Knowledge (XXG)

Coherent addition

Source 📝

61: 78:
of the spectral bandwidth of gain and/or length of partial lasers. The same conclusion can be made also on the base of more detailed simulations. Practically, the combination of more than ten lasers with a passive combining arrangement appears to be difficult. However, active coherent combining of
73:
The addition of lasers reduces the number of longitudinal modes in the output beam; the more lasers are combined, the smaller is the number of longitudinal modes in the output. The simple estimates show that the number of output modes reduces exponentially with the number of lasers combined. Of
87:
Nonlinear interactions of light waves are used widely to synchronize the laser beams in multichannel optical systems. Self-adjusting of phases may be robustly achievable in binary-tree array of beam-splitters and degenerate four-wave mixing Kerr
49:. As the ability of pumping and/or cooling of a single laser is saturated, several similar lasers can be forced to oscillate in phase with a common coupler. The first nonlinear theory of the coherent addition of laser sets had been developed by 53:
with co-workers in 1965. For Nd:YAG laser set beam combination had been realized by means of SBS phase conjugating mirror. The coherent addition was demonstrated in power scaling of
239: 322: 269: 121: 199: 289: 176: 141: 484: 410:
Bowers, M W; Boyd, R W; Hankla, A K (1997). "Brillouin-enhanced four-wave-mixing vector phase-conjugate mirror with beam-combining capability".
627:
Basov, N G; Zubarev, I G; Mironov, A B; Michailov, S I; Okulov, A Yu (1980). "Laser interferometer with wavefront reversing mirrors".
511:
A.E.Siegman. Resonant modes of linearly coupled multiple fiber laser structures. Preprint of the Stanford University, 2005, 25 pages;
332:
Laser beam combination of a dozens fiber laser via multispectral technique at 50 kW output power level had been implemented in
93: 74:
order of eight lasers can be combined in such a way. The future increase of number of combined lasers requires the
324:
as well. Talbot phase-locking techniques are applicable to thin disk diode-pumped solid-state laser arrays.
729: 481: 356: 96:
extreme light facilities. This phase-conjugating Michelson interferometer increases the brightness as
698: 663: 636: 563: 419: 524: 349: 333: 587: 553: 443: 392: 75: 605: 579: 435: 208: 89: 544:
Okulov, A Yu (2014). "Coherent chirped pulse laser network with Mickelson phase conjugator".
294: 706: 671: 571: 427: 384: 244: 512: 99: 689:
Okulov, A Yu (1993). "Scaling of diode-array-pumped solid-state lasers via self-imaging".
500: 488: 345: 35: 702: 667: 640: 567: 525:
Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers
423: 181: 528: 492: 465: 274: 161: 156: 151:
Constructive interference due to Talbot self-imaging forces the lasers in the array to
126: 375:
Basov, NG; Belenov, EM; Letokhov, VS (1965). "Diffraction synchronization of lasers".
723: 710: 591: 461: 396: 202: 50: 31: 447: 654:
Okulov, A Yu (1990). "Two-dimensional periodic structures in nonlinear resonator".
341: 152: 64:
Fig.1. Example of the coherent addition of 4 fiber lasers with a common coupler.
54: 46: 60: 337: 675: 583: 439: 575: 431: 523:
Leo A. Siiman, Wei-zung Chang, Tong Zhou, and Almantas Galvanauskas, "
388: 79:
lasers has the potential to scale to very large numbers of channels.
558: 59: 27: 271:
element laser array phase-locked by Talbot cavity Fresnel number
462:
Coherent addition of fiber lasers by use of a fiber coupler
34:. It allows increasing the output power and brightness of 336:
laser system with promising deployment at onboard future
513:
http://www.stanford.edu/~siegman/coupled_fiber_modes.pdf
482:
Limits of Coherent Addition of Lasers: Simple Estimate
460:
A. Shirakawa, T. Saitou, T. Sekiguchi and K. Ueda: "
297: 277: 247: 211: 184: 164: 129: 102: 480:
D. Kouznetsov, J.F. Bisson. A. Shirakawa, K.Ueda "
316: 283: 263: 233: 193: 170: 135: 115: 344:armoured vehicles and fighter aircraft of the 8: 557: 308: 296: 276: 252: 246: 222: 210: 183: 163: 128: 107: 101: 143:is the number of phase-locked channels. 367: 328:Field applications of beam combination 83:Nonlinear coherent addition of lasers 7: 201:element laser array phase-locked by 14: 606:"The Nobel Prize in Physics 2018" 499:, No. 6, 445–447 (2005). (Also 1: 16:Method of laser power scaling 711:10.1016/0030-4018(93)90342-3 94:Chirped pulse amplification 69:Limits of coherent addition 746: 241:For the two-dimensional 234:{\displaystyle F=N^{2}.} 147:Talbot coherent addition 317:{\displaystyle F=N^{2}} 178:of the one-dimensional 153:transverse mode locking 36:single-transversal mode 676:10.1364/JOSAB.7.001045 357:List of laser articles 318: 285: 265: 264:{\displaystyle N^{2}-} 235: 195: 172: 137: 117: 65: 377:Sov. Phys.-Tech. Phys 319: 286: 266: 236: 196: 173: 138: 118: 116:{\displaystyle N^{2}} 63: 576:10.1364/AO.53.002302 432:10.1364/OL.22.000360 295: 275: 245: 209: 182: 162: 127: 100: 703:1993OptCo..99..350O 668:1990JOSAB...7.1045O 641:1980ZhETF..79.1678B 568:2014ApOpt..53.2302O 424:1997OptL...22..360B 350:BAE Systems Tempest 334:Dragonfire (weapon) 608:. Nobel Foundation 534:(2012) 18097-18116 487:2007-09-27 at the 314: 281: 261: 231: 194:{\displaystyle N-} 191: 168: 133: 113: 76:exponential growth 66: 41:Usually, the term 24:coherent combining 552:(11): 2302–2311. 389:10.1117/12.160374 284:{\displaystyle F} 171:{\displaystyle F} 136:{\displaystyle N} 90:Phase conjugation 43:coherent addition 20:Coherent addition 737: 715: 714: 697:(5–6): 350–354. 686: 680: 679: 662:(6): 1045–1050. 651: 645: 644: 624: 618: 617: 615: 613: 602: 596: 595: 561: 541: 535: 521: 515: 509: 503: 478: 472: 471:(2002) 1167–1172 458: 452: 451: 407: 401: 400: 372: 348:, including the 323: 321: 320: 315: 313: 312: 290: 288: 287: 282: 270: 268: 267: 262: 257: 256: 240: 238: 237: 232: 227: 226: 200: 198: 197: 192: 177: 175: 174: 169: 142: 140: 139: 134: 122: 120: 119: 114: 112: 111: 745: 744: 740: 739: 738: 736: 735: 734: 720: 719: 718: 688: 687: 683: 653: 652: 648: 629:Sov. Phys. JETP 626: 625: 621: 611: 609: 604: 603: 599: 543: 542: 538: 522: 518: 510: 506: 489:Wayback Machine 479: 475: 459: 455: 409: 408: 404: 374: 373: 369: 365: 346:Royal Air Force 330: 304: 293: 292: 273: 272: 248: 243: 242: 218: 207: 206: 180: 179: 160: 159: 149: 125: 124: 103: 98: 97: 85: 71: 30:is a method of 17: 12: 11: 5: 743: 741: 733: 732: 722: 721: 717: 716: 681: 646: 619: 597: 546:Applied Optics 536: 529:Optics Express 516: 504: 493:Optical Review 473: 466:Optics Express 453: 418:(6): 360–362. 412:Optics Letters 402: 366: 364: 361: 360: 359: 329: 326: 311: 307: 303: 300: 280: 260: 255: 251: 230: 225: 221: 217: 214: 190: 187: 167: 157:Fresnel number 148: 145: 132: 110: 106: 84: 81: 70: 67: 15: 13: 10: 9: 6: 4: 3: 2: 742: 731: 730:Laser science 728: 727: 725: 712: 708: 704: 700: 696: 692: 685: 682: 677: 673: 669: 665: 661: 657: 650: 647: 642: 638: 634: 630: 623: 620: 607: 601: 598: 593: 589: 585: 581: 577: 573: 569: 565: 560: 555: 551: 547: 540: 537: 533: 530: 526: 520: 517: 514: 508: 505: 501: 498: 494: 490: 486: 483: 477: 474: 470: 467: 463: 457: 454: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 406: 403: 398: 394: 390: 386: 382: 378: 371: 368: 362: 358: 355: 354: 353: 351: 347: 343: 339: 335: 327: 325: 309: 305: 301: 298: 278: 258: 253: 249: 228: 223: 219: 215: 212: 204: 203:Talbot cavity 188: 185: 165: 158: 154: 146: 144: 130: 108: 104: 95: 91: 82: 80: 77: 68: 62: 58: 56: 52: 51:Nikolay Basov 48: 44: 39: 37: 33: 32:power scaling 29: 25: 21: 694: 690: 684: 659: 655: 649: 632: 628: 622: 610:. Retrieved 600: 549: 545: 539: 531: 519: 507: 496: 476: 468: 456: 415: 411: 405: 380: 376: 370: 342:British Army 331: 205:is given by 150: 86: 72: 55:Raman lasers 47:fiber lasers 42: 40: 23: 19: 18: 691:Opt. Commun 291:scales as 45:applies to 635:(5): 847. 383:(2): 845. 363:References 340:warships, 338:Royal Navy 612:2 October 592:118343729 559:1311.6703 397:110333595 259:− 189:− 724:Category 584:24787398 485:Archived 448:25530526 440:18183201 123:, where 699:Bibcode 664:Bibcode 637:Bibcode 564:Bibcode 420:Bibcode 38:laser. 656:JOSA B 590:  582:  446:  438:  395:  155:. The 28:lasers 588:S2CID 554:arXiv 495:Vol. 444:S2CID 393:S2CID 26:) of 614:2018 580:PMID 436:PMID 22:(or 707:doi 672:doi 572:doi 428:doi 385:doi 352:. 92:in 726:: 705:. 695:99 693:. 670:. 658:. 633:52 631:. 586:. 578:. 570:. 562:. 550:53 548:. 532:20 527:" 502:.) 497:12 491:" 469:10 464:" 442:. 434:. 426:. 416:22 414:. 391:. 381:10 379:. 57:. 713:. 709:: 701:: 678:. 674:: 666:: 660:7 643:. 639:: 616:. 594:. 574:: 566:: 556:: 450:. 430:: 422:: 399:. 387:: 310:2 306:N 302:= 299:F 279:F 254:2 250:N 229:. 224:2 220:N 216:= 213:F 186:N 166:F 131:N 109:2 105:N

Index

lasers
power scaling
single-transversal mode
fiber lasers
Nikolay Basov
Raman lasers

exponential growth
Phase conjugation
Chirped pulse amplification
transverse mode locking
Fresnel number
Talbot cavity
Dragonfire (weapon)
Royal Navy
British Army
Royal Air Force
BAE Systems Tempest
List of laser articles
doi
10.1117/12.160374
S2CID
110333595
Bibcode
1997OptL...22..360B
doi
10.1364/OL.22.000360
PMID
18183201
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.