytes. The technique is useful for characterizing the electrical properties of bulk material and is capable of differentiating between the electrical properties of the bulk electrolyte and the electrical properties at the interface of the electrolyte with the electrode(s). Several important characteristics can be measured including impedance, admittance, modulus, and permittivity (dielectric constant and loss). Complex impedance spectroscopy has also been used to gain insight into how 403: 91: 310:
with an inorganic filler affords a composite material with properties exceeding the sum of those of the individual components. In particular, ion conduction in polymer electrolytes is low (compared to liquid and solid-state electrolytes), but blending with inorganic materials has been shown to enhance the ion mobility and conductivity of the polymer electrolyte. The additional benefit is that the desirable properties of the polymer are maintained, particularly its mechanical strength.
448: 282: 298:
into the polymer matrix which increases the ability of the polymer electrolyte to transport ions. One limitation of plasticizer incorporation is the alteration of the polymer's mechanical properties. Reduction in the crystallinity of the polymer weakens its mechanical strength at room temperature. Plasticizers also modulate properties of polymer electrolytes other than conductivity such as affecting charge/discharge times and enhanced capacity.
563:. All-plastic capacitors can also be prepared by sandwiching either a solid-state polymer electrolyte between two plastic electrodes, or through connection electrodes through a polymeric ionic liquid electrolyte. Blends of polymer electrolytes such as poly(vinyl alcohol) and poly(chitosan) show high capacitance and stability and are an advantageous alternative to capacitors prepared with more resource sensitive materials. 508: 399:
weak, labile coordination between the ion and the parts of the polymer chain. In certain applications thin films of polymer electrolytes are needed, which necessitates careful control of morphology and properties due to deviations in the glass transition temperature and other mechanical properties associated with increasingly thin films of amorphous polymer electrolytes.
551:, and the face durability issues related to their mechanical properties. The presence of a polymer electrolyte, particularly one that is solid-state enables reduction in device thickness and shorter mass transport distances which contribute to an overall enhanced cell efficiency over devices with other electrolytes. 398:
Temperature dependence of electrolyte impacts performance over a range of temperatures. Glass temperature is shown to be the key point of performance. At or above the glass transition temperature, it is believed chain motions generate a free volume that the ions are able to transport through with aid
244:
Gel polymer electrolytes also shown specific applications for lithium-ion batteries to replace current organic liquid electrolytes. This type of electrolyte has also been shown to be able to be prepared from renewable and degradable polymers while remaining capable of mitigating current issues at the
515:
Much of the interest in polymer electrolytes stems form their flexibility and enhanced safety over inorganic and liquid electrolytes alternatively used in batteries. Solid-state and composite electrolytes enable development of solid-state lithium-ion batteries. Dendrite formation is also noted to be
297:
that compete with ion-polymer interactions. A similar phenomenon to that previously discussed with polymer gel electrolytes is observed with plasticized polymer electrolytes. The addition of plasticizer lowers the glass transition temperature of the polymer and effectively enhances salt dissociation
226:
Gel polymer electrolytes capture solvent constituents and aid in ion transport across the polymer matrix. The gel supports the polymer scaffold. It is noted that amorphous domains of these polymers absorb larger amounts of solvent (and swell accordingly) than do crystalline domains. As a result, ion
235:
Gel polymer electrolytes using poly(ethylene oxide) (PEO) are the most studied due to its compatibility with lithium electrodes. However, the plasticizing of PEO decreases the mechanical strength of these electrolytes. Gel polymer electrolytes that combine PEO with mechanically strong polymers such
341:
are popular filler materials that will improve the mechanical properties of the composite electrolyte, increase the lithium-ion transference number, and improve ionic conductivity. The improved conductivity comes from the decreased crystallinity of the material. On their own, these ceramic fillers
309:
polymer electrolyte is a polymer matrix that incorporates inorganic fillers that are chemically inert, but with a high dielectric constant to enhance ion conductivity by inhibiting the formation of ion pairs in the polymer matrix. It has been demonstrated that the blending of polymer electrolytes
176:
Many of these polymers have other applications. The structures of several of these polymers are shown in the adjacent image. Showcases several of these polymers. Other types of polymers capable of ion conduction include polymeric ions, which incorporate either an oxidized (for anion transport) or
102:
temperature. These electrolytes differ from one another in their processing methods and applications where they are to be used. Their properties and morphology can be tuned to that desired of the application they are intended for. A shared structural feature of these polymers is the presence of a
498:
of polymer electrolytes exceed those of lithium metal, which aid in preventing dendrite growth. Blended polymer electrolytes prepared out of glassy and rubbery polymer have been demonstrates to all but halt dendrite formation, but they are limited by issues with conductivity. Finally, polymer
419:
and the ability of polymer chains to remain mobile. It is commonly believed that the greater the ability of a polymer matrix to move, the better the ion conductivity will be; however, this is not well understood as crystalline polymer electrolytes have been shown to be more conductive than an
428:
There are several factors to be optimized in the design of polymer electrolytes such as ion conductivity, mechanical strength, and being chemically inert. These properties are typically characterized using a variety of techniques that exist and are already employed in the characterization of
227:
conduction, which is primarily a diffusion-controlled process, is typically greater across regions of amorphous character than through crystalline domains. The adjacent image illustrates this process. An important aspect of gel electrolytes is the choice of solvent primarily based on their
361:
Ion transport mechanisms will primarily focus on that for the transport of cations as the use of cation-conductive polymers is a greater area of academic focus due to the widespread use of lithium-ion batteries and other efforts aimed at developing multivalent metal ion batteries such as
460:
Determination of the glass transition temperature, and methods for characterizing the mechanical properties of polymer electrolytes are also useful. Related to the glass transition are some of the proposed mechanisms for ion conduction. Other methods of thermal characterization include
516:
limited by polymer electrolytes due to their ability to aid in halting growth of lithium crystals precipitating from the electrolyte. The performance of different polymers contributes some polymer electrolytes being better candidates than others for integration into a particular cell.
390:. Ions partition between different phases of the electrolyte, and diffuse based on ionic conductivity, the salt diffusion coefficient of the electrolyte, and the cationic transference number. Ionic transport is also controlled by the electrical potential gradient across the cell. 499:
electrolytes are relatively safe compared to liquid and solid-state batteries. Typically, these electrolytes are highly reactive in air and are flammable. Generally, it has been demonstrated that several polymer electrolytes resist degradation in air and resist combustion.
240:
for a gel polymer electrolyte is around 0.5 MPa, while typical yield strength and shear strength measurements are around 1 MPa. A typical elastic modulus for a gel polymer electrolyte is 10 MPa, which is two orders of magnitude below that of a typical liquid electrolyte.
212:
due to their increased stiffness impeding polymer chain mobility and ion movement. The contrasting relationship between tensile strength and ionic conductivity inspires research into plasticized and composite polymer electrolytes.
231:
which is noted to impact ion conductivity. Percolation of charge does occur in highly ordered polymer electrolyte, but the number and proximity of amorphous domains is correlated with increased percolation of charge.
1360:
Zhu, Ming; Wu, Jiaxin; Wang, Yue; Song, Mingming; Long, Lei; Siyal, Sajid Hussain; Yang, Xiaoping; Sui, Gang (2019-10-01). "Recent advances in gel polymer electrolyte for high-performance lithium batteries".
444:
and electrode parameters affect permittivity. Recent research has focused on probing the conducting relaxation of polymer electrolytes based on their conductance and electrode parameters.
269:
of the salt. The potential between the phases and charge transport through the electrolyte is impacted. Solid-state polymer electrolytes have also been employed in processing of
273:
wafers by providing a liquid- and radiation-free method of oxidizing the surface of the gallium nitride wafer to enable easier polishing of the wafer than previous methods.
196:
The mechanical strength of a polymer electrolyte is an important parameter for its dendrite suppression capabilities. It is theorized that a polymer electrolyte with a
406:
Chain short range ordering of polymer chains aid in transport of cations through loose coordination with nucleophilic moieties within the polymer structure.
1727: 236:
as poly(vinylidene fluoride) (PVDF) can benefit from improved mechanical strength while maintaining the good electrochemical properties of PEO. A typical
527:
are a growing area of application for polymer electrolytes. These membranes generally require high ionic conductivity, low permeability, thermal and
370:, and ion mobility. Ion mobility is defined as the ability of an ion to move between polar groups along the length of the main chain of a polymer. 531:
stability, and morphological and mechanical stability. An example of membranes made from conductive polymer selective barriers in multifunctional
87:
regions promote greater percolation of charge in gel and plasticized polymer electrolytes. Crystal defects promote weaker chain-ion interactions.
1486:"Liquid electrolyte-free electrochemical oxidation of GaN surface using a solid polymer electrolyte toward electrochemical mechanical polishing" 253:
Solid-state polymer electrolyte (also known as solid polymer electrolyte or solvent-free polymer electrolyte) arises from coordination of an
94:
Several polymers capable of being used as polymer electrolytes. Each polymer incorporates a highly polar moiety capable of electron donation.
539:
membranes capable of selective proton conduction from the anode to the cathode. Such fuel cells are able to generate electrical energy from
285:
Transport of ions through polymer electrolytes requires presences of amorphous regions or crystal defects. Adapted from Aziz and coworkers.
208:
can similarly decrease the uneven lithium deposition that leads to dendrite formation. Higher shear moduli polymer electrolytes have lower
177:
reduced element of the polymer main chain through a process called chemical doping. Chemical doping makes these polymers behave as either
75:
electrolyte. There exist four major types of polymer electrolyte: (1) gel polymer electrolyte, (2) solid-state polymer electrolyte, (3)
524: 462: 289:
Plasticized polymer electrolyte is a polymer matrix with incorporated plasticizers that enhance their ion conductivity by weakening
209: 28: 1527:"Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes" 402: 1946: 51:. The field has expanded since and is now primarily focused on the development of polymer electrolytes with applications in 1266:
Zhu, Ming; Wu, Jiaxin; Wang, Yue; Song, Mingming; Long, Lei; Siyal, Sajid Hussain; Yang, Xiaoping; Sui, Gang (2019-10-01).
72: 929:
Muench, Simon; Wild, Andreas; Friebe, Christian; Häupler, Bernhard; Janoschka, Tobias; Schubert, Ulrich S. (2016-08-01).
353:
is a potential filler material due to its high mechanical strength arising from modulation of the electrolyte membrane.
349:(MOF) particles can also be used as a filler material with high surface area and high chemical and thermal stability. 2D 1936: 346: 98:
Another key parameter of transport is the temperature dependence of polymer morphology on transport mechanisms by the
265:, decoordination, and recoordination along the polymer. Performance of the electrochemical cell is influenced by the 466: 469:, and methods used to characterize the specific electronic devices that these materials may be incorporated into. 237: 138: 1786:"High-efficiency solid-state polymer electrolyte dye-sensitized solar cells with a bi-functional porous layer" 1435:
Martinez-Cisneros, Cynthia S.; Pandit, Bidhan; Levenfeld, Belén; Varez, Alejandro; Sanchez, Jean-Yves (2023).
90: 1033:
Liaw, Der-Jang; Wang, Kung-Li; Huang, Ying-Chi; Lee, Kueir-Rarn; Lai, Juin-Yih; Ha, Chang-Sik (2012-07-01).
536: 437: 165: 36: 1832: 441: 266: 1941: 1618: 483: 228: 52: 1314: 1267: 1220: 67:
Generally, polymer electrolytes comprise a polymer which incorporates a highly polar motif capable of
1883: 1872:"Application of PVA–chitosan blend polymer electrolyte membrane in electrical double layer capacitor" 1677: 1448: 1370: 1326: 1279: 1232: 1185: 634: 294: 290: 262: 182: 178: 155: 128: 1785: 786: 281: 205: 447: 1907: 1813: 1709: 1646: 387: 379: 306: 254: 160: 829:
Hagfeldt, Anders; Boschloo, Gerrit; Sun, Licheng; Kloo, Lars; Pettersson, Henrik (2010-11-10).
1931: 1899: 1852: 1805: 1766: 1701: 1693: 1638: 1566: 1548: 1507: 1386: 1342: 1295: 1248: 1201: 1154: 1100: 1054: 1012: 1004: 958: 950: 908: 900: 858: 850: 806: 740: 650: 366:. Ion conductivity largely depends on the effective concentration of mobile ions (free ions), 363: 200:
twice that of metallic lithium should be able to physically suppress dendrite formation. High
133: 68: 1784:
Cho, Woohyung; Kim, Young Rae; Song, Donghoon; Choi, Hyung Woo; Kang, Yong Soo (2014-10-07).
47:
of a cell. The use of polymers as an electrolyte was first demonstrated using dye-sensitized
1891: 1844: 1797: 1758: 1685: 1630: 1597: 1556: 1538: 1497: 1464: 1456: 1417: 1378: 1334: 1313:
Gebert, Florian; Knott, Jonathan; Gorkin, Robert; Chou, Shu-Lei; Dou, Shi-Xue (2021-04-01).
1287: 1240: 1219:
Gebert, Florian; Knott, Jonathan; Gorkin, Robert; Chou, Shu-Lei; Dou, Shi-Xue (2021-04-01).
1193: 1146: 1092: 1046: 996: 942: 892: 842: 798: 730: 642: 491: 335: 143: 99: 622: 367: 324: 317: 270: 201: 84: 1135:"Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes" 646: 1887: 1681: 1664:
Gadjourova, Zlatka; Andreev, Yuri G.; Tunstall, David P.; Bruce, Peter G. (2001-08-02).
1586:"Particles in composite polymer electrolyte for solid-state lithium batteries: A review" 1452: 1374: 1330: 1283: 1236: 1189: 1174:"The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces" 1134: 1034: 638: 511:
Schematic diagram showcasing the used of a polymer electrolyte membrane in a solar cell.
1561: 1526: 1421: 1406:"Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes" 1173: 1150: 1050: 1848: 717:
Aziz, Shujahadeen B.; Woo, Thompson J.; Kadir, M.F.Z.; Ahmed, Hameed M. (2018-03-01).
507: 1925: 1895: 1817: 1650: 1405: 495: 350: 197: 185: 80: 1911: 1871: 1728:"Polymer Electrolytes: Characterization Techniques and Energy Applications | Wiley" 1713: 1460: 1268:"Recent advances in gel polymer electrolyte for high-performance lithium batteries" 343: 1543: 451:
Diagram showing use of a solid-state polymer electrolyte in a simple battery cell.
1602: 1502: 1485: 1436: 1382: 1291: 930: 1585: 946: 735: 718: 76: 32: 1338: 1244: 1035:"Advanced polyimide materials: Syntheses, physical properties and applications" 1634: 548: 547:
fuels. However, current conductive polymer membranes are limited by requiring
528: 416: 104: 48: 1903: 1856: 1833:"Electrochemical capacitors with polymer electrolytes based on ionic liquids" 1809: 1697: 1642: 1552: 1511: 1390: 1346: 1299: 1252: 1205: 1158: 1104: 1058: 1008: 954: 904: 854: 810: 744: 654: 83:
of a polymer electrolyte matrix impacts ion mobility and the transport rate.
560: 487: 383: 170: 1705: 1665: 1570: 1404:
Mindemark, Jonas; Lacey, Matthew J.; Bowden, Tim; Brandell, Daniel (2018).
1016: 962: 912: 862: 79:
polymer electrolyte, and (4) composite polymer electrolyte. The degree of
1437:"Flexible solvent-free polymer electrolytes for solid-state Na batteries" 544: 540: 149: 108: 56: 1080: 1801: 1469: 1096: 984: 802: 532: 313: 258: 44: 24: 1770: 1752: 1197: 1000: 896: 846: 785:
Long, Lizhen; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong (2016-06-28).
719:"A conceptual review on polymer electrolytes and ion transport models" 1689: 116: 112: 1762: 1617:
Khan, Mohammad Saleem; Gul, Rahmat; Wahid, Mian Sayed (2013-10-01).
985:"Recent Development of Polymer Electrolyte Membranes for Fuel Cells" 880: 830: 1754:
Lithium dendrite growth through solid polymer electrolyte membranes
1484:
Murata, Junji; Nishiguchi, Yoshito; Iwasaki, Takeshi (2018-12-01).
1081:"Poly(ethylene oxide)-based electrolytes for lithium-ion batteries" 535:. Fuel cell applications of polymer electrolytes typically employ 40: 486:
and liquid electrolytes and offer several advantages including
1619:"Studies on thin films of PVC-PMMA blend polymer electrolytes" 881:"Electrolytes and Interphases in Li-Ion Batteries and Beyond" 39:—polymer electrolytes aid in movement of charge between the 1666:"Ionic conductivity in crystalline polymer electrolytes" 621:
Hallinan, Daniel T.; Balsara, Nitash P. (2013-07-01).
559:
Polymer electrolytes have also seen widespread use in
787:"Polymer electrolytes for lithium polymer batteries" 723:Journal of Science: Advanced Materials and Devices 415:Ion transport is impacted by concentration of the 1315:"Polymer electrolytes for sodium-ion batteries" 1221:"Polymer electrolytes for sodium-ion batteries" 1584:Meng, Nan; Xiaogang, Zhu; Fang, Lian (2022). 983:Zhang, Hongwei; Shen, Pei Kang (2012-02-16). 257:salt to the polymer matrix. Application of a 71:. Performance parameters impact selection of 8: 1079:Xue, Zhigang; He, Dan; Xie, Xiaolin (2015). 1870:Kadir, M. F. Z.; Arof, A. K. (2011-08-01). 1601: 1560: 1542: 1501: 1468: 734: 1525:Hirankumar, G.; Mehta, N. (2018-12-08). 506: 446: 401: 280: 89: 63:Molecular design of polymer electrolytes 16:Polymer matrix capable of ion conduction 572: 482:Polymer electrolytes are distinct from 378:There exists two transport methods: by 1178:Journal of the Electrochemical Society 1172:Monroe, Charles; Newman, John (2005). 1751:Harry, Katherine Joann (2016-05-01). 1128: 1126: 1124: 1122: 1120: 1118: 1116: 1114: 780: 778: 776: 774: 712: 710: 708: 706: 704: 702: 700: 698: 696: 694: 692: 690: 688: 686: 684: 616: 614: 612: 610: 608: 606: 604: 602: 600: 598: 596: 7: 1606:– via Elsevier Science Direct. 1074: 1072: 1070: 1068: 1028: 1026: 978: 976: 974: 972: 924: 922: 874: 872: 824: 822: 820: 772: 770: 768: 766: 764: 762: 760: 758: 756: 754: 682: 680: 678: 676: 674: 672: 670: 668: 666: 664: 647:10.1146/annurev-matsci-071312-121705 594: 592: 590: 588: 586: 584: 582: 580: 578: 576: 478:Distinctions from other electrolytes 627:Annual Review of Materials Research 1422:10.1016/j.progpolymsci.2017.12.004 1151:10.1016/j.progpolymsci.2011.05.007 1051:10.1016/j.progpolymsci.2012.02.005 411:Concentration and polymer mobility 14: 931:"Polymer-Based Organic Batteries" 463:differential scanning calorimetry 1896:10.1179/143307511X13031890749299 1790:Journal of Materials Chemistry A 1133:Mecerreyes, David (2011-12-01). 1085:Journal of Materials Chemistry A 791:Journal of Materials Chemistry A 261:results in ion exchange through 1490:Electrochemistry Communications 277:Plasticized polymer electrolyte 249:Solid-state polymer electrolyte 245:cathode-electrolyte interface. 1876:Materials Research Innovations 1831:Lewandowski, A. (2003-08-01). 1623:Journal of Polymer Engineering 1461:10.1016/j.jpowsour.2023.232644 494:in lithium-ion batteries. The 438:Complex impedance spectroscopy 433:Complex impedance spectroscopy 1: 1849:10.1016/S0167-2738(03)00275-3 1544:10.1016/j.heliyon.2018.e00992 302:Composite polymer electrolyte 1603:10.1016/j.partic.2021.04.002 1503:10.1016/j.elecom.2018.11.006 1383:10.1016/j.jechem.2018.12.013 1292:10.1016/j.jechem.2018.12.013 831:"Dye-Sensitized Solar Cells" 525:Conductive polymer membranes 119:has also been demonstrated. 1410:Progress in Polymer Science 1363:Journal of Energy Chemistry 1272:Journal of Energy Chemistry 1139:Progress in Polymer Science 1039:Progress in Polymer Science 947:10.1021/acs.chemrev.6b00070 736:10.1016/j.jsamd.2018.01.002 31:. Much like other types of 1963: 1339:10.1016/j.ensm.2020.11.030 1245:10.1016/j.ensm.2020.11.030 467:thermogravimetric analysis 1635:10.1515/polyeng-2013-0028 166:Poly(vinylidene fluoride) 139:Poly(methyl methacrylate) 1441:Journal of Power Sources 1319:Energy Storage Materials 1225:Energy Storage Materials 520:Membranes and fuel cells 357:Ion transport mechanisms 344:dielectric permittivity. 879:Xu, Kang (2014-12-10). 347:Metal-organic framework 342:are brittle and of low 295:interchain interactions 222:Gel polymer electrolyte 156:Poly(vinyl pyrrolidone) 623:"Polymer Electrolytes" 537:perfluorosulfonic acid 512: 452: 407: 394:Temperature dependence 286: 95: 1947:Molecular electronics 510: 456:Additional techniques 450: 429:conductive polymers. 405: 284: 192:Mechanical properties 93: 73:homo- or heterogenous 229:dielectric constants 161:Poly(vinyl chloride) 129:Poly(ethylene oxide) 1937:Conductive polymers 1888:2011MatRI..15S.217K 1882:(sup2): s217–s220. 1796:(42): 17746–17750. 1682:2001Natur.412..520G 1453:2023JPS...55932644M 1375:2019JEnCh..37..126Z 1331:2021EneSM..36...10G 1284:2019JEnCh..37..126Z 1237:2021EneSM..36...10G 1190:2005JElS..152A.396M 1091:(38): 19218–19253. 891:(23): 11503–11618. 797:(26): 10038–10069. 639:2013AnRMS..43..503H 374:Potential gradients 134:Poly(vinyl alcohol) 21:polymer electrolyte 1837:Solid State Ionics 1802:10.1039/C4TA04064C 1097:10.1039/c5ta03471j 803:10.1039/C6TA02621D 513: 453: 408: 388:electric potential 380:chemical potential 316:materials such as 287: 210:ionic conductivity 144:Poly(caprolactone) 96: 55:, fuel cells, and 1676:(6846): 520–523. 1198:10.1149/1.1850854 1145:(12): 1629–1648. 1001:10.1021/cr200035s 941:(16): 9438–9484. 897:10.1021/cr500003w 847:10.1021/cr900356p 841:(11): 6595–6663. 69:electron donation 1954: 1916: 1915: 1867: 1861: 1860: 1843:(3–4): 243–249. 1828: 1822: 1821: 1781: 1775: 1774: 1748: 1742: 1741: 1739: 1738: 1724: 1718: 1717: 1690:10.1038/35087538 1661: 1655: 1654: 1614: 1608: 1607: 1605: 1581: 1575: 1574: 1564: 1546: 1522: 1516: 1515: 1505: 1481: 1475: 1474: 1472: 1432: 1426: 1425: 1401: 1395: 1394: 1357: 1351: 1350: 1310: 1304: 1303: 1263: 1257: 1256: 1216: 1210: 1209: 1169: 1163: 1162: 1130: 1109: 1108: 1076: 1063: 1062: 1030: 1021: 1020: 995:(5): 2780–2832. 989:Chemical Reviews 980: 967: 966: 935:Chemical Reviews 926: 917: 916: 885:Chemical Reviews 876: 867: 866: 835:Chemical Reviews 826: 815: 814: 782: 749: 748: 738: 714: 659: 658: 618: 424:Characterization 238:tensile strength 100:glass transition 1962: 1961: 1957: 1956: 1955: 1953: 1952: 1951: 1922: 1921: 1920: 1919: 1869: 1868: 1864: 1830: 1829: 1825: 1783: 1782: 1778: 1763:10.2172/1481923 1750: 1749: 1745: 1736: 1734: 1726: 1725: 1721: 1663: 1662: 1658: 1616: 1615: 1611: 1583: 1582: 1578: 1524: 1523: 1519: 1483: 1482: 1478: 1434: 1433: 1429: 1403: 1402: 1398: 1359: 1358: 1354: 1312: 1311: 1307: 1265: 1264: 1260: 1218: 1217: 1213: 1171: 1170: 1166: 1132: 1131: 1112: 1078: 1077: 1066: 1032: 1031: 1024: 982: 981: 970: 928: 927: 920: 878: 877: 870: 828: 827: 818: 784: 783: 752: 716: 715: 662: 620: 619: 574: 569: 557: 522: 505: 484:solid inorganic 480: 475: 458: 435: 426: 413: 396: 376: 368:electric charge 359: 339: 332: 328: 321: 304: 279: 271:gallium nitride 251: 224: 219: 206:yield strengths 194: 125: 123:Common polymers 65: 17: 12: 11: 5: 1960: 1958: 1950: 1949: 1944: 1939: 1934: 1924: 1923: 1918: 1917: 1862: 1823: 1776: 1743: 1719: 1656: 1629:(7): 633–638. 1609: 1576: 1537:(12): e00992. 1517: 1476: 1427: 1396: 1352: 1305: 1258: 1211: 1164: 1110: 1064: 1045:(7): 907–974. 1022: 968: 918: 868: 816: 750: 660: 633:(1): 503–525. 571: 570: 568: 565: 556: 553: 549:humidification 521: 518: 504: 501: 479: 476: 474: 471: 457: 454: 434: 431: 425: 422: 412: 409: 395: 392: 375: 372: 358: 355: 337: 330: 326: 319: 303: 300: 278: 275: 250: 247: 223: 220: 218: 215: 202:elastic moduli 193: 190: 186:semiconductors 174: 173: 168: 163: 158: 153: 146: 141: 136: 131: 124: 121: 64: 61: 29:ion conduction 25:polymer matrix 15: 13: 10: 9: 6: 4: 3: 2: 1959: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1929: 1927: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1827: 1824: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1768: 1764: 1760: 1756: 1755: 1747: 1744: 1733: 1729: 1723: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1657: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1613: 1610: 1604: 1599: 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1563: 1558: 1554: 1550: 1545: 1540: 1536: 1532: 1528: 1521: 1518: 1513: 1509: 1504: 1499: 1495: 1491: 1487: 1480: 1477: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1428: 1423: 1419: 1415: 1411: 1407: 1400: 1397: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1356: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1309: 1306: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1212: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1168: 1165: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1127: 1125: 1123: 1121: 1119: 1117: 1115: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1075: 1073: 1071: 1069: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1027: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 979: 977: 975: 973: 969: 964: 960: 956: 952: 948: 944: 940: 936: 932: 925: 923: 919: 914: 910: 906: 902: 898: 894: 890: 886: 882: 875: 873: 869: 864: 860: 856: 852: 848: 844: 840: 836: 832: 825: 823: 821: 817: 812: 808: 804: 800: 796: 792: 788: 781: 779: 777: 775: 773: 771: 769: 767: 765: 763: 761: 759: 757: 755: 751: 746: 742: 737: 732: 728: 724: 720: 713: 711: 709: 707: 705: 703: 701: 699: 697: 695: 693: 691: 689: 687: 685: 683: 681: 679: 677: 675: 673: 671: 669: 667: 665: 661: 656: 652: 648: 644: 640: 636: 632: 628: 624: 617: 615: 613: 611: 609: 607: 605: 603: 601: 599: 597: 595: 593: 591: 589: 587: 585: 583: 581: 579: 577: 573: 566: 564: 562: 554: 552: 550: 546: 542: 538: 534: 530: 526: 519: 517: 509: 502: 500: 497: 493: 489: 485: 477: 472: 470: 468: 464: 455: 449: 445: 443: 439: 432: 430: 423: 421: 418: 410: 404: 400: 393: 391: 389: 385: 381: 373: 371: 369: 365: 356: 354: 352: 351:boron nitride 348: 345: 340: 333: 322: 315: 311: 308: 301: 299: 296: 292: 283: 276: 274: 272: 268: 264: 260: 256: 248: 246: 242: 239: 233: 230: 221: 216: 214: 211: 207: 203: 199: 198:shear modulus 191: 189: 187: 184: 180: 172: 169: 167: 164: 162: 159: 157: 154: 151: 147: 145: 142: 140: 137: 135: 132: 130: 127: 126: 122: 120: 118: 114: 110: 106: 101: 92: 88: 86: 82: 81:crystallinity 78: 74: 70: 62: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 1942:Electrolytes 1879: 1875: 1865: 1840: 1836: 1826: 1793: 1789: 1779: 1753: 1746: 1735:. Retrieved 1731: 1722: 1673: 1669: 1659: 1626: 1622: 1612: 1593: 1590:Particuology 1589: 1579: 1534: 1530: 1520: 1493: 1489: 1479: 1444: 1440: 1430: 1413: 1409: 1399: 1366: 1362: 1355: 1322: 1318: 1308: 1275: 1271: 1261: 1228: 1224: 1214: 1181: 1177: 1167: 1142: 1138: 1088: 1084: 1042: 1038: 992: 988: 938: 934: 888: 884: 838: 834: 794: 790: 726: 722: 630: 626: 558: 523: 514: 496:shear moduli 481: 473:Applications 459: 436: 427: 414: 397: 377: 360: 312: 305: 288: 263:coordination 252: 243: 234: 225: 195: 175: 97: 66: 35:—liquid and 20: 18: 1496:: 110–113. 1470:10016/38441 1416:: 114–143. 1369:: 126–142. 1278:: 126–142. 1184:(2): A396. 729:(1): 1–17. 488:flexibility 171:Poly(imide) 115:, although 77:plasticized 49:solar cells 37:solid-state 33:electrolyte 27:capable of 1926:Categories 1757:(Thesis). 1737:2021-05-31 567:References 561:capacitors 555:Capacitors 529:hydrolytic 417:counterion 105:heteroatom 1904:1432-8917 1857:0167-2738 1818:220458131 1810:2050-7496 1732:Wiley.com 1698:1476-4687 1651:138468192 1643:2191-0340 1596:: 14–36. 1553:2405-8440 1512:1388-2481 1391:2095-4956 1347:2405-8297 1325:: 10–30. 1300:2095-4956 1253:2405-8297 1231:: 10–30. 1206:0013-4651 1159:0079-6700 1105:2050-7488 1059:0079-6700 1009:0009-2665 955:0009-2665 905:0009-2665 855:0009-2665 811:2050-7496 745:2468-2179 655:1531-7331 503:Batteries 492:dendrites 386:) and by 384:diffusion 364:magnesium 307:Composite 259:potential 255:inorganic 107:, namely 85:Amorphous 57:membranes 53:batteries 1932:Polymers 1912:93409584 1706:11484048 1571:30623123 1017:22339373 963:27479607 913:25351820 863:20831177 545:methanol 541:hydrogen 533:micelles 267:activity 150:chitosan 109:nitrogen 1884:Bibcode 1771:1481923 1714:4399365 1678:Bibcode 1562:6313818 1531:Heliyon 1449:Bibcode 1371:Bibcode 1327:Bibcode 1280:Bibcode 1233:Bibcode 1186:Bibcode 635:Bibcode 442:dopants 314:Ceramic 45:cathode 1910:  1902:  1855:  1816:  1808:  1769:  1712:  1704:  1696:  1670:Nature 1649:  1641:  1569:  1559:  1551:  1510:  1389:  1345:  1298:  1251:  1204:  1157:  1103:  1057:  1015:  1007:  961:  953:  911:  903:  861:  853:  809:  743:  653:  334:, and 291:intra- 183:p-type 179:n-type 117:sulfur 113:oxygen 1908:S2CID 1814:S2CID 1710:S2CID 1647:S2CID 217:Types 148:Poly( 41:anode 23:is a 1900:ISSN 1853:ISSN 1806:ISSN 1767:OSTI 1702:PMID 1694:ISSN 1639:ISSN 1567:PMID 1549:ISSN 1508:ISSN 1387:ISSN 1343:ISSN 1296:ISSN 1249:ISSN 1202:ISSN 1155:ISSN 1101:ISSN 1055:ISSN 1013:PMID 1005:ISSN 959:PMID 951:ISSN 909:PMID 901:ISSN 859:PMID 851:ISSN 807:ISSN 741:ISSN 651:ISSN 293:and 43:and 1892:doi 1845:doi 1841:161 1798:doi 1759:doi 1686:doi 1674:412 1631:doi 1598:doi 1557:PMC 1539:doi 1498:doi 1465:hdl 1457:doi 1445:559 1418:doi 1379:doi 1335:doi 1288:doi 1241:doi 1194:doi 1182:152 1147:doi 1093:doi 1047:doi 997:doi 993:112 943:doi 939:116 893:doi 889:114 843:doi 839:110 799:doi 731:doi 643:doi 543:or 336:TiO 318:SiO 204:or 181:or 111:or 1928:: 1906:. 1898:. 1890:. 1880:15 1878:. 1874:. 1851:. 1839:. 1835:. 1812:. 1804:. 1792:. 1788:. 1765:. 1730:. 1708:. 1700:. 1692:. 1684:. 1672:. 1668:. 1645:. 1637:. 1627:33 1625:. 1621:. 1594:60 1592:. 1588:. 1565:. 1555:. 1547:. 1533:. 1529:. 1506:. 1494:97 1492:. 1488:. 1463:. 1455:. 1447:. 1443:. 1439:. 1414:81 1412:. 1408:. 1385:. 1377:. 1367:37 1365:. 1341:. 1333:. 1323:36 1321:. 1317:. 1294:. 1286:. 1276:37 1274:. 1270:. 1247:. 1239:. 1229:36 1227:. 1223:. 1200:. 1192:. 1180:. 1176:. 1153:. 1143:36 1141:. 1137:. 1113:^ 1099:. 1087:. 1083:. 1067:^ 1053:. 1043:37 1041:. 1037:. 1025:^ 1011:. 1003:. 991:. 987:. 971:^ 957:. 949:. 937:. 933:. 921:^ 907:. 899:. 887:. 883:. 871:^ 857:. 849:. 837:. 833:. 819:^ 805:. 793:. 789:. 753:^ 739:. 725:. 721:. 663:^ 649:. 641:. 631:43 629:. 625:. 575:^ 465:, 325:Al 323:, 188:. 59:. 19:A 1914:. 1894:: 1886:: 1859:. 1847:: 1820:. 1800:: 1794:2 1773:. 1761:: 1740:. 1716:. 1688:: 1680:: 1653:. 1633:: 1600:: 1573:. 1541:: 1535:4 1514:. 1500:: 1473:. 1467:: 1459:: 1451:: 1424:. 1420:: 1393:. 1381:: 1373:: 1349:. 1337:: 1329:: 1302:. 1290:: 1282:: 1255:. 1243:: 1235:: 1208:. 1196:: 1188:: 1161:. 1149:: 1107:. 1095:: 1089:3 1061:. 1049:: 1019:. 999:: 965:. 945:: 915:. 895:: 865:. 845:: 813:. 801:: 795:4 747:. 733:: 727:3 657:. 645:: 637:: 382:( 338:2 331:3 329:O 327:2 320:2 152:)

Index

polymer matrix
ion conduction
electrolyte
solid-state
anode
cathode
solar cells
batteries
membranes
electron donation
homo- or heterogenous
plasticized
crystallinity
Amorphous

glass transition
heteroatom
nitrogen
oxygen
sulfur
Poly(ethylene oxide)
Poly(vinyl alcohol)
Poly(methyl methacrylate)
Poly(caprolactone)
chitosan
Poly(vinyl pyrrolidone)
Poly(vinyl chloride)
Poly(vinylidene fluoride)
Poly(imide)
n-type

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.