Knowledge (XXG)

Voltage-sensitive dye

Source 📝

192: 33: 270:
of cardiomyocytes by Guixue Bu et al. More recently, a series of fluorinated ANEP dyes was introduced that offer enhanced sensitivity and photostability; they are also available over a wide choice of excitation and emission wavelengths. A recent computational study confirmed that the ANEP dyes are
283:
and preferably localized in membranes with their hydrophobic tails. They are used in applications involving fluorescence or absorption; they are fast acting and are able to provide linear measurements of changes in membrane potential. Voltage sensitive dyes are supplied by many companies who offer
308:
Measurement of population signals from many areas may be taken simultaneously, and hundreds of neurons may be recorded from. Such multisite recordings may provide precise information on action potential initiation and propagation (including direction and velocity), and on the entire branching
295:
A variety of specialized equipment may be used in conjunction with the dyes, and choices in equipment will vary according to the particularities of a preparation. Essentially, equipment will include specialized microscopes and imaging devices, and may include technical lamps or lasers.
345:
Voltage-sensitive dyes may respond very differently from one preparation to another; typically tens of dyes must be tested in order to obtain an optimal signal., imaging parameters, such as excitation wavelength, emission wavelength, exposure time, should also be
846:
Fiala, Tomas; Wang, Jihang; Dunn, Matthew; Šebej, Peter; Choi, Se Joon; Nwadibia, Ekeoma C.; Fialova, Eva; Martinez, Diana M.; Cheetham, Claire E.; Fogle, Keri J.; Palladino, Michael J.; Freyberg, Zachary; Sulzer, David; Sames, Dalibor (2020-05-20).
378:
Cells may be permanently affected by treatments. Lasting pharmacological effects are possible, and the photodynamics of the dyes can be damaging. Recently developed fuorinated voltages sensitive dyes have been shown to mitigate these
1477:
Cinelli AR, Hamilton KA, Kauer JS (May 1995). "Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation".
1513:
Cinelli AR, Kauer JS (May 1995). "Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation".
253:
Commonly used voltage sensitive dyes are substituted aminonaphthylethenylpyridinium (ANEP) dyes, such as di-4-ANEPPS, di-8-ANEPPS, and RH237. Depending on their chemical modifications which change their
1377:"Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions" 179:. This technology is especially powerful for the study of patterns of activity in complex multicellular preparations. It also makes possible the measurement of spatial and temporal variations in 233:
Slow-response probes: These exhibit potential-dependent changes in their transmembrane distribution which are accompanied by a fluorescence change. Typical slow-response probes include cationic
337:
may perfused internally into single cell through a patch pipet. This technique has permitted the study of electrical signals in individual dendrites and dendritic spines within brain slices.
419:
mapping of electrical activity in whole hearts from various animal species, subcellular imaging from single cardiomyocytes, and even mapping both sinus rhythms and arrhytmias in open heart
1549:
Cinelli AR, Neff SR, Kauer JS (May 1995). "Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system".
199:
Fast-response probes: These are amphiphilic membrane staining dyes which usually have a pair of hydrocarbon chains acting as membrane anchors and a hydrophilic group which aligns the
371:
Noise is a problem in all preparations with voltage-sensitive dyes and in certain preparations the signal may be significantly obscured. Signal to noise ratios can be improved with
368:
On the other hand, if the dyes are too water-soluble, staining may not persist. This can be addressed by utilizing dyes containing longer alkyl chains to increase lipophilicity.
315:
In certain preparations the pharmacological effects of the dyes may be completely reversed by removing the staining pipette and allowing the neuron 1–2 hours for recovery.
353:
or move through intracellular spaces to the region of membrane desired for study. Staining is a serious issue in applications of these dyes. Water-soluble dyes, such as
203:
perpendicular to the membrane/aqueous interface. The chromophore is believed to undergo a large electronic charge shift as a result of excitation from the ground to the
271:
affected only by the electrostatic environment and not by specific molecular interactions. Other structural scaffolds, such as xanthenes, are also successfully used.
292:
specializes only in voltage sensitive dyes; they have an exclusive license to distribute the large set of fluorinated VSDs, marketed under the ElectroFluor brand.
1584:
Arieli A, Sterkin A, Grinvald A, Aertsen A (September 1996). "Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses".
1635:
Grinvald A, Anglister L, Freeman JA, Hildesheim R, Manker A (1984). "Real-time optical imaging of naturally evoked electrical activity in intact frog brain".
207:
and this underlies the putative electrochromic mechanism for the sensitivity of these dyes to membrane potential. This molecule (dye) intercalates among the
923:
Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (March 2005). "Imaging brain activity with voltage- and calcium-sensitive dyes".
1721:
Seidemann E, Arieli A, Grinvald A, Slovin H (February 2002). "Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal".
318:
Dyes may be used to analyze signal integration in terminal dendritic branches. Voltage-sensitive dyes offer the only alternative to genetically encoded
1686:
Slovin H, Arieli A, Hildesheim R, Grinvald A (December 2002). "Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys".
312:
Measurements of spike activity in a ganglion that is producing behaviour can be taken and may provide information about how the behaviour is producing.
375:
or temporal filtering algorithms. Many such algorithms exist; one signal processing algorithm can be found in recent work with the ANNINE-6plus dye.
811:
Robinson D, Besley NA, O'Shea P, Hirst JD (April 2011). "Di-8-ANEPPS emission spectra in phospholipid/cholesterol membranes: a theoretical study".
230:
New voltage dyes can sense voltage with high speed and sensitivity using photoinduced electron transfer (PeT) through a conjugated molecular wire.
1989: 388:
Voltage-sensitive dyes have been used to measure neural activity in several areas of the nervous system in a variety of organisms, including the
50: 518: 654:
Fluhler E, Burnham VG, Loew LM (October 1985). "Spectra, membrane binding, and potentiometric responses of new charge shift probes".
592: 116: 97: 279:
The core material for imaging brain activity with voltage-sensitive dyes are the dyes themselves. These voltage-sensitive dyes are
69: 1994: 1833:"Simultaneous measurement and modulation of multiple physiological parameters in the isolated heart using optical techniques" 258:
they are used for different experimental procedures. They were first described in 1985 by the research group of Leslie Loew.
167:
Potentiometric dyes are used to monitor the electrical activity inside cell organelles where it is not possible to insert an
76: 54: 423:
pig, where motion artifacts could be eliminated by dual wavelength ratio imaging of the voltage sensitive dye fluorescence.
83: 1283:
Lee P, Quintanilla JG, Alfonso-Almazán JM, Galán-Arriola C, Yan P, Sánchez-González J, et al. (September 2019).
2004: 263: 65: 43: 1428:"Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging" 319: 141: 966:
Zecević D (May 1996). "Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes".
1784:"Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium" 195:
Pioneers of voltage-sensitive dyes: A. Grinvald, L.B. Cohen, K. Kamino, B.M. Salzberg, W.N. Ross; Tokyo, 2000
1738: 1019:"Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons" 1882:"Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure" 2009: 1999: 1332:
Grinvald A, Hildesheim R (November 2004). "VSDI: a new era in functional imaging of cortical dynamics".
215:. This orientation assures that the excitation induced charge redistribution will occur parallel to the 593:"Locally Excited State-Charge Transfer State Coupled Dyes as Optically Responsive Neuron Firing Probes" 191: 1893: 1730: 1644: 1593: 1285:"In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models" 1236: 1128: 975: 765: 705: 694:"Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes" 633: 1743: 234: 212: 90: 1967: 1764: 1668: 1617: 1357: 999: 948: 479: 341:
Weaknesses of imaging brain activity with voltage-sensitive dyes include the following problems:
304:
Strengths of imaging brain activity with voltage-sensitive dyes include the following abilities:
285: 180: 157: 1921: 1862: 1813: 1782:
Matiukas A, Mitrea BG, Qin M, Pertsov AM, Shvedko AG, Warren MD, et al. (November 2007).
1756: 1703: 1660: 1609: 1566: 1531: 1495: 1459: 1408: 1349: 1314: 1262: 1205: 1156: 1097: 1048: 991: 940: 886: 868: 828: 793: 731: 671: 615: 573: 524: 514: 471: 350: 255: 242: 1957: 1911: 1901: 1852: 1844: 1803: 1795: 1748: 1695: 1652: 1601: 1558: 1523: 1487: 1449: 1439: 1398: 1388: 1341: 1304: 1296: 1252: 1244: 1195: 1187: 1146: 1136: 1087: 1079: 1068:"Membrane potential changes in dendritic spines during action potentials and synaptic input" 1038: 1030: 983: 932: 876: 860: 820: 783: 773: 721: 713: 663: 607: 563: 555: 506: 461: 453: 389: 323: 161: 849:"Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain" 542:
Woodford CR, Frady EP, Smith RS, Morey B, Canzi G, Palida SF, et al. (February 2015).
224: 176: 752:
Yan P, Acker CD, Zhou WL, Lee P, Bollensdorff C, Negrean A, et al. (December 2012).
362: 334: 266:) and high sensitivity. It has been applied to measure the action potentials of a single 160:
which can be detected with voltage sensitive dyes. Measurements may indicate the site of
1897: 1880:
Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Tesi C, et al. (October 2014).
1734: 1648: 1597: 1240: 1132: 979: 769: 709: 219:
within the membrane. A change in the voltage across the membrane will therefore cause a
1916: 1881: 1857: 1832: 1808: 1783: 1454: 1444: 1427: 1403: 1393: 1376: 1309: 1284: 1257: 1224: 1200: 1175: 1151: 1116: 1092: 1067: 1043: 1018: 881: 848: 788: 753: 726: 693: 568: 543: 466: 441: 397: 372: 223:
resulting from a direct interaction between the field and the ground and excited state
216: 1983: 1361: 1034: 483: 409: 401: 393: 204: 164:
origin, and measurements of action potential velocity and direction may be obtained.
1971: 1621: 1672: 1083: 1003: 952: 405: 358: 354: 330: 259: 172: 148:
changes. They are able to provide linear measurements of firing activity of single
17: 1768: 1605: 1799: 1191: 200: 32: 1886:
Proceedings of the National Academy of Sciences of the United States of America
758:
Proceedings of the National Academy of Sciences of the United States of America
717: 1848: 1562: 1527: 1491: 1141: 936: 415:
Many applications in cardiac electrophysiology have been published, including
280: 238: 208: 872: 457: 1962: 1945: 1906: 1752: 778: 510: 168: 1925: 1866: 1817: 1760: 1707: 1463: 1412: 1353: 1318: 1266: 1209: 1176:"EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons" 1160: 1101: 1052: 944: 890: 832: 797: 735: 619: 611: 577: 497:
Cohen LB, Salzberg BM (1978). "Optical measurement of membrane potential".
475: 1699: 1664: 1613: 1570: 1535: 1499: 995: 675: 1300: 1225:"Electrical behaviour of dendritic spines as revealed by voltage imaging" 864: 528: 267: 220: 153: 667: 591:
Sirbu D, Butcher JB, Waddell PG, Andras P, Benniston AC (October 2017).
1831:
Lee P, Yan P, Ewart P, Kohl P, Loew LM, Bollensdorff C (October 2012).
1248: 149: 145: 824: 559: 1656: 987: 1946:"Potentiometric dyes: imaging electrical activity of cell membranes" 1345: 289: 1117:"Single-voxel recording of voltage transients in dendritic spines" 190: 156:. Many physiological processes are accompanied by changes in cell 544:"Improved PeT molecules for optically sensing voltage in neurons" 137: 1017:
Zhou WL, Yan P, Wuskell JP, Loew LM, Antic SD (February 2008).
26: 1223:
Popovic MA, Carnevale N, Rozsa B, Zecevic D (October 2015).
754:"Palette of fluorinated voltage-sensitive hemicyanine dyes" 349:
Voltage-sensitive dyes often fail to penetrate through
1375:
Petersen CC, Grinvald A, Sakmann B (February 2003).
499:
Reviews of Physiology, Biochemistry and Pharmacology
57:. Unsourced material may be challenged and removed. 692:Bu G, Adams H, Berbari EJ, Rubart M (March 2009). 262:is a voltage sensitive dye with fast response (ns 442:"Tools to measure membrane potential of neurons" 918: 916: 914: 912: 910: 908: 906: 904: 902: 900: 687: 685: 8: 152:, large neuronal populations or activity of 408:of the frog, and the visual cortex of the 1961: 1915: 1905: 1856: 1807: 1742: 1453: 1443: 1402: 1392: 1308: 1256: 1199: 1174:Acker CD, Hoyos E, Loew LM (March 2016). 1150: 1140: 1091: 1042: 880: 787: 777: 725: 567: 465: 117:Learn how and when to remove this message 1426:Petersen CC, Sakmann B (November 2001). 853:Journal of the American Chemical Society 548:Journal of the American Chemical Society 432: 1115:Acker CD, Yan P, Loew LM (July 2011). 1278: 1276: 7: 1023:The European Journal of Neuroscience 747: 745: 55:adding citations to reliable sources 925:Cellular and Molecular Neurobiology 813:The Journal of Physical Chemistry B 183:along the surface of single cells. 1445:10.1523/JNEUROSCI.21-21-08435.2001 1394:10.1523/JNEUROSCI.23-04-01298.2003 25: 1066:Palmer LM, Stuart GJ (May 2009). 396:of the rat somatosensory cortex, 326:derived proteins) for doing this. 1035:10.1111/j.1460-9568.2008.06075.x 31: 634:"Potential-Sensitive ANEP Dyes" 42:needs additional citations for 1990:Biochemistry detection methods 1084:10.1523/JNEUROSCI.5847-08.2009 1: 1606:10.1126/science.273.5283.1868 600:Chemistry: A European Journal 365:, do not suffer this problem. 288:for biological applications. 1334:Nature Reviews. Neuroscience 1800:10.1016/j.hrthm.2007.07.012 1432:The Journal of Neuroscience 1381:The Journal of Neuroscience 1192:10.1523/ENEURO.0050-15.2016 1072:The Journal of Neuroscience 440:Khadria A (November 2012). 329:More soluble dyes such as 2026: 1950:Pure and Applied Chemistry 1688:Journal of Neurophysiology 1551:Journal of Neurophysiology 1516:Journal of Neurophysiology 1480:Journal of Neurophysiology 1186:(2): ENEURO.0050–15.2016. 718:10.1016/j.bpj.2008.12.3896 320:voltage sensitive proteins 290:Potentiometric Probes, LLC 144:properties in response to 1849:10.1007/s00424-012-1135-6 1563:10.1152/jn.1995.73.5.2017 1528:10.1152/jn.1995.73.5.2033 1492:10.1152/jn.1995.73.5.2053 1142:10.1016/j.bpj.2011.06.021 937:10.1007/s10571-005-3059-6 1944:Loew LM (January 1996). 458:10.1016/j.bj.2022.05.007 300:Strengths and weaknesses 1963:10.1351/pac199668071405 1907:10.1073/pnas.1411557111 1753:10.1126/science.1066641 1289:Cardiovascular Research 779:10.1073/pnas.1214850109 511:10.1007/3-540-08907-1_2 66:"Voltage-sensitive dye" 612:10.1002/chem.201703366 309:structure of a neuron. 196: 130:Voltage-sensitive dyes 1995:Cell culture reagents 1700:10.1152/jn.00194.2002 1229:Nature Communications 194: 865:10.1021/jacs.0c00861 213:biological membranes 51:improve this article 1898:2014PNAS..11115196C 1892:(42): 15196–15201. 1735:2002Sci...295..862S 1649:1984Natur.308..848G 1598:1996Sci...273.1868A 1592:(5283): 1868–1871. 1241:2015NatCo...6.8436P 1133:2011BpJ...101L..11A 1121:Biophysical Journal 980:1996Natur.381..322Z 770:2012PNAS..10920443Y 764:(50): 20443–20448. 710:2009BpJ....96.2532B 698:Biophysical Journal 668:10.1021/bi00342a010 606:(58): 14639–14649. 400:of the salamander, 256:physical properties 140:which change their 134:potentiometric dyes 18:Potentiometric dyes 1301:10.1093/cvr/cvz039 1249:10.1038/ncomms9436 446:Biomedical Journal 286:fluorescent probes 197: 181:membrane potential 158:membrane potential 2005:Electrophysiology 1794:(11): 1441–1451. 1729:(5556): 862–865. 1643:(5962): 848–850. 1438:(21): 8435–8446. 1295:(11): 1659–1671. 1078:(21): 6897–6903. 974:(6580): 322–325. 859:(20): 9285–9301. 825:10.1021/jp1111372 819:(14): 4160–4167. 662:(21): 5749–5755. 560:10.1021/ja510602z 520:978-3-540-08907-0 373:spatial filtering 359:ElectroFluor-530s 351:connective tissue 331:ElectroFluor-530s 127: 126: 119: 101: 16:(Redirected from 2017: 1975: 1965: 1956:(7): 1405–1409. 1930: 1929: 1919: 1909: 1877: 1871: 1870: 1860: 1828: 1822: 1821: 1811: 1779: 1773: 1772: 1746: 1718: 1712: 1711: 1694:(6): 3421–3438. 1683: 1677: 1676: 1657:10.1038/308848a0 1632: 1626: 1625: 1581: 1575: 1574: 1557:(5): 2017–2032. 1546: 1540: 1539: 1522:(5): 2033–2052. 1510: 1504: 1503: 1486:(5): 2053–2071. 1474: 1468: 1467: 1457: 1447: 1423: 1417: 1416: 1406: 1396: 1387:(4): 1298–1309. 1372: 1366: 1365: 1329: 1323: 1322: 1312: 1280: 1271: 1270: 1260: 1220: 1214: 1213: 1203: 1171: 1165: 1164: 1154: 1144: 1112: 1106: 1105: 1095: 1063: 1057: 1056: 1046: 1014: 1008: 1007: 988:10.1038/381322a0 963: 957: 956: 920: 895: 894: 884: 843: 837: 836: 808: 802: 801: 791: 781: 749: 740: 739: 729: 704:(6): 2532–2546. 689: 680: 679: 651: 645: 644: 643:. 24 March 2006. 638: 630: 624: 623: 597: 588: 582: 581: 571: 554:(5): 1817–1824. 539: 533: 532: 494: 488: 487: 469: 437: 390:squid giant axon 162:action potential 132:, also known as 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 2025: 2024: 2020: 2019: 2018: 2016: 2015: 2014: 1980: 1979: 1978: 1943: 1939: 1937:Further reading 1934: 1933: 1879: 1878: 1874: 1837:Pflügers Archiv 1830: 1829: 1825: 1781: 1780: 1776: 1744:10.1.1.386.4910 1720: 1719: 1715: 1685: 1684: 1680: 1634: 1633: 1629: 1583: 1582: 1578: 1548: 1547: 1543: 1512: 1511: 1507: 1476: 1475: 1471: 1425: 1424: 1420: 1374: 1373: 1369: 1346:10.1038/nrn1536 1340:(11): 874–885. 1331: 1330: 1326: 1282: 1281: 1274: 1222: 1221: 1217: 1173: 1172: 1168: 1114: 1113: 1109: 1065: 1064: 1060: 1016: 1015: 1011: 965: 964: 960: 922: 921: 898: 845: 844: 840: 810: 809: 805: 751: 750: 743: 691: 690: 683: 653: 652: 648: 636: 632: 631: 627: 595: 590: 589: 585: 541: 540: 536: 521: 496: 495: 491: 439: 438: 434: 429: 394:whisker barrels 386: 302: 277: 251: 189: 177:dendritic spine 123: 112: 106: 103: 60: 58: 48: 36: 23: 22: 15: 12: 11: 5: 2023: 2021: 2013: 2012: 2007: 2002: 1997: 1992: 1982: 1981: 1977: 1976: 1940: 1938: 1935: 1932: 1931: 1872: 1843:(4): 403–414. 1823: 1774: 1713: 1678: 1627: 1576: 1541: 1505: 1469: 1418: 1367: 1324: 1272: 1215: 1166: 1127:(2): L11–L13. 1107: 1058: 1029:(4): 923–936. 1009: 958: 931:(2): 245–282. 896: 838: 803: 741: 681: 646: 625: 583: 534: 519: 489: 452:(5): 749–762. 431: 430: 428: 425: 398:olfactory bulb 385: 382: 381: 380: 376: 369: 366: 347: 339: 338: 327: 316: 313: 310: 301: 298: 276: 273: 250: 247: 225:dipole moments 221:spectral shift 217:electric field 188: 185: 171:, such as the 125: 124: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2022: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1988: 1987: 1985: 1973: 1969: 1964: 1959: 1955: 1951: 1947: 1942: 1941: 1936: 1927: 1923: 1918: 1913: 1908: 1903: 1899: 1895: 1891: 1887: 1883: 1876: 1873: 1868: 1864: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1827: 1824: 1819: 1815: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1778: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1745: 1740: 1736: 1732: 1728: 1724: 1717: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1682: 1679: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1631: 1628: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1545: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1509: 1506: 1501: 1497: 1493: 1489: 1485: 1481: 1473: 1470: 1465: 1461: 1456: 1451: 1446: 1441: 1437: 1433: 1429: 1422: 1419: 1414: 1410: 1405: 1400: 1395: 1390: 1386: 1382: 1378: 1371: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1328: 1325: 1320: 1316: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1277: 1273: 1268: 1264: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1219: 1216: 1211: 1207: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1170: 1167: 1162: 1158: 1153: 1148: 1143: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1108: 1103: 1099: 1094: 1089: 1085: 1081: 1077: 1073: 1069: 1062: 1059: 1054: 1050: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1013: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 962: 959: 954: 950: 946: 942: 938: 934: 930: 926: 919: 917: 915: 913: 911: 909: 907: 905: 903: 901: 897: 892: 888: 883: 878: 874: 870: 866: 862: 858: 854: 850: 842: 839: 834: 830: 826: 822: 818: 814: 807: 804: 799: 795: 790: 785: 780: 775: 771: 767: 763: 759: 755: 748: 746: 742: 737: 733: 728: 723: 719: 715: 711: 707: 703: 699: 695: 688: 686: 682: 677: 673: 669: 665: 661: 657: 650: 647: 642: 635: 629: 626: 621: 617: 613: 609: 605: 601: 594: 587: 584: 579: 575: 570: 565: 561: 557: 553: 549: 545: 538: 535: 530: 526: 522: 516: 512: 508: 504: 500: 493: 490: 485: 481: 477: 473: 468: 463: 459: 455: 451: 447: 443: 436: 433: 426: 424: 422: 418: 413: 411: 410:rhesus monkey 407: 403: 402:visual cortex 399: 395: 391: 383: 377: 374: 370: 367: 364: 360: 356: 352: 348: 344: 343: 342: 336: 332: 328: 325: 321: 317: 314: 311: 307: 306: 305: 299: 297: 293: 291: 287: 282: 274: 272: 269: 265: 264:response time 261: 257: 248: 246: 244: 240: 236: 235:carbocyanines 231: 228: 226: 222: 218: 214: 210: 206: 205:excited state 202: 193: 187:Types of dyes 186: 184: 182: 178: 174: 170: 165: 163: 159: 155: 151: 147: 143: 139: 135: 131: 121: 118: 110: 107:December 2008 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: –  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 19: 2010:Cell biology 2000:Neuroscience 1953: 1949: 1889: 1885: 1875: 1840: 1836: 1826: 1791: 1788:Heart Rhythm 1787: 1777: 1726: 1722: 1716: 1691: 1687: 1681: 1640: 1636: 1630: 1589: 1585: 1579: 1554: 1550: 1544: 1519: 1515: 1508: 1483: 1479: 1472: 1435: 1431: 1421: 1384: 1380: 1370: 1337: 1333: 1327: 1292: 1288: 1232: 1228: 1218: 1183: 1179: 1169: 1124: 1120: 1110: 1075: 1071: 1061: 1026: 1022: 1012: 971: 967: 961: 928: 924: 856: 852: 841: 816: 812: 806: 761: 757: 701: 697: 659: 656:Biochemistry 655: 649: 640: 628: 603: 599: 586: 551: 547: 537: 502: 498: 492: 449: 445: 435: 420: 416: 414: 406:optic tectum 404:of the cat, 387: 355:ANNINE-6plus 340: 303: 294: 278: 260:ANNINE-6plus 252: 241:, and ionic 232: 229: 198: 173:mitochondria 166: 133: 129: 128: 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 1235:(1): 8436. 363:di-2-ANEPEQ 335:di-2-ANEPEQ 201:chromophore 1984:Categories 641:Invitrogen 427:References 346:optimized. 281:lipophilic 239:rhodamines 209:lipophilic 77:newspapers 1739:CiteSeerX 1362:205500046 873:0002-7863 505:: 35–88. 484:249354518 322:(such as 275:Materials 169:electrode 1972:98804424 1926:25288764 1867:22886365 1818:17954405 1761:11823644 1708:12466458 1622:23741402 1464:11606632 1413:12598618 1354:15496865 1319:30753358 1267:26436431 1210:27257618 1161:21767473 1102:19474316 1053:18279369 945:16050036 891:32395989 833:21425824 798:23169660 736:19289075 620:28833695 578:25584688 476:35667642 379:effects. 268:t-tubule 249:Examples 211:part of 154:myocytes 142:spectral 1917:4210349 1894:Bibcode 1858:3495582 1809:2121222 1731:Bibcode 1723:Science 1673:4369241 1665:6717577 1645:Bibcode 1614:8791593 1594:Bibcode 1586:Science 1571:7542698 1536:7623098 1500:7542699 1455:6762780 1404:6742278 1310:6704389 1258:4594633 1237:Bibcode 1201:4874537 1152:3136788 1129:Bibcode 1093:6665597 1044:2715167 1004:4322430 996:8692270 976:Bibcode 953:1751986 882:7750015 789:3528613 766:Bibcode 727:2907679 706:Bibcode 676:4084490 569:4513930 467:9661650 421:in vivo 417:ex vivo 243:oxonols 150:neurons 146:voltage 91:scholar 1970:  1924:  1914:  1865:  1855:  1816:  1806:  1769:555180 1767:  1759:  1741:  1706:  1671:  1663:  1637:Nature 1620:  1612:  1569:  1534:  1498:  1462:  1452:  1411:  1401:  1360:  1352:  1317:  1307:  1265:  1255:  1208:  1198:  1180:eNeuro 1159:  1149:  1100:  1090:  1051:  1041:  1002:  994:  968:Nature 951:  943:  889:  879:  871:  831:  796:  786:  734:  724:  674:  618:  576:  566:  529:360357 527:  517:  482:  474:  464:  324:Ci-VSP 136:, are 93:  86:  79:  72:  64:  1968:S2CID 1765:S2CID 1669:S2CID 1618:S2CID 1358:S2CID 1000:S2CID 949:S2CID 637:(PDF) 596:(PDF) 480:S2CID 361:, or 333:, or 98:JSTOR 84:books 1922:PMID 1863:PMID 1814:PMID 1757:PMID 1704:PMID 1661:PMID 1610:PMID 1567:PMID 1532:PMID 1496:PMID 1460:PMID 1409:PMID 1350:PMID 1315:PMID 1263:PMID 1206:PMID 1157:PMID 1098:PMID 1049:PMID 992:PMID 941:PMID 887:PMID 869:ISSN 829:PMID 794:PMID 732:PMID 672:PMID 616:PMID 574:PMID 525:PMID 515:ISBN 472:PMID 384:Uses 237:and 175:and 138:dyes 70:news 1958:doi 1912:PMC 1902:doi 1890:111 1853:PMC 1845:doi 1841:464 1804:PMC 1796:doi 1749:doi 1727:295 1696:doi 1653:doi 1641:308 1602:doi 1590:273 1559:doi 1524:doi 1488:doi 1450:PMC 1440:doi 1399:PMC 1389:doi 1342:doi 1305:PMC 1297:doi 1293:115 1253:PMC 1245:doi 1196:PMC 1188:doi 1147:PMC 1137:doi 1125:101 1088:PMC 1080:doi 1039:PMC 1031:doi 984:doi 972:381 933:doi 877:PMC 861:doi 857:142 821:doi 817:115 784:PMC 774:doi 762:109 722:PMC 714:doi 664:doi 608:doi 564:PMC 556:doi 552:137 507:doi 462:PMC 454:doi 53:by 1986:: 1966:. 1954:68 1952:. 1948:. 1920:. 1910:. 1900:. 1888:. 1884:. 1861:. 1851:. 1839:. 1835:. 1812:. 1802:. 1790:. 1786:. 1763:. 1755:. 1747:. 1737:. 1725:. 1702:. 1692:88 1690:. 1667:. 1659:. 1651:. 1639:. 1616:. 1608:. 1600:. 1588:. 1565:. 1555:73 1553:. 1530:. 1520:73 1518:. 1494:. 1484:73 1482:. 1458:. 1448:. 1436:21 1434:. 1430:. 1407:. 1397:. 1385:23 1383:. 1379:. 1356:. 1348:. 1336:. 1313:. 1303:. 1291:. 1287:. 1275:^ 1261:. 1251:. 1243:. 1231:. 1227:. 1204:. 1194:. 1182:. 1178:. 1155:. 1145:. 1135:. 1123:. 1119:. 1096:. 1086:. 1076:29 1074:. 1070:. 1047:. 1037:. 1027:27 1025:. 1021:. 998:. 990:. 982:. 970:. 947:. 939:. 929:25 927:. 899:^ 885:. 875:. 867:. 855:. 851:. 827:. 815:. 792:. 782:. 772:. 760:. 756:. 744:^ 730:. 720:. 712:. 702:96 700:. 696:. 684:^ 670:. 660:24 658:. 639:. 614:. 604:23 602:. 598:. 572:. 562:. 550:. 546:. 523:. 513:. 503:83 501:. 478:. 470:. 460:. 450:45 448:. 444:. 412:. 392:, 357:, 245:. 227:. 1974:. 1960:: 1928:. 1904:: 1896:: 1869:. 1847:: 1820:. 1798:: 1792:4 1771:. 1751:: 1733:: 1710:. 1698:: 1675:. 1655:: 1647:: 1624:. 1604:: 1596:: 1573:. 1561:: 1538:. 1526:: 1502:. 1490:: 1466:. 1442:: 1415:. 1391:: 1364:. 1344:: 1338:5 1321:. 1299:: 1269:. 1247:: 1239:: 1233:6 1212:. 1190:: 1184:3 1163:. 1139:: 1131:: 1104:. 1082:: 1055:. 1033:: 1006:. 986:: 978:: 955:. 935:: 893:. 863:: 835:. 823:: 800:. 776:: 768:: 738:. 716:: 708:: 678:. 666:: 622:. 610:: 580:. 558:: 531:. 509:: 486:. 456:: 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:. 20:)

Index

Potentiometric dyes

verification
improve this article
adding citations to reliable sources
"Voltage-sensitive dye"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
dyes
spectral
voltage
neurons
myocytes
membrane potential
action potential
electrode
mitochondria
dendritic spine
membrane potential

chromophore
excited state
lipophilic
biological membranes
electric field
spectral shift

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.