Knowledge (XXG)

Projective polyhedron

Source πŸ“

877:), in particular of finite subgroups. Under this connection, symmetry groups of centrally symmetric polytopes correspond to symmetry groups of the corresponding projective polytope, while symmetry groups of spherical polytopes without central symmetry correspond to symmetry groups of degree 2 projective polytopes (tilings that cover projective space twice), whose cover (corresponding to the adjunction of the connection) is a compound of two polytopes – the original polytope and its central inverse. 210: 129: 386:
of a non-centrally symmetric polyhedron, together with its central inverse (a compound of 2 polyhedra). This geometrizes the Galois connection at the level of finite subgroups of O(3) and PO(3), under which the adjunction is "union with central inverse". For example, the tetrahedron is not centrally
374:
Spherical polyhedra without central symmetry do not define a projective polyhedron, as the images of vertices, edges, and faces will overlap. In the language of tilings, the image in the projective plane is a degree 2 tiling, meaning that it covers the projective plane twice – rather than 2 faces in
239:
having some faces that pass through the center of symmetry. As these do not define spherical polyhedra (because they pass through the center, which does not map to a defined point on the sphere), they do not define projective polyhedra by the quotient map from 3-space (minus the origin) to the
387:
symmetric, and has 4 vertices, 6 edges, and 4 faces, and vertex figure 3.3.3 (3 triangles meeting at each vertex). Its image in the projective plane has 4 vertices, 6 edges (which intersect), and 4 faces (which overlap), covering the projective plane twice. The cover of this is the
720:+2) does not decompose as a product, and thus the symmetry group of the projective polytope is not simply the rotational symmetries of the spherical polytope, but rather a 2-to-1 quotient of the full symmetry group of the corresponding spherical polytope (the spherical group is a 346:
is the (spherical) cube. The hemi-cube has 4 vertices, 3 faces, and 6 edges, each of which is covered by 2 copies in the sphere, and accordingly the cube has 8 vertices, 6 faces, and 12 edges, while both these polyhedra have a 4.4.4 vertex figure (3 squares meeting at a vertex).
701:, which is the kernel on passage to projective space. The projective plane is non-orientable, and thus there is no distinct notion of "orientation-preserving isometries of a projective polyhedron", which is reflected in the equality PSO(3) = PO(3). 362:
symmetries of the spherical polyhedron, while the full symmetry group of the spherical polyhedron is the product of its rotation group (the symmetry group of the projective polyhedron) and the cyclic group of order 2,
259:, and can be realized as the quotient of the spherical cuboctahedron by the antipodal map. It is the only uniform (traditional) polyhedron that is projective – that is, the only uniform projective polyhedron that 534: 382:
including all spherical polyhedra (not necessarily centrally symmetric) if the classes are extended to include degree 2 tilings of the projective plane, whose covers are not polyhedra but rather the
688: 375:
the sphere corresponding to 1 face in the projective plane, covering it twice, each face in the sphere corresponds to a single face in the projective plane, accordingly covering it twice.
958: 317: 781: 1141: 1098: 1011: 985: 358:) of a projective polyhedron and covering spherical polyhedron are related: the symmetries of the projective polyhedron are naturally identified with the 697:
symmetry group of the covering spherical polyhedron; the full symmetry group of the spherical polyhedron is then just the direct product with
1479: 1457: 1435: 1410: 1256: 1222: 450:, PO, and conversely every finite subgroup of PO is the symmetry group of a projective polytope by taking the polytope given by images of a 472: 1214: 434:
of points, which is not a projective concept, and is infrequently addressed in the literature, but has been defined, such as in (
430:-dimensional projective space is somewhat trickier, because the usual definition of polytopes in Euclidean space requires taking 1299: 721: 422:
Projective polytopes can be defined in higher dimension as tessellations of projective space in one less dimension. Defining
904:) is a 2-to-1-cover, and hence has an analogous Galois connection between subgroups. However, while discrete subgroups of O( 1499: 1143:
is an isomorphism but the two groups are subsets of different spaces, hence the isomorphism rather than an equality. See (
698: 912:) correspond to symmetry groups of spherical and projective polytopes, corresponding geometrically to the covering map 391:– equivalently, the compound of two tetrahedra – which has 8 vertices, 12 edges, and 8 faces, and vertex figure 3.3.3. 319:
of the sphere to the projective plane, and under this map, projective polyhedra correspond to spherical polyhedra with
896:) is a 2-to-1 cover, and hence there is a Galois connection between binary polyhedral groups and polyhedral groups, O( 595: 447: 1466:
Vives, Gilberto Calvillo; Mayo, Guillermo Lopez (1991). Susana GΓ³mez; Jean Pierre Hennart; Richard A. Tapia (eds.).
915: 378:
The correspondence between projective polyhedra and centrally symmetric spherical polyhedra can be extended to a
783:
and is instead a proper (index 2) subgroup, so there is a distinct notion of orientation-preserving isometries.
323:– the 2-fold cover of a projective polyhedron is a centrally symmetric spherical polyhedron. Further, because a 277: 1336: 881: 260: 218: 140:
The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the
1345: 336: 197:
On the other hand, the tetrahedron does not have central symmetry, so there is no "hemi-tetrahedron". See
1108:+1) are equal subsets of the target (namely, the whole space), hence the equality, while the induced map 827:-gon (in the projective line), and accordingly the quotient groups, subgroups of PO(2) and PSO(2) are Dih 727: 415:
is a "locally projective polytope", but is not a globally projective polyhedron, nor indeed tessellates
32: 1017:, and thus there is no corresponding "binary polytope" for which subgroups of Pin are symmetry groups. 81:
1, while spherical polyhedra have Euler characteristic 2. The qualifier "globally" is to contrast with
70:
applies to both spherical and projective geometries, so the term carries some ambiguity for polyhedra.
1192: 1026: 388: 248: 78: 1350: 1031: 383: 343: 328: 244: 214: 159: 141: 133: 101: 36: 1394: 1182: 1055: 843: 690:
so the group of projective isometries can be identified with the group of rotational isometries.
451: 431: 97: 90: 44: 419:
manifold, as it is not locally Euclidean, but rather locally projective, as the name indicates.
1111: 1475: 1471: 1453: 1449: 1431: 1427: 1406: 1252: 1218: 866: 408: 400: 379: 236: 171: 67: 59: 1402: 1242: 1148: 1074: 990: 1382: 1355: 1308: 1014: 858:(2), SO(2), O(2) – here going up to a 2-fold cover, rather than down to a 2-fold quotient. 320: 177: 109: 105: 63: 963: 190:
These can be obtained by taking the quotient of the associated spherical polyhedron by the
862: 466: 165: 1071:/equality distinction in this equation is because the context is the 2-to-1 quotient map 446:
The symmetry group of a projective polytope is a finite (hence discrete) subgroup of the
1196: 1248: 1238: 795: 724:
of the projective group). Further, in odd projective dimension (even vector dimension)
332: 226: 144: 1493: 1419: 1328: 1051: 256: 252: 232: 191: 1444:
McMullen, Peter; Schulte, Egon (December 2002), "6C. Projective Regular Polytopes",
819:, these being subgroups of O(2) and SO(2), respectively. The projectivization of a 2 324: 272: 209: 28: 1373:
Bracho, Javier (2000-02-01). "Regular projective polyhedra with planar faces II".
1068: 136:
is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices.
1294: 335:), both the spherical and the corresponding projective polyhedra have the same 847: 355: 74: 1213:. CBMS regional conference series in mathematics (4). AMS Bookstore. p.  851: 217:
is a projective polyhedron, and the only uniform projective polyhedron that
152: 1397:; Smith, Derek Alan (2003-02-07), "3.7 The Projective or Elliptic Groups", 1313: 20: 1177:
Schulte, Egon; Weiss, Asia Ivic (2006), "5 Topological classification",
693:
Thus in particular the symmetry group of a projective polyhedron is the
1386: 1359: 1187: 412: 148: 1468:
Advances in numerical partial differential equations and optimization
40: 247:
is topologically a projective polyhedron, as can be verified by its
128: 529:{\displaystyle \mathbf {RP} ^{n}=\mathbf {P} (\mathbf {R} ^{n+1}),} 208: 127: 1054:, finite and discrete sets are identical – infinite sets have an 1327:
Arocha, Jorge L.; Bracho, Javier; Montejano, Luis (2000-02-01).
461:-dimensional real projective space is the projectivization of ( 263:
in Euclidean three-space as a uniform traditional polyhedron.
880:
These symmetry groups should be compared and contrasted with
66:, a synonym for "spherical polyhedron". However, the term 117: 1470:. Fifth United States-Mexico Workshop. SIAM. pp.  231:
Note that the prefix "hemi-" is also used to refer to
198: 113: 1448:(1st ed.), Cambridge University Press, pp.  1179:
Problems on Polytopes, Their Groups, and Realizations
1114: 1077: 993: 966: 918: 730: 598: 475: 280: 1295:"The construction of self-dual projective polyhedra" 58:, referring to the projective plane as (projective) 1329:"Regular projective polyhedra with planar faces I" 1135: 1092: 1005: 979: 952: 775: 682: 528: 342:For example, the 2-fold cover of the (projective) 311: 1151:) for an example of this distinction being made. 790: = 1 (polygons), the symmetries of a 2 683:{\displaystyle PO(2k+1)=PSO(2k+1)\cong SO(2k+1)} 194:(identifying opposite points on the sphere). 50:Projective polyhedra are also referred to as 8: 371:below for elaboration and other dimensions. 1144: 953:{\displaystyle S^{n}\to \mathbf {RP} ^{n},} 112:. This is elaborated and extended below in 1244:Noneuclidean tesselations and their groups 809:), with rotational group the cyclic group 312:{\displaystyle S^{2}\to \mathbf {RP} ^{2}} 147:, as well as two infinite classes of even 16:Plane tiling corresponding to a polyhedron 1349: 1312: 1186: 1113: 1076: 992: 971: 965: 941: 933: 923: 917: 729: 597: 540:-dimensional projective space is denoted 536:so the projective orthogonal group of an 508: 503: 494: 485: 477: 474: 435: 303: 295: 285: 279: 243:Of these uniform hemipolyhedra, only the 201:below on how the tetrahedron is treated. 1209:Coxeter, Harold Scott Macdonald (1970). 457:The relevant dimensions are as follows: 1293:Archdeacon, Dan; Negami, Seiya (1993), 1169: 1043: 251:and visually obvious connection to the 846:of subgroups occurs for the square of 96:Non-overlapping projective polyhedra ( 426:-dimensional projective polytopes in 7: 592:} decomposes as a product, and thus 86: 368: 351: 118:relation with traditional polyhedra 77:of the projective plane, they have 776:{\displaystyle PSO(2k)\neq PO(2k)} 186:Hemi-hosohedron, {2,2p}/2, p>=1 35:. These are projective analogs of 14: 1274:, 1969, Second edition, sec 21.3 409:Abstract polytope: Local topology 267:Relation with spherical polyhedra 199:relation with spherical polyhedra 114:relation with spherical polyhedra 937: 934: 504: 495: 481: 478: 299: 296: 183:Hemi-dihedron, {2p,2}/2, p>=1 85:projective polyhedra, which are 47:– tessellations of the toroids. 1300:Journal of Combinatorial Theory 1121: 1081: 960:there is no covering space of 929: 770: 761: 749: 740: 712: + 1 is odd, then O( 677: 662: 650: 635: 620: 605: 520: 499: 291: 1: 1401:, A K Peters, Ltd., pp.  699:reflection through the origin 1424:Geometry and the imagination 1399:On quaternions and octonions 407:projective polytopes" – see 823:-gon (in the circle) is an 448:projective orthogonal group 1516: 1446:Abstract Regular Polytopes 1422:; Cohn-Vossen, S. (1999), 224: 1426:, AMS Bookstore, p.  1136:{\displaystyle SO\to PSO} 403:, one instead refers to " 255:. It is 2-covered by the 1375:Aequationes Mathematicae 1337:Aequationes Mathematicae 1272:Introduction to geometry 882:binary polyhedral groups 1145:Conway & Smith 2003 1093:{\displaystyle O\to PO} 1006:{\displaystyle n\geq 2} 869:between subgroups of O( 75:cellular decompositions 39:– tessellations of the 1314:10.1006/jctb.1993.1059 1137: 1094: 1007: 981: 954: 873:) and subgroups of PO( 777: 684: 530: 337:abstract vertex figure 313: 222: 137: 52:elliptic tessellations 1138: 1095: 1008: 982: 980:{\displaystyle S^{n}} 955: 842:. Note that the same 778: 685: 531: 436:Vives & Mayo 1991 314: 225:Further information: 221:in Euclidean 3-space. 212: 131: 33:real projective plane 25:projective polyhedron 1500:Projective polyhedra 1112: 1075: 1027:Spherical polyhedron 991: 964: 916: 728: 596: 584:+1) = SO(2 580:+1 is odd), then O(2 548:+1) = P(O( 473: 389:stellated octahedron 278: 249:Euler characteristic 79:Euler characteristic 1395:Conway, John Horton 1197:2006math......8397S 1032:Toroidal polyhedron 1013:) as the sphere is 716:+1) = O(2 552:+1)) = O( 432:convex combinations 411:. For example, the 384:polyhedral compound 329:local homeomorphism 245:tetrahemihexahedron 215:tetrahemihexahedron 142:centrally symmetric 102:spherical polyhedra 37:spherical polyhedra 1387:10.1007/PL00000122 1360:10.1007/PL00000128 1286:General references 1211:Twisted honeycombs 1133: 1090: 1056:accumulation point 1003: 977: 950: 844:commutative square 773: 680: 526: 452:fundamental domain 401:abstract polytopes 399:In the context of 309: 271:There is a 2-to-1 240:projective plane. 223: 138: 91:abstract polyhedra 62:, by analogy with 45:toroidal polyhedra 1481:978-0-89871-269-8 1459:978-0-521-81496-6 1437:978-0-8218-1998-2 1412:978-1-56881-134-5 1258:978-0-12-465450-1 1224:978-0-8218-1653-0 1181:, pp. 9–13, 900:) β†’ PO( 867:Galois connection 722:central extension 380:Galois connection 237:uniform polyhedra 172:Hemi-dodecahedron 100:1) correspond to 89:in the theory of 68:elliptic geometry 60:elliptic geometry 1507: 1485: 1462: 1440: 1415: 1390: 1369: 1367: 1366: 1353: 1333: 1323: 1322: 1321: 1316: 1279: 1268: 1262: 1261: 1235: 1229: 1228: 1206: 1200: 1199: 1190: 1174: 1152: 1142: 1140: 1139: 1134: 1099: 1097: 1096: 1091: 1065: 1059: 1048: 1015:simply connected 1012: 1010: 1009: 1004: 986: 984: 983: 978: 976: 975: 959: 957: 956: 951: 946: 945: 940: 928: 927: 892:) β†’ O( 786:For example, in 782: 780: 779: 774: 689: 687: 686: 681: 576:+1 = 2 535: 533: 532: 527: 519: 518: 507: 498: 490: 489: 484: 465:+1)-dimensional 331:(in this case a 321:central symmetry 318: 316: 315: 310: 308: 307: 302: 290: 289: 178:Hemi-icosahedron 110:central symmetry 106:convex polyhedra 64:spherical tiling 56:elliptic tilings 1515: 1514: 1510: 1509: 1508: 1506: 1505: 1504: 1490: 1489: 1488: 1482: 1465: 1460: 1443: 1438: 1418: 1413: 1393: 1372: 1364: 1362: 1351:10.1.1.498.9945 1331: 1326: 1319: 1317: 1292: 1288: 1283: 1282: 1269: 1265: 1259: 1239:Magnus, Wilhelm 1237: 1236: 1232: 1225: 1208: 1207: 1203: 1176: 1175: 1171: 1166: 1161: 1156: 1155: 1110: 1109: 1073: 1072: 1066: 1062: 1049: 1045: 1040: 1023: 989: 988: 967: 962: 961: 932: 919: 914: 913: 887: 863:lattice theorem 861:Lastly, by the 857: 841: 832: 818: 804: 726: 725: 594: 593: 502: 476: 471: 470: 467:Euclidean space 454:for the group. 444: 397: 395:Generalizations 294: 281: 276: 275: 269: 229: 207: 166:Hemi-octahedron 145:Platonic solids 126: 104:(equivalently, 23:, a (globally) 17: 12: 11: 5: 1513: 1511: 1503: 1502: 1492: 1491: 1487: 1486: 1480: 1463: 1458: 1441: 1436: 1420:Hilbert, David 1416: 1411: 1391: 1381:(1): 160–176. 1370: 1324: 1307:(1): 122–131, 1289: 1287: 1284: 1281: 1280: 1263: 1257: 1251:, p. 65, 1249:Academic Press 1230: 1223: 1201: 1188:math/0608397v1 1168: 1167: 1165: 1162: 1160: 1157: 1154: 1153: 1132: 1129: 1126: 1123: 1120: 1117: 1089: 1086: 1083: 1080: 1060: 1042: 1041: 1039: 1036: 1035: 1034: 1029: 1022: 1019: 1002: 999: 996: 974: 970: 949: 944: 939: 936: 931: 926: 922: 885: 855: 854:– Spin(2), Pin 837: 828: 813: 799: 796:dihedral group 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 679: 676: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 562: 561: 525: 522: 517: 514: 511: 506: 501: 497: 493: 488: 483: 480: 443: 442:Symmetry group 440: 396: 393: 369:symmetry group 352:symmetry group 333:local isometry 306: 301: 298: 293: 288: 284: 268: 265: 227:Hemipolyhedron 206: 203: 188: 187: 184: 181: 175: 169: 163: 125: 122: 15: 13: 10: 9: 6: 4: 3: 2: 1512: 1501: 1498: 1497: 1495: 1483: 1477: 1473: 1469: 1464: 1461: 1455: 1451: 1447: 1442: 1439: 1433: 1429: 1425: 1421: 1417: 1414: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1371: 1361: 1357: 1352: 1347: 1343: 1339: 1338: 1330: 1325: 1315: 1310: 1306: 1302: 1301: 1296: 1291: 1290: 1285: 1277: 1273: 1267: 1264: 1260: 1254: 1250: 1246: 1245: 1240: 1234: 1231: 1226: 1220: 1216: 1212: 1205: 1202: 1198: 1194: 1189: 1184: 1180: 1173: 1170: 1163: 1158: 1150: 1146: 1130: 1127: 1124: 1118: 1115: 1107: 1103: 1087: 1084: 1078: 1070: 1064: 1061: 1057: 1053: 1047: 1044: 1037: 1033: 1030: 1028: 1025: 1024: 1020: 1018: 1016: 1000: 997: 994: 972: 968: 947: 942: 924: 920: 911: 907: 903: 899: 895: 891: 884:– just as Pin 883: 878: 876: 872: 868: 864: 859: 853: 849: 845: 840: 836: 831: 826: 822: 817: 812: 808: 803: 797: 793: 789: 784: 767: 764: 758: 755: 752: 746: 743: 737: 734: 731: 723: 719: 715: 711: 707: 702: 700: 696: 691: 674: 671: 668: 665: 659: 656: 653: 647: 644: 641: 638: 632: 629: 626: 623: 617: 614: 611: 608: 602: 599: 591: 587: 583: 579: 575: 571: 567: 559: 555: 551: 547: 543: 542: 541: 539: 523: 515: 512: 509: 491: 486: 468: 464: 460: 455: 453: 449: 441: 439: 437: 433: 429: 425: 420: 418: 414: 410: 406: 402: 394: 392: 390: 385: 381: 376: 372: 370: 366: 361: 357: 353: 350:Further, the 348: 345: 340: 338: 334: 330: 326: 322: 304: 286: 282: 274: 266: 264: 262: 258: 257:cuboctahedron 254: 253:Roman surface 250: 246: 241: 238: 234: 233:hemipolyhedra 228: 220: 216: 211: 205:Hemipolyhedra 204: 202: 200: 195: 193: 192:antipodal map 185: 182: 179: 176: 173: 170: 167: 164: 161: 158: 157: 156: 154: 150: 146: 143: 135: 130: 123: 121: 119: 115: 111: 107: 103: 99: 94: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 48: 46: 42: 38: 34: 30: 26: 22: 1467: 1445: 1423: 1398: 1378: 1374: 1363:. Retrieved 1344:(1): 55–73. 1341: 1335: 1318:, retrieved 1304: 1303:, Series B, 1298: 1278:, p. 386-388 1276:Regular maps 1275: 1271: 1266: 1243: 1233: 1210: 1204: 1178: 1172: 1105: 1104:+1) and PO(2 1101: 1063: 1050:Since PO is 1046: 909: 905: 901: 897: 893: 889: 879: 874: 870: 860: 838: 834: 829: 824: 820: 815: 810: 806: 801: 794:-gon is the 791: 787: 785: 717: 713: 709: 705: 703: 694: 692: 589: 585: 581: 577: 573: 572:is even (so 569: 565: 563: 557: 553: 549: 545: 537: 462: 458: 456: 445: 427: 423: 421: 416: 404: 398: 377: 373: 364: 359: 349: 341: 325:covering map 273:covering map 270: 242: 235:, which are 230: 196: 189: 139: 95: 82: 72: 55: 51: 49: 29:tessellation 24: 18: 1069:isomorphism 865:there is a 805:(of order 4 588:+1)×{Β± 1365:2010-04-15 1320:2010-04-15 1159:References 848:Spin group 695:rotational 356:isometries 1346:CiteSeerX 1270:Coxeter, 1164:Footnotes 1122:→ 1082:→ 998:≥ 930:→ 908:) and PO( 852:Pin group 753:≠ 654:≅ 344:hemi-cube 292:→ 180:, {3,5}/2 174:, {5,3}/2 168:, {3,4}/2 162:, {4,3}/2 160:Hemi-cube 153:hosohedra 134:hemi-cube 1494:Category 1241:(1974), 1021:See also 360:rotation 261:immerses 219:immerses 124:Examples 21:geometry 1450:162–165 1193:Bibcode 1100:– PSO(2 1052:compact 413:11-cell 405:locally 367:}. See 149:dihedra 108:) with 98:density 87:defined 83:locally 31:of the 1478:  1456:  1434:  1409:  1348:  1255:  1221:  556:+1)/{Β± 43:– and 41:sphere 1472:43–49 1332:(PDF) 1183:arXiv 1149:p. 34 1038:Notes 987:(for 327:is a 27:is a 1476:ISBN 1454:ISBN 1432:ISBN 1407:ISBN 1253:ISBN 1219:ISBN 1067:The 850:and 833:and 354:(of 213:The 151:and 132:The 116:and 1428:147 1383:doi 1356:doi 1309:doi 798:Dih 704:If 564:If 544:PO( 438:). 417:any 73:As 54:or 19:In 1496:: 1474:. 1452:, 1430:, 1405:, 1403:34 1379:59 1377:. 1354:. 1342:59 1340:. 1334:. 1305:59 1297:, 1247:, 1217:. 1215:11 1191:, 1147:, 708:=2 568:=2 560:}. 469:, 363:{Β± 339:. 155:: 120:. 93:. 1484:. 1389:. 1385:: 1368:. 1358:: 1311:: 1227:. 1195:: 1185:: 1131:O 1128:S 1125:P 1119:O 1116:S 1106:k 1102:k 1088:O 1085:P 1079:O 1058:. 1001:2 995:n 973:n 969:S 948:, 943:n 938:P 935:R 925:n 921:S 910:n 906:n 902:n 898:n 894:n 890:n 888:( 886:Β± 875:n 871:n 856:+ 839:r 835:C 830:r 825:r 821:r 816:r 814:2 811:C 807:r 802:r 800:2 792:r 788:n 771:) 768:k 765:2 762:( 759:O 756:P 750:) 747:k 744:2 741:( 738:O 735:S 732:P 718:k 714:n 710:k 706:n 678:) 675:1 672:+ 669:k 666:2 663:( 660:O 657:S 651:) 648:1 645:+ 642:k 639:2 636:( 633:O 630:S 627:P 624:= 621:) 618:1 615:+ 612:k 609:2 606:( 603:O 600:P 590:I 586:k 582:k 578:k 574:n 570:k 566:n 558:I 554:n 550:n 546:n 538:n 524:, 521:) 516:1 513:+ 510:n 505:R 500:( 496:P 492:= 487:n 482:P 479:R 463:n 459:n 428:n 424:k 365:I 305:2 300:P 297:R 287:2 283:S

Index

geometry
tessellation
real projective plane
spherical polyhedra
sphere
toroidal polyhedra
elliptic geometry
spherical tiling
elliptic geometry
cellular decompositions
Euler characteristic
defined
abstract polyhedra
density
spherical polyhedra
convex polyhedra
central symmetry
relation with spherical polyhedra
relation with traditional polyhedra

hemi-cube
centrally symmetric
Platonic solids
dihedra
hosohedra
Hemi-cube
Hemi-octahedron
Hemi-dodecahedron
Hemi-icosahedron
antipodal map

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑