Knowledge

Projective polyhedron

Source πŸ“

888:), in particular of finite subgroups. Under this connection, symmetry groups of centrally symmetric polytopes correspond to symmetry groups of the corresponding projective polytope, while symmetry groups of spherical polytopes without central symmetry correspond to symmetry groups of degree 2 projective polytopes (tilings that cover projective space twice), whose cover (corresponding to the adjunction of the connection) is a compound of two polytopes – the original polytope and its central inverse. 221: 140: 397:
of a non-centrally symmetric polyhedron, together with its central inverse (a compound of 2 polyhedra). This geometrizes the Galois connection at the level of finite subgroups of O(3) and PO(3), under which the adjunction is "union with central inverse". For example, the tetrahedron is not centrally
385:
Spherical polyhedra without central symmetry do not define a projective polyhedron, as the images of vertices, edges, and faces will overlap. In the language of tilings, the image in the projective plane is a degree 2 tiling, meaning that it covers the projective plane twice – rather than 2 faces in
250:
having some faces that pass through the center of symmetry. As these do not define spherical polyhedra (because they pass through the center, which does not map to a defined point on the sphere), they do not define projective polyhedra by the quotient map from 3-space (minus the origin) to the
398:
symmetric, and has 4 vertices, 6 edges, and 4 faces, and vertex figure 3.3.3 (3 triangles meeting at each vertex). Its image in the projective plane has 4 vertices, 6 edges (which intersect), and 4 faces (which overlap), covering the projective plane twice. The cover of this is the
731:+2) does not decompose as a product, and thus the symmetry group of the projective polytope is not simply the rotational symmetries of the spherical polytope, but rather a 2-to-1 quotient of the full symmetry group of the corresponding spherical polytope (the spherical group is a 357:
is the (spherical) cube. The hemi-cube has 4 vertices, 3 faces, and 6 edges, each of which is covered by 2 copies in the sphere, and accordingly the cube has 8 vertices, 6 faces, and 12 edges, while both these polyhedra have a 4.4.4 vertex figure (3 squares meeting at a vertex).
712:, which is the kernel on passage to projective space. The projective plane is non-orientable, and thus there is no distinct notion of "orientation-preserving isometries of a projective polyhedron", which is reflected in the equality PSO(3) = PO(3). 373:
symmetries of the spherical polyhedron, while the full symmetry group of the spherical polyhedron is the product of its rotation group (the symmetry group of the projective polyhedron) and the cyclic group of order 2,
270:, and can be realized as the quotient of the spherical cuboctahedron by the antipodal map. It is the only uniform (traditional) polyhedron that is projective – that is, the only uniform projective polyhedron that 545: 393:
including all spherical polyhedra (not necessarily centrally symmetric) if the classes are extended to include degree 2 tilings of the projective plane, whose covers are not polyhedra but rather the
699: 386:
the sphere corresponding to 1 face in the projective plane, covering it twice, each face in the sphere corresponds to a single face in the projective plane, accordingly covering it twice.
969: 328: 792: 1152: 1109: 1022: 996: 369:) of a projective polyhedron and covering spherical polyhedron are related: the symmetries of the projective polyhedron are naturally identified with the 708:
symmetry group of the covering spherical polyhedron; the full symmetry group of the spherical polyhedron is then just the direct product with
1490: 1468: 1446: 1421: 1267: 1233: 461:, PO, and conversely every finite subgroup of PO is the symmetry group of a projective polytope by taking the polytope given by images of a 483: 1225: 445:
of points, which is not a projective concept, and is infrequently addressed in the literature, but has been defined, such as in (
441:-dimensional projective space is somewhat trickier, because the usual definition of polytopes in Euclidean space requires taking 1310: 732: 433:
Projective polytopes can be defined in higher dimension as tessellations of projective space in one less dimension. Defining
915:) is a 2-to-1-cover, and hence has an analogous Galois connection between subgroups. However, while discrete subgroups of O( 1510: 1154:
is an isomorphism but the two groups are subsets of different spaces, hence the isomorphism rather than an equality. See (
709: 923:) correspond to symmetry groups of spherical and projective polytopes, corresponding geometrically to the covering map 402:– equivalently, the compound of two tetrahedra – which has 8 vertices, 12 edges, and 8 faces, and vertex figure 3.3.3. 330:
of the sphere to the projective plane, and under this map, projective polyhedra correspond to spherical polyhedra with
907:) is a 2-to-1 cover, and hence there is a Galois connection between binary polyhedral groups and polyhedral groups, O( 606: 458: 1477:
Vives, Gilberto Calvillo; Mayo, Guillermo Lopez (1991). Susana GΓ³mez; Jean Pierre Hennart; Richard A. Tapia (eds.).
926: 389:
The correspondence between projective polyhedra and centrally symmetric spherical polyhedra can be extended to a
794:
and is instead a proper (index 2) subgroup, so there is a distinct notion of orientation-preserving isometries.
334:– the 2-fold cover of a projective polyhedron is a centrally symmetric spherical polyhedron. Further, because a 288: 1347: 892: 271: 229: 151:
The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the
1356: 347: 208:
On the other hand, the tetrahedron does not have central symmetry, so there is no "hemi-tetrahedron". See
1119:+1) are equal subsets of the target (namely, the whole space), hence the equality, while the induced map 838:-gon (in the projective line), and accordingly the quotient groups, subgroups of PO(2) and PSO(2) are Dih 738: 426:
is a "locally projective polytope", but is not a globally projective polyhedron, nor indeed tessellates
43: 1028:, and thus there is no corresponding "binary polytope" for which subgroups of Pin are symmetry groups. 92:
1, while spherical polyhedra have Euler characteristic 2. The qualifier "globally" is to contrast with
81:
applies to both spherical and projective geometries, so the term carries some ambiguity for polyhedra.
1203: 1037: 399: 259: 89: 1361: 1042: 394: 354: 339: 255: 225: 170: 152: 144: 112: 47: 1405: 1193: 1066: 854: 701:
so the group of projective isometries can be identified with the group of rotational isometries.
462: 442: 108: 101: 55: 430:
manifold, as it is not locally Euclidean, but rather locally projective, as the name indicates.
1122: 1486: 1482: 1464: 1460: 1442: 1438: 1417: 1263: 1229: 877: 419: 411: 390: 247: 182: 78: 70: 1413: 1253: 1159: 1085: 1001: 1393: 1366: 1319: 1025: 869:(2), SO(2), O(2) – here going up to a 2-fold cover, rather than down to a 2-fold quotient. 331: 188: 120: 116: 74: 974: 201:
These can be obtained by taking the quotient of the associated spherical polyhedron by the
873: 477: 176: 1082:/equality distinction in this equation is because the context is the 2-to-1 quotient map 457:
The symmetry group of a projective polytope is a finite (hence discrete) subgroup of the
1207: 1259: 1249: 806: 735:
of the projective group). Further, in odd projective dimension (even vector dimension)
343: 237: 155: 1504: 1430: 1339: 1062: 267: 263: 243: 202: 1455:
McMullen, Peter; Schulte, Egon (December 2002), "6C. Projective Regular Polytopes",
830:, these being subgroups of O(2) and SO(2), respectively. The projectivization of a 2 17: 335: 283: 220: 39: 1384:
Bracho, Javier (2000-02-01). "Regular projective polyhedra with planar faces II".
1079: 147:
is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices.
1305: 346:), both the spherical and the corresponding projective polyhedra have the same 858: 366: 85: 1224:. CBMS regional conference series in mathematics (4). AMS Bookstore. p.  862: 228:
is a projective polyhedron, and the only uniform projective polyhedron that
163: 1408:; Smith, Derek Alan (2003-02-07), "3.7 The Projective or Elliptic Groups", 1324: 31: 1188:
Schulte, Egon; Weiss, Asia Ivic (2006), "5 Topological classification",
704:
Thus in particular the symmetry group of a projective polyhedron is the
1397: 1370: 1198: 423: 159: 1479:
Advances in numerical partial differential equations and optimization
51: 258:
is topologically a projective polyhedron, as can be verified by its
139: 540:{\displaystyle \mathbf {RP} ^{n}=\mathbf {P} (\mathbf {R} ^{n+1}),} 219: 138: 1065:, finite and discrete sets are identical – infinite sets have an 1338:
Arocha, Jorge L.; Bracho, Javier; Montejano, Luis (2000-02-01).
472:-dimensional real projective space is the projectivization of ( 274:
in Euclidean three-space as a uniform traditional polyhedron.
891:
These symmetry groups should be compared and contrasted with
77:, a synonym for "spherical polyhedron". However, the term 128: 1481:. Fifth United States-Mexico Workshop. SIAM. pp.  242:
Note that the prefix "hemi-" is also used to refer to
209: 124: 1459:(1st ed.), Cambridge University Press, pp.  1190:
Problems on Polytopes, Their Groups, and Realizations
1125: 1088: 1004: 977: 929: 741: 609: 486: 291: 1306:"The construction of self-dual projective polyhedra" 69:, referring to the projective plane as (projective) 1340:"Regular projective polyhedra with planar faces I" 1146: 1103: 1016: 990: 963: 786: 693: 539: 353:For example, the 2-fold cover of the (projective) 322: 1162:) for an example of this distinction being made. 801: = 1 (polygons), the symmetries of a 2 694:{\displaystyle PO(2k+1)=PSO(2k+1)\cong SO(2k+1)} 205:(identifying opposite points on the sphere). 61:Projective polyhedra are also referred to as 8: 382:below for elaboration and other dimensions. 1155: 964:{\displaystyle S^{n}\to \mathbf {RP} ^{n},} 123:. This is elaborated and extended below in 1255:Noneuclidean tesselations and their groups 820:), with rotational group the cyclic group 323:{\displaystyle S^{2}\to \mathbf {RP} ^{2}} 158:, as well as two infinite classes of even 27:Plane tiling corresponding to a polyhedron 1360: 1323: 1197: 1124: 1087: 1003: 982: 976: 952: 944: 934: 928: 740: 608: 551:-dimensional projective space is denoted 547:so the projective orthogonal group of an 519: 514: 505: 496: 488: 485: 446: 314: 306: 296: 290: 254:Of these uniform hemipolyhedra, only the 212:below on how the tetrahedron is treated. 1220:Coxeter, Harold Scott Macdonald (1970). 468:The relevant dimensions are as follows: 1304:Archdeacon, Dan; Negami, Seiya (1993), 1180: 1054: 262:and visually obvious connection to the 857:of subgroups occurs for the square of 107:Non-overlapping projective polyhedra ( 437:-dimensional projective polytopes in 7: 603:} decomposes as a product, and thus 97: 379: 362: 129:relation with traditional polyhedra 88:of the projective plane, they have 787:{\displaystyle PSO(2k)\neq PO(2k)} 197:Hemi-hosohedron, {2,2p}/2, p>=1 46:. These are projective analogs of 25: 1285:, 1969, Second edition, sec 21.3 420:Abstract polytope: Local topology 278:Relation with spherical polyhedra 210:relation with spherical polyhedra 125:relation with spherical polyhedra 948: 945: 515: 506: 492: 489: 310: 307: 194:Hemi-dihedron, {2p,2}/2, p>=1 96:projective polyhedra, which are 58:– tessellations of the toroids. 1311:Journal of Combinatorial Theory 1132: 1092: 971:there is no covering space of 940: 781: 772: 760: 751: 723: + 1 is odd, then O( 688: 673: 661: 646: 631: 616: 531: 510: 302: 1: 1412:, A K Peters, Ltd., pp.  710:reflection through the origin 1435:Geometry and the imagination 1410:On quaternions and octonions 418:projective polytopes" – see 834:-gon (in the circle) is an 459:projective orthogonal group 1527: 1457:Abstract Regular Polytopes 1433:; Cohn-Vossen, S. (1999), 235: 1437:, AMS Bookstore, p.  1147:{\displaystyle SO\to PSO} 414:, one instead refers to " 266:. It is 2-covered by the 1386:Aequationes Mathematicae 1348:Aequationes Mathematicae 1283:Introduction to geometry 893:binary polyhedral groups 1156:Conway & Smith 2003 1104:{\displaystyle O\to PO} 1017:{\displaystyle n\geq 2} 880:between subgroups of O( 86:cellular decompositions 50:– tessellations of the 1325:10.1006/jctb.1993.1059 1148: 1105: 1018: 992: 965: 884:) and subgroups of PO( 788: 695: 541: 348:abstract vertex figure 324: 233: 148: 63:elliptic tessellations 1149: 1106: 1019: 993: 991:{\displaystyle S^{n}} 966: 853:. Note that the same 789: 696: 542: 447:Vives & Mayo 1991 325: 236:Further information: 232:in Euclidean 3-space. 223: 142: 44:real projective plane 36:projective polyhedron 1511:Projective polyhedra 1123: 1086: 1038:Spherical polyhedron 1002: 975: 927: 739: 607: 595:+1) = SO(2 591:+1 is odd), then O(2 559:+1) = P(O( 484: 400:stellated octahedron 289: 260:Euler characteristic 90:Euler characteristic 18:Projective polyhedra 1406:Conway, John Horton 1208:2006math......8397S 1043:Toroidal polyhedron 1024:) as the sphere is 727:+1) = O(2 563:+1)) = O( 443:convex combinations 422:. For example, the 395:polyhedral compound 340:local homeomorphism 256:tetrahemihexahedron 226:tetrahemihexahedron 153:centrally symmetric 113:spherical polyhedra 48:spherical polyhedra 1398:10.1007/PL00000122 1371:10.1007/PL00000128 1297:General references 1222:Twisted honeycombs 1144: 1101: 1067:accumulation point 1014: 988: 961: 855:commutative square 784: 691: 537: 463:fundamental domain 412:abstract polytopes 410:In the context of 320: 282:There is a 2-to-1 251:projective plane. 234: 149: 102:abstract polyhedra 73:, by analogy with 56:toroidal polyhedra 1492:978-0-89871-269-8 1470:978-0-521-81496-6 1448:978-0-8218-1998-2 1423:978-1-56881-134-5 1269:978-0-12-465450-1 1235:978-0-8218-1653-0 1192:, pp. 9–13, 911:) β†’ PO( 878:Galois connection 733:central extension 391:Galois connection 248:uniform polyhedra 183:Hemi-dodecahedron 111:1) correspond to 100:in the theory of 79:elliptic geometry 71:elliptic geometry 16:(Redirected from 1518: 1496: 1473: 1451: 1426: 1401: 1380: 1378: 1377: 1364: 1344: 1334: 1333: 1332: 1327: 1290: 1279: 1273: 1272: 1246: 1240: 1239: 1217: 1211: 1210: 1201: 1185: 1163: 1153: 1151: 1150: 1145: 1110: 1108: 1107: 1102: 1076: 1070: 1059: 1026:simply connected 1023: 1021: 1020: 1015: 997: 995: 994: 989: 987: 986: 970: 968: 967: 962: 957: 956: 951: 939: 938: 903:) β†’ O( 797:For example, in 793: 791: 790: 785: 700: 698: 697: 692: 587:+1 = 2 546: 544: 543: 538: 530: 529: 518: 509: 501: 500: 495: 476:+1)-dimensional 342:(in this case a 332:central symmetry 329: 327: 326: 321: 319: 318: 313: 301: 300: 189:Hemi-icosahedron 121:central symmetry 117:convex polyhedra 75:spherical tiling 67:elliptic tilings 21: 1526: 1525: 1521: 1520: 1519: 1517: 1516: 1515: 1501: 1500: 1499: 1493: 1476: 1471: 1454: 1449: 1429: 1424: 1404: 1383: 1375: 1373: 1362:10.1.1.498.9945 1342: 1337: 1330: 1328: 1303: 1299: 1294: 1293: 1280: 1276: 1270: 1250:Magnus, Wilhelm 1248: 1247: 1243: 1236: 1219: 1218: 1214: 1187: 1186: 1182: 1177: 1172: 1167: 1166: 1121: 1120: 1084: 1083: 1077: 1073: 1060: 1056: 1051: 1034: 1000: 999: 978: 973: 972: 943: 930: 925: 924: 898: 874:lattice theorem 872:Lastly, by the 868: 852: 843: 829: 815: 737: 736: 605: 604: 513: 487: 482: 481: 478:Euclidean space 465:for the group. 455: 408: 406:Generalizations 305: 292: 287: 286: 280: 240: 218: 177:Hemi-octahedron 156:Platonic solids 137: 115:(equivalently, 34:, a (globally) 28: 23: 22: 15: 12: 11: 5: 1524: 1522: 1514: 1513: 1503: 1502: 1498: 1497: 1491: 1474: 1469: 1452: 1447: 1431:Hilbert, David 1427: 1422: 1402: 1392:(1): 160–176. 1381: 1335: 1318:(1): 122–131, 1300: 1298: 1295: 1292: 1291: 1274: 1268: 1262:, p. 65, 1260:Academic Press 1241: 1234: 1212: 1199:math/0608397v1 1179: 1178: 1176: 1173: 1171: 1168: 1165: 1164: 1143: 1140: 1137: 1134: 1131: 1128: 1100: 1097: 1094: 1091: 1071: 1053: 1052: 1050: 1047: 1046: 1045: 1040: 1033: 1030: 1013: 1010: 1007: 985: 981: 960: 955: 950: 947: 942: 937: 933: 896: 866: 865:– Spin(2), Pin 848: 839: 824: 810: 807:dihedral group 783: 780: 777: 774: 771: 768: 765: 762: 759: 756: 753: 750: 747: 744: 690: 687: 684: 681: 678: 675: 672: 669: 666: 663: 660: 657: 654: 651: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 618: 615: 612: 573: 572: 536: 533: 528: 525: 522: 517: 512: 508: 504: 499: 494: 491: 454: 453:Symmetry group 451: 407: 404: 380:symmetry group 363:symmetry group 344:local isometry 317: 312: 309: 304: 299: 295: 279: 276: 238:Hemipolyhedron 217: 214: 199: 198: 195: 192: 186: 180: 174: 136: 133: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1523: 1512: 1509: 1508: 1506: 1494: 1488: 1484: 1480: 1475: 1472: 1466: 1462: 1458: 1453: 1450: 1444: 1440: 1436: 1432: 1428: 1425: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1382: 1372: 1368: 1363: 1358: 1354: 1350: 1349: 1341: 1336: 1326: 1321: 1317: 1313: 1312: 1307: 1302: 1301: 1296: 1288: 1284: 1278: 1275: 1271: 1265: 1261: 1257: 1256: 1251: 1245: 1242: 1237: 1231: 1227: 1223: 1216: 1213: 1209: 1205: 1200: 1195: 1191: 1184: 1181: 1174: 1169: 1161: 1157: 1141: 1138: 1135: 1129: 1126: 1118: 1114: 1098: 1095: 1089: 1081: 1075: 1072: 1068: 1064: 1058: 1055: 1048: 1044: 1041: 1039: 1036: 1035: 1031: 1029: 1027: 1011: 1008: 1005: 983: 979: 958: 953: 935: 931: 922: 918: 914: 910: 906: 902: 895:– just as Pin 894: 889: 887: 883: 879: 875: 870: 864: 860: 856: 851: 847: 842: 837: 833: 828: 823: 819: 814: 808: 804: 800: 795: 778: 775: 769: 766: 763: 757: 754: 748: 745: 742: 734: 730: 726: 722: 718: 713: 711: 707: 702: 685: 682: 679: 676: 670: 667: 664: 658: 655: 652: 649: 643: 640: 637: 634: 628: 625: 622: 619: 613: 610: 602: 598: 594: 590: 586: 582: 578: 570: 566: 562: 558: 554: 553: 552: 550: 534: 526: 523: 520: 502: 497: 479: 475: 471: 466: 464: 460: 452: 450: 448: 444: 440: 436: 431: 429: 425: 421: 417: 413: 405: 403: 401: 396: 392: 387: 383: 381: 377: 372: 368: 364: 361:Further, the 359: 356: 351: 349: 345: 341: 337: 333: 315: 297: 293: 285: 277: 275: 273: 269: 268:cuboctahedron 265: 264:Roman surface 261: 257: 252: 249: 245: 244:hemipolyhedra 239: 231: 227: 222: 216:Hemipolyhedra 215: 213: 211: 206: 204: 203:antipodal map 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 168: 167: 165: 161: 157: 154: 146: 141: 134: 132: 130: 126: 122: 118: 114: 110: 105: 103: 99: 95: 91: 87: 82: 80: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 19: 1478: 1456: 1434: 1409: 1389: 1385: 1374:. Retrieved 1355:(1): 55–73. 1352: 1346: 1329:, retrieved 1315: 1314:, Series B, 1309: 1289:, p. 386-388 1287:Regular maps 1286: 1282: 1277: 1254: 1244: 1221: 1215: 1189: 1183: 1116: 1115:+1) and PO(2 1112: 1074: 1061:Since PO is 1057: 920: 916: 912: 908: 904: 900: 890: 885: 881: 871: 849: 845: 840: 835: 831: 826: 821: 817: 812: 805:-gon is the 802: 798: 796: 728: 724: 720: 716: 714: 705: 703: 600: 596: 592: 588: 584: 583:is even (so 580: 576: 574: 568: 564: 560: 556: 548: 473: 469: 467: 456: 438: 434: 432: 427: 415: 409: 388: 384: 375: 370: 360: 352: 336:covering map 284:covering map 281: 253: 246:, which are 241: 207: 200: 150: 106: 93: 83: 66: 62: 60: 40:tessellation 35: 29: 1080:isomorphism 876:there is a 816:(of order 4 599:+1)×{Β± 1376:2010-04-15 1331:2010-04-15 1170:References 859:Spin group 706:rotational 367:isometries 1357:CiteSeerX 1281:Coxeter, 1175:Footnotes 1133:→ 1093:→ 1009:≥ 941:→ 919:) and PO( 863:Pin group 764:≠ 665:≅ 355:hemi-cube 303:→ 191:, {3,5}/2 185:, {5,3}/2 179:, {3,4}/2 173:, {4,3}/2 171:Hemi-cube 164:hosohedra 145:hemi-cube 1505:Category 1252:(1974), 1032:See also 371:rotation 272:immerses 230:immerses 135:Examples 32:geometry 1461:162–165 1204:Bibcode 1111:– PSO(2 1063:compact 424:11-cell 416:locally 378:}. See 160:dihedra 119:) with 109:density 98:defined 94:locally 42:of the 1489:  1467:  1445:  1420:  1359:  1266:  1232:  567:+1)/{Β± 54:– and 52:sphere 1483:43–49 1343:(PDF) 1194:arXiv 1160:p. 34 1049:Notes 998:(for 338:is a 38:is a 1487:ISBN 1465:ISBN 1443:ISBN 1418:ISBN 1264:ISBN 1230:ISBN 1078:The 861:and 844:and 365:(of 224:The 162:and 143:The 127:and 1439:147 1394:doi 1367:doi 1320:doi 809:Dih 715:If 575:If 555:PO( 449:). 428:any 84:As 65:or 30:In 1507:: 1485:. 1463:, 1441:, 1416:, 1414:34 1390:59 1388:. 1365:. 1353:59 1351:. 1345:. 1316:59 1308:, 1258:, 1228:. 1226:11 1202:, 1158:, 719:=2 579:=2 571:}. 480:, 374:{Β± 350:. 166:: 131:. 104:. 1495:. 1400:. 1396:: 1379:. 1369:: 1322:: 1238:. 1206:: 1196:: 1142:O 1139:S 1136:P 1130:O 1127:S 1117:k 1113:k 1099:O 1096:P 1090:O 1069:. 1012:2 1006:n 984:n 980:S 959:, 954:n 949:P 946:R 936:n 932:S 921:n 917:n 913:n 909:n 905:n 901:n 899:( 897:Β± 886:n 882:n 867:+ 850:r 846:C 841:r 836:r 832:r 827:r 825:2 822:C 818:r 813:r 811:2 803:r 799:n 782:) 779:k 776:2 773:( 770:O 767:P 761:) 758:k 755:2 752:( 749:O 746:S 743:P 729:k 725:n 721:k 717:n 689:) 686:1 683:+ 680:k 677:2 674:( 671:O 668:S 662:) 659:1 656:+ 653:k 650:2 647:( 644:O 641:S 638:P 635:= 632:) 629:1 626:+ 623:k 620:2 617:( 614:O 611:P 601:I 597:k 593:k 589:k 585:n 581:k 577:n 569:I 565:n 561:n 557:n 549:n 535:, 532:) 527:1 524:+ 521:n 516:R 511:( 507:P 503:= 498:n 493:P 490:R 474:n 470:n 439:n 435:k 376:I 316:2 311:P 308:R 298:2 294:S 20:)

Index

Projective polyhedra
geometry
tessellation
real projective plane
spherical polyhedra
sphere
toroidal polyhedra
elliptic geometry
spherical tiling
elliptic geometry
cellular decompositions
Euler characteristic
defined
abstract polyhedra
density
spherical polyhedra
convex polyhedra
central symmetry
relation with spherical polyhedra
relation with traditional polyhedra

hemi-cube
centrally symmetric
Platonic solids
dihedra
hosohedra
Hemi-cube
Hemi-octahedron
Hemi-dodecahedron
Hemi-icosahedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑