Knowledge (XXG)

Porod's law

Source 📝

100:
particles, all small-angle scattering can be understood as arising from surfaces or interfaces. Normally, SAS is measured in order to detect correlations between different interfaces, and in particular, between remote surface segments of one and the same particle. This allows conclusions about the
486: 108:
is relatively large on the usual scale of SAS. In this regime, correlations between remote surface segments and inter-particle correlations are so random that they average out. Therefore one sees only the local interface
96:. In this range, the sample must not be described at an atomistic level; one rather uses a continuum description in terms of an electron density or a neutron scattering length density. In a system composed of distinct 295: 553: 94: 172: 351: 375: 323:
For a specific model system, e.g. a dispersion of uncorrelated spherical particles, one can derive Porod's law by computing the scattering function
211:(the yardstick by which it is measured). In the case of a fractally rough surface area with a dimensionality d between 2-3 Porod's law becomes: 219: 310:
model in which the whole system can be described to be self-similar mathematically although not usually in reality in the nature.
676: 203:
mathematics it has become clear that Porod's law requires adaptation for rough interfaces because the value of the surface
686: 501: 58: 681: 366: 17: 302:
Thus if plotted logarithmically the slope of ln(I) versus ln(q) would vary between -4 and -3 for such a
183:
is the surface area of the particles, which can in this way be experimentally determined. The power law
97: 129: 628: 307: 330: 306:. Slopes less negative than -3 are also possible in fractal theory and they are described using a 652: 644: 188: 110: 52: 636: 25: 303: 481:{\displaystyle S({\vec {q}})={\frac {4\pi ^{2}}{q_{z}^{2}}}\delta (q_{x})\delta (q_{y}).} 632: 616: 670: 619:; Stanley, H. B. (1988-08-01). "X-ray and neutron scattering from rough surfaces". 327:
exactly, averaging over slightly different particle radii, and taking the limit
33: 648: 640: 121:
If the interface is flat, then Porod's law predicts the scattering intensity
656: 200: 491:
Taking the spherical average over possible directions of the vector
290:{\displaystyle \lim _{q\rightarrow \infty }I(q)\propto S'q^{-(6-d)}} 101:
size and shape of the particles, and their correlations.
28:, describes the asymptote of the scattering intensity 504: 378: 333: 222: 132: 61: 547: 480: 369:. For a flat surface in the xy-plane, one obtains 345: 289: 166: 88: 627:(4). American Physical Society (APS): 2297–2311. 224: 51:that are small compared to the scale of usual 8: 548:{\displaystyle S(q)={\frac {2\pi }{q^{4}}}.} 89:{\displaystyle q\lesssim 1{\text{ nm}}^{-1}} 610: 608: 606: 47:Porod's law is concerned with wave numbers 571:This has been pointed out by Sinha et al. 534: 520: 503: 466: 447: 429: 424: 413: 403: 386: 385: 377: 332: 266: 227: 221: 187:corresponds to the factor 1/sinθ in 155: 131: 77: 72: 60: 602: 564: 495:, one obtains Porod's law in the form 7: 365:as a double surface integral, using 340: 234: 14: 357:by considering just an interface 167:{\displaystyle I(q)\sim Sq^{-4}} 361:Alternatively, one can express 514: 508: 472: 459: 453: 440: 397: 391: 382: 337: 282: 270: 248: 242: 231: 142: 136: 1: 615:Sinha, S. K.; Sirota, E. B.; 346:{\displaystyle q\to \infty } 703: 580:Sinha et al., Eq. (2.12). 641:10.1103/physrevb.38.2297 319:as Form factor asymptote 589:Sinha et al., Eq. (3.3) 677:Small-angle scattering 549: 482: 367:Ostrogradsky's theorem 347: 291: 168: 90: 18:small-angle scattering 550: 483: 348: 292: 207:may be a function of 169: 91: 32:for large scattering 502: 376: 331: 220: 199:Since the advent of 130: 59: 16:In X-ray or neutron 633:1988PhRvB..38.2297S 434: 687:Neutron scattering 545: 478: 420: 343: 287: 238: 164: 86: 621:Physical Review B 540: 435: 394: 223: 189:Fresnel equations 75: 53:Bragg diffraction 694: 682:X-ray scattering 661: 660: 612: 590: 587: 581: 578: 572: 569: 554: 552: 551: 546: 541: 539: 538: 529: 521: 487: 485: 484: 479: 471: 470: 452: 451: 436: 433: 428: 419: 418: 417: 404: 396: 395: 387: 352: 350: 349: 344: 296: 294: 293: 288: 286: 285: 261: 237: 195:Generalized form 173: 171: 170: 165: 163: 162: 95: 93: 92: 87: 85: 84: 76: 73: 24:, discovered by 702: 701: 697: 696: 695: 693: 692: 691: 667: 666: 665: 664: 614: 613: 604: 599: 594: 593: 588: 584: 579: 575: 570: 566: 561: 530: 522: 500: 499: 462: 443: 409: 405: 374: 373: 359: 329: 328: 321: 316: 304:surface fractal 262: 254: 218: 217: 197: 191:of reflection. 151: 128: 127: 119: 71: 57: 56: 45: 12: 11: 5: 700: 698: 690: 689: 684: 679: 669: 668: 663: 662: 601: 600: 598: 595: 592: 591: 582: 573: 563: 562: 560: 557: 556: 555: 544: 537: 533: 528: 525: 519: 516: 513: 510: 507: 489: 488: 477: 474: 469: 465: 461: 458: 455: 450: 446: 442: 439: 432: 427: 423: 416: 412: 408: 402: 399: 393: 390: 384: 381: 358: 355: 342: 339: 336: 320: 317: 315: 312: 308:volume fractal 300: 299: 298: 297: 284: 281: 278: 275: 272: 269: 265: 260: 257: 253: 250: 247: 244: 241: 236: 233: 230: 226: 196: 193: 177: 176: 175: 174: 161: 158: 154: 150: 147: 144: 141: 138: 135: 118: 115: 83: 80: 70: 67: 64: 44: 41: 13: 10: 9: 6: 4: 3: 2: 699: 688: 685: 683: 680: 678: 675: 674: 672: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 618: 611: 609: 607: 603: 596: 586: 583: 577: 574: 568: 565: 558: 542: 535: 531: 526: 523: 517: 511: 505: 498: 497: 496: 494: 475: 467: 463: 456: 448: 444: 437: 430: 425: 421: 414: 410: 406: 400: 388: 379: 372: 371: 370: 368: 364: 356: 354: 334: 326: 318: 313: 311: 309: 305: 279: 276: 273: 267: 263: 258: 255: 251: 245: 239: 228: 216: 215: 214: 213: 212: 210: 206: 202: 194: 192: 190: 186: 182: 159: 156: 152: 148: 145: 139: 133: 126: 125: 124: 123: 122: 117:Standard form 116: 114: 112: 107: 102: 99: 81: 78: 68: 65: 62: 54: 50: 42: 40: 38: 35: 31: 27: 26:Günther Porod 23: 19: 624: 620: 585: 576: 567: 492: 490: 362: 360: 324: 322: 301: 208: 204: 198: 184: 180: 178: 120: 105: 103: 55:; typically 48: 46: 36: 29: 21: 15: 34:wavenumbers 22:Porod's law 671:Categories 617:Garoff, S. 597:References 314:Derivation 98:mesoscopic 649:0163-1829 527:π 457:δ 438:δ 411:π 392:→ 341:∞ 338:→ 277:− 268:− 252:∝ 235:∞ 232:→ 157:− 146:∼ 111:roughness 79:− 66:≲ 259:′ 104:Porod's 74: nm 657:9946532 629:Bibcode 201:fractal 43:Context 20:(SAS), 655:  647:  179:where 559:Notes 653:PMID 645:ISSN 363:S(q) 325:S(q) 30:I(q) 637:doi 225:lim 673:: 651:. 643:. 635:. 625:38 623:. 605:^ 353:. 113:. 39:. 659:. 639:: 631:: 543:. 536:4 532:q 524:2 518:= 515:) 512:q 509:( 506:S 493:q 476:. 473:) 468:y 464:q 460:( 454:) 449:x 445:q 441:( 431:2 426:z 422:q 415:2 407:4 401:= 398:) 389:q 383:( 380:S 335:q 283:) 280:d 274:6 271:( 264:q 256:S 249:) 246:q 243:( 240:I 229:q 209:q 205:S 185:q 181:S 160:4 153:q 149:S 143:) 140:q 137:( 134:I 106:q 82:1 69:1 63:q 49:q 37:q

Index

small-angle scattering
Günther Porod
wavenumbers
Bragg diffraction
mesoscopic
roughness
Fresnel equations
fractal
surface fractal
volume fractal
Ostrogradsky's theorem



Garoff, S.
Bibcode
1988PhRvB..38.2297S
doi
10.1103/physrevb.38.2297
ISSN
0163-1829
PMID
9946532
Categories
Small-angle scattering
X-ray scattering
Neutron scattering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.