Knowledge (XXG)

Laser power scaling

Source πŸ“

85: 187:, the energy and head would be withdrawn in orthogonal directions, as it is shown in figure. At low background loss (typically, at the level of 0.01 or 0.001) the heat and the light can be withdrawn in the opposite directions, allowing active elements of wide aperture. In this case, combining of several active elements is used for the power scaling. 196: 165:
The limit of power scaling of fiber lasers can be extended with lateral delivery of the pump. This is realized in so-called fiber disk lasers. The pump in such a laser is delivered from side of a disk, made of coiled fiber with doped core. Several such disks (with a coolant between them) can be
62:
is used to increase the power of the beam while preserving its main properties. The master oscillator has no need to be powerful, and has no need to operate at high efficiency because the efficiency is determined mainly by the power amplifier. The combination of several
34:
is increasing its output power without changing the geometry, shape, or principle of operation. Power scalability is considered an important advantage in a laser design. This means it can increase power without changing outside features.
174:
The power scaling is limited by the ability to dissipate the heat. Usually, the thermal conductivity of materials designed for efficient laser action, is small compared to that of materials optimal for the heat transfer
183:). For the efficient drain of heat from a compact device, the active medium should be a narrow slab; in order to give advantage to the amplification of light at wanted direction over the 58:
The most popular way of achieving power scalability is the "MOPA" (Master Oscillator Power Amplifier) approach. The master oscillator produces a highly coherent beam, and an
598:
1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009)
157:
pump, because the pump is not absorbed efficiently in the fiber's active core. Optimization of the shape of the cladding can extend the limit of power scaling.
497:
Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump".
413:
Kouznetsov, D.; Moloney, J.V. (2003). "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser".
203:
Scalability can also be achieved by combining separate laser beams. Completely independent beams cannot usually be combined to produce a beam with higher
68: 797: 674: 613: 572: 331:
A. Giesen; H. HΓΌgel; A. Voss; K. Wittig; U. Brauch; H. Opower (1994). "Scalable concept for diode-pumped high-power solid-state lasers".
415: 460:
Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers. 2: Broken circular symmetry".
269: 657:
Ueda; Sekiguchi H.; Matsuoka Y.; Miyajima H.; H.Kan (1999). "Conceptual design of kW-class fiber-embedded disk and tube lasers".
108:(or "active mirror"). Such lasers are believed to be scalable to a power of several kilowatts from a single active element in 184: 115: 719: 376:
D. Kouznetsov; J.-F.Bisson; J.Dong; K.Ueda (2006). "Surface loss limit of the power scaling of a thin-disk laser".
534:
A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers".
109: 499: 141:
are another type of solid-state laser with good power scaling. The power scaling of fiber lasers is limited by
42:
source, stronger cooling, and an increase in size. It may also require reduction of the background loss in the
659:
Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)
241:
of individual lasers' output, and quick adjustment to keep them all in phase. Such adjustment can be done by
577: 861: 835: 432: 231: 536: 811: 760: 545: 508: 471: 424: 387: 342: 277: 146: 437: 208: 827: 692: 680: 631: 619: 358: 305: 293: 227: 226:. Efficient passive combining of eight lasers has been reported. Further power scaling requires 778: 670: 609: 333: 215: 150: 101: 59: 43: 819: 768: 727: 662: 601: 553: 516: 479: 442: 395: 350: 285: 223: 142: 704: 643: 317: 242: 154: 127: 119: 64: 815: 764: 549: 512: 475: 428: 391: 346: 281: 802: 751: 855: 623: 557: 362: 297: 238: 39: 831: 684: 149:, and by the fact that such lasers cannot be very long. The limited length of the 219: 138: 47: 666: 195: 823: 123: 105: 89: 605: 17: 483: 446: 399: 782: 731: 596:
K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output".
520: 84: 773: 746: 204: 180: 354: 289: 270:"Laser-diode-pumped solid state lasers for gravitational wave antenna" 249:. Faster schemes based on all-optical switching are being researched. 462: 378: 176: 211:
with each other. Such beams can be combined actively or passively.
246: 194: 83: 31: 207:
than each beam has alone. Beams can only be combined if they are
67:
seeded by a common master oscillator is essential concept of the
122:
seem to be the most important processes that limit the power of
93: 747:"Coherent addition of fiber lasers by use of a fiber coupler" 796:
D.Kouznetsov; J.-F. Bisson; A. Shirakawa; K. Ueda (2005).
237:
Active combining implies the real-time measurement of the
130:
and/or combining of several active elements is required.
798:"Limits of Coherent Addition of Lasers: Simple Estimate" 245:, which is effective for suppression of phase noise at 222:
common to all of the combined lasers can be above the
745:
A.Shirakawa; T.Satou; T. Sekiguchi; K. Ueda (2002).
274:Frequency-Stabilized Lasers and Their Applications 126:. For future power scaling, the reduction of the 38:Usually, power scaling requires a more powerful 8: 772: 436: 69:High Power Laser Energy Research Facility 234:and/or length of the individual lasers. 257: 104:designed for good power scaling is the 92:configuration presented in 1992 at the 700: 690: 639: 629: 313: 303: 263: 261: 191:Coherent addition and combining beams 7: 276:. Vol. 1837. pp. 336–345. 199:Coherent addition of 4 fiber lasers. 573:"Future of High-Power Fiber Lasers" 416:IEEE Journal of Quantum Electronics 25: 661:. Vol. 2. pp. 217–218. 600:. Vol. 2. pp. 788–789. 720:"The Fiber Disk Laser explained" 153:limits the usable power of the 116:Amplified spontaneous emission 1: 214:In the passive combining (or 558:10.1016/0030-4018(96)00368-9 268:K. Ueda; N. Uehara (1993). 75:Inherently scalable designs 46:and, in particular, in the 878: 667:10.1109/CLEOPR.1999.811381 218:) of lasers, only the few 824:10.1007/s10043-005-0445-8 110:continuous-wave operation 606:10.1109/leos.1999.811970 571:K. Ueda; A. Liu (1998). 500:Optical Fiber Technology 272:. In Chung, Y. C (ed.). 718:Hamamatsu K.K. (2006). 484:10.1364/JOSAB.19.001259 447:10.1109/JQE.2003.818311 400:10.1364/JOSAB.23.001074 166:combined into a stack. 732:10.1038/nphoton.2006.6 521:10.1006/ofte.2001.0361 200: 97: 537:Optics Communications 198: 87: 774:10.1364/oe.10.001167 247:acoustic frequencies 170:Problem of heat sink 147:Brillouin scattering 816:2005OptRv..12..445K 765:2002OExpr..10.1167S 550:1996OptCo.132..511A 513:2001OptFT...7..324L 476:2002JOSAB..19.1259K 429:2003IJQE...39.1452K 392:2006JOSAB..23.1074K 347:1994ApPhB..58..365G 282:1993SPIE.1837..336U 355:10.1007/BF01081875 228:exponential growth 201: 151:double-clad fibers 118:, overheating and 98: 759:(21): 1167–1172. 726:. sample: 14–15. 676:978-0-7803-5661-0 615:978-0-7803-5634-4 423:(11): 1452–1461. 334:Applied Physics B 290:10.1117/12.143686 216:coherent addition 161:Fiber disk lasers 102:solid-state laser 60:optical amplifier 16:(Redirected from 869: 847: 846: 844: 843: 834:. Archived from 793: 787: 786: 776: 742: 736: 735: 724:Nature Photonics 715: 709: 708: 702: 698: 696: 688: 654: 648: 647: 641: 637: 635: 627: 593: 587: 586: 568: 562: 561: 544:(5–6): 511–518. 531: 525: 524: 494: 488: 487: 470:(6): 1259–1263. 457: 451: 450: 440: 410: 404: 403: 386:(6): 1074–1082. 373: 367: 366: 328: 322: 321: 315: 311: 309: 301: 265: 224:lasing threshold 143:Raman scattering 65:laser amplifiers 21: 877: 876: 872: 871: 870: 868: 867: 866: 852: 851: 850: 841: 839: 795: 794: 790: 744: 743: 739: 717: 716: 712: 699: 689: 677: 656: 655: 651: 638: 628: 616: 595: 594: 590: 570: 569: 565: 533: 532: 528: 496: 495: 491: 459: 458: 454: 438:10.1.1.196.6031 412: 411: 407: 375: 374: 370: 330: 329: 325: 312: 302: 267: 266: 259: 255: 243:adaptive optics 193: 172: 163: 136: 128:round-trip loss 120:round-trip loss 82: 77: 56: 44:laser resonator 23: 22: 15: 12: 11: 5: 875: 873: 865: 864: 854: 853: 849: 848: 810:(6): 445–447. 803:Optical Review 788: 752:Optics Express 737: 710: 701:|journal= 675: 649: 640:|journal= 614: 588: 563: 526: 507:(4): 324–339. 489: 452: 405: 368: 341:(5): 365–372. 323: 314:|journal= 256: 254: 251: 232:gain bandwidth 192: 189: 171: 168: 162: 159: 135: 132: 81: 78: 76: 73: 55: 52: 24: 14: 13: 10: 9: 6: 4: 3: 2: 874: 863: 862:Laser science 860: 859: 857: 838:on 2007-09-27 837: 833: 829: 825: 821: 817: 813: 809: 805: 804: 799: 792: 789: 784: 780: 775: 770: 766: 762: 758: 754: 753: 748: 741: 738: 733: 729: 725: 721: 714: 711: 706: 694: 686: 682: 678: 672: 668: 664: 660: 653: 650: 645: 633: 625: 621: 617: 611: 607: 603: 599: 592: 589: 584: 580: 579: 578:Laser Physics 574: 567: 564: 559: 555: 551: 547: 543: 539: 538: 530: 527: 522: 518: 514: 510: 506: 502: 501: 493: 490: 485: 481: 477: 473: 469: 465: 464: 456: 453: 448: 444: 439: 434: 430: 426: 422: 418: 417: 409: 406: 401: 397: 393: 389: 385: 381: 380: 372: 369: 364: 360: 356: 352: 348: 344: 340: 336: 335: 327: 324: 319: 307: 299: 295: 291: 287: 283: 279: 275: 271: 264: 262: 258: 252: 250: 248: 244: 240: 235: 233: 229: 225: 221: 217: 212: 210: 206: 197: 190: 188: 186: 182: 178: 169: 167: 160: 158: 156: 152: 148: 144: 140: 133: 131: 129: 125: 121: 117: 113: 111: 107: 103: 95: 91: 86: 79: 74: 72: 70: 66: 61: 53: 51: 49: 45: 41: 36: 33: 29: 28:Power scaling 19: 18:Power scaling 840:. Retrieved 836:the original 807: 801: 791: 756: 750: 740: 723: 713: 658: 652: 597: 591: 582: 576: 566: 541: 535: 529: 504: 498: 492: 467: 461: 455: 420: 414: 408: 383: 377: 371: 338: 332: 326: 273: 236: 213: 202: 173: 164: 139:Fiber lasers 137: 134:Fiber lasers 114: 100:One type of 99: 57: 37: 27: 26: 124:disk lasers 96:conference. 80:Disk lasers 48:gain medium 842:2007-03-18 585:: 774–781. 253:References 155:multi-mode 106:disk laser 90:disk laser 703:ignored ( 693:cite book 642:ignored ( 632:cite book 624:120732530 433:CiteSeerX 363:121158745 316:ignored ( 306:cite book 298:122045469 856:Category 832:27508450 783:19451976 685:30251829 209:coherent 205:radiance 181:diamonds 812:Bibcode 761:Bibcode 546:Bibcode 509:Bibcode 472:Bibcode 425:Bibcode 388:Bibcode 343:Bibcode 278:Bibcode 230:of the 830:  781:  683:  673:  622:  612:  463:JOSA B 435:  379:JOSA B 361:  296:  177:metals 828:S2CID 681:S2CID 620:S2CID 359:S2CID 294:S2CID 239:phase 220:modes 32:laser 30:of a 779:PMID 705:help 671:ISBN 644:help 610:ISBN 318:help 145:and 94:SPIE 54:MOPA 40:pump 820:doi 769:doi 728:doi 663:doi 602:doi 554:doi 542:132 517:doi 480:doi 443:doi 396:doi 351:doi 286:doi 185:ASE 858:: 826:. 818:. 808:12 806:. 800:. 777:. 767:. 757:10 755:. 749:. 722:. 697:: 695:}} 691:{{ 679:. 669:. 636:: 634:}} 630:{{ 618:. 608:. 581:. 575:. 552:. 540:. 515:. 503:. 478:. 468:39 466:. 441:. 431:. 421:39 419:. 394:. 384:23 382:. 357:. 349:. 339:58 337:. 310:: 308:}} 304:{{ 292:. 284:. 260:^ 179:, 112:. 88:A 71:. 50:. 845:. 822:: 814:: 785:. 771:: 763:: 734:. 730:: 707:) 687:. 665:: 646:) 626:. 604:: 583:8 560:. 556:: 548:: 523:. 519:: 511:: 505:7 486:. 482:: 474:: 449:. 445:: 427:: 402:. 398:: 390:: 365:. 353:: 345:: 320:) 300:. 288:: 280:: 175:( 20:)

Index

Power scaling
laser
pump
laser resonator
gain medium
optical amplifier
laser amplifiers
High Power Laser Energy Research Facility

disk laser
SPIE
solid-state laser
disk laser
continuous-wave operation
Amplified spontaneous emission
round-trip loss
disk lasers
round-trip loss
Fiber lasers
Raman scattering
Brillouin scattering
double-clad fibers
multi-mode
metals
diamonds
ASE

radiance
coherent
coherent addition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑