Knowledge (XXG)

Chemiosmosis

Source 📝

453:
the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane. The electrical potential gradient is about -170 mV , negative inside (N). These gradients - charge difference and the proton concentration difference both create a combined electrochemical gradient across the membrane, often expressed as the proton-motive force (PMF). In mitochondria, the PMF is almost entirely made up of the electrical component but in chloroplasts the PMF is made up mostly of the pH gradient because the charge of protons H is neutralized by the movement of Cl and other anions. In either case, the PMF needs to be greater than about 460 mV (45 kJ/mol) for the ATP synthase to be able to make ATP.
2342: 211: 2238: 341: 1667:
chloroplast. Azzone et al. stressed that the inside phase (N side of the membrane) is the bacterial cytoplasm, mitochondrial matrix, or chloroplast stroma; the outside (P) side is the bacterial periplasmic space, mitochondrial intermembrane space, or chloroplast lumen. Furthermore, 3D tomography of the mitochondrial inner membrane shows its extensive invaginations to be stacked, similar to thylakoid disks; hence the mitochondrial intermembrane space is topologically quite similar to the chloroplast lumen.:
2229:. The electrons lost from Photosystem II get replaced by the oxidation of water, which is "split" into protons and oxygen by the oxygen-evolving complex (OEC, also known as WOC, or the water-oxidizing complex). To generate one molecule of diatomic oxygen, 10 photons must be absorbed by Photosystems I and II, four electrons must move through the two photosystems, and 2 NADPH are generated (later used for carbon dioxide fixation in the Calvin Cycle). 2067: 2428:, emitting hot acidic or alkaline water, would have created external proton gradients. These provided energy that primordial organisms could have exploited. To keep the flows separate, such an organism could have wedged itself in the rock of the hydrothermal vent, exposed to the hydrothermal flow on one side and the more alkaline water on the other. As long as the organism's membrane (or passive 69: 1171: 129:(ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane). The breakdown of the proton gradient leads to conformational change in CF1—providing enough energy in the process to convert ADP to ATP. The generation of ATP by chemiosmosis occurs in 2054:/ (Δp / 10.4 kJ·mol/mV) = 40.2 kJ·mol / (173.5 mV / 10.4 kJ·mol/mV) = 40.2 / 16.7 = 2.4. The actual ratio of the proton-binding c-subunit to the ATP-synthesizing beta-subunit copy numbers is 8/3 = 2.67, showing that under these conditions, the mitochondrion functions at 90% (2.4/2.67) efficiency. 300:
This was a radical proposal at the time, and was not well accepted. The prevailing view was that the energy of electron transfer was stored as a stable high potential intermediate, a chemically more conservative concept. The problem with the older paradigm is that no high energy intermediate was ever
452:
reactions to pump protons (hydrogen ions) out across the membrane, separating the charge across the membrane. In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of
1662:
is chosen to represent the change in potential energy per unit charge flowing into the cell as above. Furthermore, due to redox-driven proton pumping by coupling sites, the proton gradient is always inside-alkaline. For both of these reasons, protons flow in spontaneously, from the P side to the N
2057:
In fact, the thermodynamic efficiency is mostly lower in eukaryotic cells because ATP must be exported from the matrix to the cytoplasm, and ADP and phosphate must be imported from the cytoplasm. This "costs" one "extra" proton import per ATP, hence the actual efficiency is only 65% (= 2.4/3.67).
2440:
A proposed alternative source to chemiosmotic energy developing across membranous structures is if an electron acceptor, ferricyanide, is within a vesicle and the electron donor is outside, quinones transported by carbonaceous meteorites pick up electrons and protons from the donor. They would
1666:
The spontaneity of proton import (from the P to the N side) is universal in all bioenergetic membranes. This fact was not recognized before the 1990s, because the chloroplast thylakoid lumen was interpreted as an interior phase, but in fact it is topologically equivalent to the exterior of the
1165: 1928: 1663:
side; the available free energy is used to synthesize ATP (see below). For this reason, PMF is defined for proton import, which is spontaneous. PMF for proton export, i.e., proton pumping as catalyzed by the coupling sites, is simply the negative of PMF(import).
1543: 1248: 1402: 585: 2542: 996: 1321: 2441:
release electrons across the lipid membrane by diffusion to ferricyanide within the vesicles and release protons which produces gradients above pH 2, the process is conducive to the development of proton gradients.
433:) as a combination of proton and voltage (electrical potential) gradients across a membrane. The electrical gradient is a consequence of the charge separation across the membrane (when the protons H move without a 2345:
Early cell powered by external proton gradient near a deep-sea hydrothermal vent. As long as the membrane (or passive ion channels within it) is permeable to protons, the mechanism can function without ion
1764:; nevertheless, the concentrations on either side of the membrane need not be equal. Spontaneous movement across the potential membrane is determined by both concentration and electric potential gradients. 956: 1806: 1586: 1441: 2045: 1798: 2432:
within it) is permeable to protons, the mechanism can function without ion pumps. Such a proto-organism could then have evolved further mechanisms such as ion pumps and ATP synthase.
1701: 2718:
Azzone G, Benz R, Bertl A, Colombini M, Crofts A, Dilley R, Dimroth P, Dutton PL, Felle H, Harold F, Junge W (1993). "Transmembrane Measurements Across Bioenergetic Membranes".
1467: 680: 2323:. The origin of the mitochondrion triggered the origin of eukaryotes, and the origin of the plastid the origin of the Archaeplastida, one of the major eukaryotic supergroups. 1762: 2750:
Silverstein TP (June 2014). "An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F₁F₀ ATP synthases".
1728: 1660: 705: 797: 752: 2012: 1610: 903: 615: 1633: 1474: 1670:
The energy expressed here as Gibbs free energy, electrochemical proton gradient, or proton-motive force (PMF), is a combination of two gradients across the membrane:
1184: 410:, however, are barriers for ions. This is why energy can be stored as a combination of these two gradients across the membrane. Only special membrane proteins like 988: 1988: 871: 845: 819: 641: 1330: 2918:"Chemiosmotic energy for primitive cellular life: Proton gradients are generated across lipid membranes by redox reactions coupled to meteoritic quinones" 1638:
It is worth noting that, as with any transmembrane transport process, the PMF is directional. The sign of the transmembrane electric potential difference
471: 1160:{\displaystyle \Delta \!\mu _{\mathrm {H} ^{+}}=F\Delta \!\psi +RT\ln {\frac {_{\text{N}}}{_{\text{P}}}}=F\Delta \!\psi -(\ln 10)RT\Delta \mathrm {pH} } 1548:
Note that for spontaneous proton import from the P side (relatively more positive and acidic) to the N side (relatively more negative and alkaline),
2365:
on earth, proposes that primordial organisms used thermal cycling as an energy source (thermosynthesis), functioning essentially as a heat engine:
1264: 3003:"The relation between the internal phosphorylation potential and the proton motive force in mitochondria during ATP synthesis and hydrolysis" 2843: 429:(PMF), derived from the electrochemical gradient mentioned earlier. It can be described as the measure of the potential energy stored ( 2810: 2702: 2670: 2627: 2598: 2554: 254: 2341: 2213:. These protons then flow down their electrochemical potential gradient through an enzyme called ATP-synthase, creating ATP by the 388:
like protons H tend to diffuse down the electrical potential, from the positive (P) side of the membrane to the negative (N) side.
908: 2490:
Mitchell P (July 1961). "Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism".
1923:{\displaystyle \mathrm {ADP} ^{4-}+\mathrm {H} ^{+}+\mathrm {HOPO} _{3}^{2-}\rightarrow \mathrm {ATP} ^{4-}+\mathrm {H_{2}O} } 210: 3057: 3067: 444:
In most cases the proton-motive force is generated by an electron transport chain which acts as a proton pump, using the
2225:, then are raised to a higher energy level by light energy and then received by an electron acceptor and reduce NADP to 305:
grew too great to be ignored. Eventually the weight of evidence began to favor the chemiosmotic hypothesis, and in 1978
270: 1551: 258: 1407: 2237: 2470: 2146: 353: 214: 119: 273:, which in turn pass them to other proteins in the ETC. The energy at every redox transfer step is used to pump 2986:
Jeremy M. Berg; John L. Tymoczko; Lubert Stryer (eds.). "18.4. A Proton Gradient Powers the Synthesis of ATP".
2460: 2302: 2218: 2202: 2174: 2134: 2017: 1770: 397: 310: 282: 266: 218: 177: 97: 42: 2319:
are the product of endosymbiosis and trace back to incorporated prokaryotes. This process is described in the
2259: 1677: 422:
is central to convert energy of spontaneous flow of protons through them into chemical energy of ATP bonds.
374:
force caused by a concentration gradient - all particles tend to diffuse from higher concentration to lower.
302: 2395:(generated ATP by change in electrical polarization of membrane during thermal cycling: thermosynthesis) → 2162: 2138: 2095: 2079: 430: 169: 54: 46: 38: 3062: 2830:. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 22. Springer. pp. 321–344. 2287: 2158: 340: 126: 1446: 653: 2385:(generated ATP by thermal cycling of subunit during suspension in convection cell: thermosynthesis) → 1737: 2987: 2929: 2872: 2499: 2450: 2320: 2295: 2107: 2083: 381: 278: 246: 173: 154: 58: 2584: 1709: 1641: 2615: 407: 377: 687: 2801: 2775: 2523: 2206: 1538:{\displaystyle \Delta \!p=-\Delta \!\psi +\left(59.1\,\mathrm {mV} \right)\Delta \!\mathrm {pH} } 757: 712: 415: 1993: 1591: 1243:{\displaystyle \Delta \!\mathrm {pH} =\mathrm {pH} _{\mathrm {N} }-\mathrm {pH} _{\mathrm {P} }} 884: 596: 2066: 3024: 2957: 2898: 2839: 2806: 2767: 2698: 2666: 2656: 2623: 2594: 2550: 2515: 2455: 2425: 2242: 2122: 1615: 462: 445: 349: 306: 242: 165: 77: 96:
from a region of high proton concentration to a region of lower proton concentration, and an
3014: 2947: 2937: 2888: 2880: 2831: 2759: 2727: 2570: 2507: 822: 344:
Energy conversion by the inner mitochondrial membrane and chemiosmotic coupling between the
118:
that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the
73: 2291: 2246: 2214: 2210: 345: 967: 2933: 2876: 2503: 2980: 2952: 2917: 2893: 2860: 2299: 2250: 2190: 2178: 2087: 1936: 856: 830: 804: 626: 150: 62: 3019: 3002: 1397:{\displaystyle \Delta \!\mu _{\mathrm {H} ^{+}}=1\,\mathrm {kJ} \,\mathrm {mol} ^{-1}} 168:
proposed the chemiosmotic hypothesis in 1961. In brief, the hypothesis was that most
100:
of protons across a membrane can be harnessed to make ATP. This process is related to
3051: 2731: 2588: 2283: 2222: 2071: 644: 403: 222: 153:
through the thylakoid membrane to the thylakoid spaces. The stored energy is used to
123: 580:{\displaystyle \Delta \!G=zF\Delta \!\psi +RT\ln {\frac {_{\text{N}}}{_{\text{P}}}}} 2779: 2660: 2527: 2380: 2312: 2198: 2142: 2137:, which releases the energy of oxygen to create a proton gradient across the inner 848: 419: 360: 317: 290: 286: 193: 181: 130: 111: 17: 367:
The movement of ions across the membrane depends on a combination of two factors:
2835: 2145:
then uses the energy stored in this gradient to make ATP. This process is called
149:
during photosynthesis, an electron transport chain pumps H ions (protons) in the
3042: 2429: 2362: 2351: 2316: 2075: 874: 411: 321: 230: 146: 134: 81: 2942: 2763: 2465: 2370: 2254: 2126: 2110:. The last steps of this process occur in mitochondria. The reduced molecules 1933:
is also called phosphorylation potential. The equilibrium concentration ratio
434: 234: 2298:. These bacteria use the energy of light to create a proton gradient using a 2796: 2330: 2268: 2194: 2150: 2091: 371: 294: 281:
into the intermembrane space, storing energy in the form of a transmembrane
238: 93: 2961: 2902: 2771: 2519: 1170: 3028: 2997:
A set of experiments aiming to test some tenets of the chemiosmotic theory
2884: 2585:"Figure 10.22: Electron transport and ATP synthesis during photosynthesis" 68: 2826:
Muller AW (2012). "Life Explained by Heat Engines". In Seckbach J (ed.).
2361:
A stepwise model for the emergence of chemiosmosis, a key element in the
2275: 2186: 2130: 1316:{\displaystyle \Delta \!p=-{\frac {\Delta \!\mu _{\mathrm {H^{+}} }}{F}}} 438: 325: 262: 200: 138: 50: 2333:
and an ADP molecule. This process is part of oxidative phosphorylation.
2307: 2279: 2103: 385: 329: 204: 142: 108:
across a selective membrane, which is why it is called "chemiosmosis".
101: 2697:(fourth ed.). New York - Basingstoke: W. H. Freeman and Company. 2511: 2182: 648: 618: 389: 356: 285:. The protons move back across the inner membrane through the enzyme 274: 185: 115: 89: 2407:(today's bacterial photosynthesis, which makes use of chemiosmosis). 465:. Let N denote the inside of a cell, and P denote the outside. Then 289:. The flow of protons back into the matrix of the mitochondrion via 2614:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2541:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2404:
added quinones and membrane-spanning light-induced electric dipoles
905:
is frequently interpreted as a molar electrochemical ion potential
301:
found, and the evidence for proton pumping by the complexes of the
2340: 2236: 2226: 2115: 1169: 449: 250: 209: 105: 67: 2616:"Figure 14-32: The importance of H-driven transport in bacteria" 2111: 414:
can sometimes allow ions to move across the membrane (see also:
189: 34: 2398:
added metastable, light-induced electric dipoles in membrane
951:{\displaystyle \Delta \!\mu _{\mathrm {X} ^{z+}}=\Delta \!G} 1612:) whereas PMF is positive (similar to redox cell potential 27:
Electrochemical principle that enables cellular respiration
396:
These two gradients taken together can be expressed as an
316:
Chemiosmotic coupling is important for ATP production in
293:
provides enough energy for ADP to combine with inorganic
799:
are the cation concentrations at P and N, respectively;
157:
ADP, making ATP, as protons move through ATP synthase.
2329:
is the third pathway that produces ATP from inorganic
2241:
Chemiosmotic coupling between the energy of sunlight,
2047:, for example in case of the mammalian mitochondrion: 2020: 1996: 1939: 1809: 1773: 1740: 1712: 1680: 1644: 1618: 1594: 1554: 1477: 1449: 1410: 1333: 1267: 1187: 999: 970: 911: 887: 859: 833: 807: 760: 715: 690: 656: 629: 599: 474: 199:
formed during the oxidative breakdown of energy-rich
2720:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
2205:, causing protons to be actively pumped across the 617:is the Gibbs free energy change per unit amount of 2070:Directions of chemiosmotic proton transfer in the 2039: 2006: 1982: 1922: 1792: 1756: 1722: 1695: 1654: 1627: 1604: 1580: 1537: 1461: 1435: 1396: 1315: 1242: 1159: 982: 950: 897: 865: 839: 813: 791: 746: 699: 674: 635: 609: 579: 418:). In the chemiosmotic hypothesis a transmembrane 2861:"The Hot Spring Hypothesis for an Origin of Life" 2543:"Proton Gradients Produce Most of the Cell's ATP" 2133:processing. These molecules pass electrons to an 2024: 2000: 1777: 1744: 1716: 1684: 1648: 1598: 1558: 1526: 1494: 1481: 1414: 1337: 1287: 1271: 1191: 1118: 1032: 1003: 944: 915: 891: 603: 494: 478: 2181:generate ATP by the action of chemiosmosis. The 1581:{\displaystyle \Delta \!\mu _{\mathrm {H} ^{+}}} 392:diffuse spontaneously in the opposite direction. 2916:Milshteyn D, Cooper G, Deamer D (August 2019). 2802:The Vital Question: Why Is Life The Way It Is? 2217:of ADP to ATP. The electrons from the initial 1436:{\displaystyle \Delta \!p=10.4\,\mathrm {mV} } 2745: 2743: 2741: 707:is the electric potential of N relative to P; 8: 2791: 2789: 2651: 2649: 2647: 2645: 2643: 2641: 2639: 2373:in natural waters causing thermal cycling → 461:The proton-motive force is derived from the 2665:(2nd ed.). San Diego: Academic Press. 2282:also can use chemiosmosis to generate ATP. 45:. An important example is the formation of 2979:Biochemistry textbook reference, from the 2688: 2686: 2684: 2682: 237:as a fairly energy-rich intermediate. The 3018: 2951: 2941: 2892: 2752:Journal of Bioenergetics and Biomembranes 2593:(2nd ed.). Sinauer Associates, Inc. 2040:{\displaystyle \Delta \!G_{\mathrm {p} }} 2030: 2029: 2019: 1995: 1966: 1958: 1949: 1944: 1938: 1910: 1905: 1893: 1882: 1869: 1864: 1850: 1840: 1835: 1822: 1811: 1808: 1793:{\displaystyle \Delta \!G_{\mathrm {p} }} 1783: 1782: 1772: 1739: 1711: 1685: 1679: 1643: 1617: 1593: 1570: 1565: 1563: 1553: 1527: 1510: 1509: 1476: 1454: 1453: 1448: 1425: 1424: 1409: 1385: 1374: 1372: 1364: 1363: 1349: 1344: 1342: 1332: 1298: 1293: 1292: 1281: 1266: 1233: 1232: 1224: 1213: 1212: 1204: 1192: 1186: 1174:A diagram of chemiosmotic phosphorylation 1149: 1100: 1090: 1085: 1073: 1063: 1058: 1051: 1015: 1010: 1008: 998: 969: 927: 922: 920: 910: 886: 858: 832: 806: 783: 770: 765: 759: 738: 725: 720: 714: 689: 663: 658: 655: 628: 598: 568: 555: 550: 538: 525: 520: 513: 473: 2149:because it uses energy released by the 2065: 339: 3043:Chemiosmosis (University of Wisconsin) 2482: 2189:are received by the antenna complex of 2305:. Non-photosynthetic bacteria such as 1696:{\displaystyle \Delta \!\mathrm {pH} } 98:electrochemical concentration gradient 7: 3007:The Journal of Biological Chemistry 2805:. Profile Books. pp. 129–140. 2294:synthesize ATP by a process called 1734:When a system reaches equilibrium, 881:The molar Gibbs free energy change 425:Hence researchers created the term 2031: 2021: 1997: 1973: 1970: 1967: 1945: 1916: 1907: 1889: 1886: 1883: 1860: 1857: 1854: 1851: 1836: 1818: 1815: 1812: 1784: 1774: 1741: 1713: 1689: 1686: 1681: 1645: 1619: 1595: 1566: 1555: 1531: 1528: 1523: 1514: 1511: 1491: 1478: 1455: 1429: 1426: 1411: 1381: 1378: 1375: 1368: 1365: 1345: 1334: 1295: 1284: 1268: 1234: 1228: 1225: 1214: 1208: 1205: 1196: 1193: 1188: 1153: 1150: 1146: 1115: 1086: 1059: 1029: 1011: 1000: 941: 923: 912: 888: 766: 721: 691: 659: 600: 551: 521: 491: 475: 25: 2201:. These electrons travel down an 2098:cells do not have outer membrane. 1462:{\displaystyle 298\,\mathrm {K} } 675:{\displaystyle \mathrm {X} ^{z+}} 255:nicotinamide adenine dinucleotide 221:and chemiosmosis — and occurs in 2859:Damer B, Deamer D (April 2020). 1757:{\displaystyle \Delta \!\rho =0} 1674:the concentration gradient (via 3001:Ogawa S, Lee TM (August 1984). 2106:releasing its energy is called 1990:can be calculated by comparing 963:electrochemical proton gradient 2992:(5th ed.). W. H. Freeman. 2590:The Cell: A Molecular Approach 2420:External proton gradient model 1977: 1963: 1955: 1940: 1878: 1723:{\displaystyle \Delta \!\psi } 1655:{\displaystyle \Delta \!\psi } 1469:this equation takes the form: 1137: 1125: 1097: 1081: 1070: 1054: 780: 761: 735: 716: 565: 546: 535: 516: 253:of a carrier molecule such as 229:Molecules such as glucose are 180:across the inner membranes of 1: 3020:10.1016/S0021-9258(18)90918-X 2620:Molecular Biology of the Cell 2547:Molecular Biology of the Cell 2401:(primitive photosynthesis) → 217:involves two processes — the 80:when the ions pass through a 2836:10.1007/978-94-007-2941-4_19 2732:10.1016/0005-2728(93)90002-W 2327:Chemiosmotic phosphorylation 2315:. In fact, mitochondria and 1767:The molar Gibbs free energy 1706:electric potential gradient 700:{\displaystyle \Delta \psi } 271:inner mitochondrial membrane 47:adenosine triphosphate (ATP) 41:bound structure, down their 792:{\displaystyle _{\text{N}}} 747:{\displaystyle _{\text{P}}} 259:flavin adenine dinucleotide 161:The chemiosmotic hypothesis 3084: 2943:10.1038/s41598-019-48328-5 2828:Genesis — in the Beginning 2349: 2102:The complete breakdown of 2007:{\displaystyle \Delta \!p} 1605:{\displaystyle \Delta \!G} 898:{\displaystyle \Delta \!G} 610:{\displaystyle \Delta \!G} 348:of redox reactions in the 2764:10.1007/s10863-014-9547-y 2659:; Ferguson S. J. (1992). 2471:Oxidative phosphorylation 2337:Emergence of chemiosmosis 2147:oxidative phosphorylation 354:oxidative phosphorylation 261:(FAD). The carriers pass 215:Oxidative phosphorylation 76:and can be used to power 2461:Electrochemical gradient 2303:electron transport chain 2203:electron transport chain 2135:electron transport chain 1628:{\displaystyle \Delta E} 1588:is negative (similar to 621:transferred from P to N; 398:electrochemical gradient 311:Nobel Prize in Chemistry 283:electrochemical gradient 267:electron transport chain 219:electron transport chain 178:electrochemical gradient 43:electrochemical gradient 2260:Halobacterium salinarum 2096:gram-positive bacterial 2080:gram-negative bacterial 303:electron transfer chain 2347: 2272: 2139:mitochondrial membrane 2099: 2041: 2008: 1984: 1924: 1794: 1758: 1724: 1697: 1656: 1629: 1606: 1582: 1539: 1463: 1437: 1398: 1317: 1244: 1175: 1161: 990:and as a consequence: 984: 952: 899: 867: 841: 815: 793: 748: 701: 676: 637: 611: 581: 431:chemiosmotic potential 364: 226: 170:adenosine triphosphate 122:difference to convert 85: 39:semipermeable membrane 3058:Biochemical reactions 2885:10.1089/ast.2019.2045 2357:Thermal cycling model 2350:Further information: 2344: 2288:green sulfur bacteria 2245:and phosphorylation ( 2240: 2121:are generated by the 2069: 2042: 2009: 1985: 1925: 1795: 1759: 1725: 1698: 1657: 1630: 1607: 1583: 1540: 1464: 1438: 1399: 1318: 1254:Mitchell defined the 1245: 1173: 1162: 985: 953: 900: 868: 842: 816: 794: 749: 702: 677: 638: 612: 582: 343: 213: 176:cells comes from the 137:, as well as in most 127:adenosine diphosphate 71: 3068:Cellular respiration 2451:Cellular respiration 2388:added membrane and F 2376:added β-subunit of F 2321:endosymbiotic theory 2296:photophosphorylation 2108:cellular respiration 2084:cellular respiration 2018: 1994: 1937: 1807: 1771: 1738: 1710: 1678: 1642: 1616: 1592: 1552: 1475: 1447: 1408: 1331: 1265: 1185: 997: 968: 909: 885: 857: 831: 805: 758: 713: 688: 654: 627: 597: 472: 408:biological membranes 382:electrical potential 247:mitochondrial matrix 245:(acetyl-CoA) in the 72:An ion gradient has 59:cellular respiration 3013:(16): 10004–10011. 2934:2019NatSR...912447M 2877:2020AsBio..20..429D 2504:1961Natur.191..144M 2436:Meteoritic quinones 2392:ATP Synthase moiety 1877: 1256:proton-motive force 983:{\displaystyle z=1} 427:proton-motive force 378:Electrostatic force 336:Proton-motive force 172:(ATP) synthesis in 145:. For instance, in 49:by the movement of 33:is the movement of 18:Proton motive force 2922:Scientific Reports 2583:Cooper GM (2000). 2573:in Chemistry 1978. 2426:hydrothermal vents 2348: 2273: 2257:archaeal organism 2207:thylakoid membrane 2100: 2037: 2004: 1980: 1920: 1849: 1790: 1754: 1720: 1693: 1652: 1625: 1602: 1578: 1535: 1459: 1433: 1394: 1313: 1240: 1176: 1157: 980: 948: 895: 863: 837: 811: 789: 744: 697: 672: 633: 607: 577: 416:Membrane transport 365: 249:is coupled to the 227: 155:photophosphorylate 104:, the movement of 88:Hydrogen ions, or 86: 78:chemical reactions 53:ions (H) across a 2845:978-94-007-2940-7 2693:Stryer L (1995). 2498:(4784): 144–148. 2456:Citric acid cycle 2243:bacteriorhodopsin 2157:to phosphorylate 2090:). The bacterial 2050:H / ATP = ΔG 1983:{\displaystyle /} 1800:of ATP synthesis 1311: 1107: 1103: 1076: 866:{\displaystyle T} 840:{\displaystyle R} 814:{\displaystyle F} 786: 741: 636:{\displaystyle z} 575: 571: 541: 463:Gibbs free energy 446:Gibbs free energy 350:respiratory chain 307:Peter D. Mitchell 243:acetyl coenzyme A 166:Peter D. Mitchell 16:(Redirected from 3075: 3032: 3022: 2993: 2966: 2965: 2955: 2945: 2913: 2907: 2906: 2896: 2856: 2850: 2849: 2823: 2817: 2816: 2793: 2784: 2783: 2747: 2736: 2735: 2715: 2709: 2708: 2690: 2677: 2676: 2653: 2634: 2633: 2611: 2605: 2604: 2580: 2574: 2567: 2561: 2560: 2538: 2532: 2531: 2512:10.1038/191144a0 2487: 2267:). The archaeal 2193:, which excites 2153:of NADH and FADH 2046: 2044: 2043: 2038: 2036: 2035: 2034: 2013: 2011: 2010: 2005: 1989: 1987: 1986: 1981: 1976: 1962: 1954: 1953: 1948: 1929: 1927: 1926: 1921: 1919: 1915: 1914: 1901: 1900: 1892: 1876: 1868: 1863: 1845: 1844: 1839: 1830: 1829: 1821: 1799: 1797: 1796: 1791: 1789: 1788: 1787: 1763: 1761: 1760: 1755: 1729: 1727: 1726: 1721: 1702: 1700: 1699: 1694: 1692: 1661: 1659: 1658: 1653: 1634: 1632: 1631: 1626: 1611: 1609: 1608: 1603: 1587: 1585: 1584: 1579: 1577: 1576: 1575: 1574: 1569: 1544: 1542: 1541: 1536: 1534: 1522: 1518: 1517: 1468: 1466: 1465: 1460: 1458: 1442: 1440: 1439: 1434: 1432: 1403: 1401: 1400: 1395: 1393: 1392: 1384: 1371: 1356: 1355: 1354: 1353: 1348: 1322: 1320: 1319: 1314: 1312: 1307: 1306: 1305: 1304: 1303: 1302: 1282: 1249: 1247: 1246: 1241: 1239: 1238: 1237: 1231: 1219: 1218: 1217: 1211: 1199: 1166: 1164: 1163: 1158: 1156: 1108: 1106: 1105: 1104: 1101: 1095: 1094: 1089: 1079: 1078: 1077: 1074: 1068: 1067: 1062: 1052: 1022: 1021: 1020: 1019: 1014: 989: 987: 986: 981: 957: 955: 954: 949: 937: 936: 935: 934: 926: 904: 902: 901: 896: 872: 870: 869: 864: 846: 844: 843: 838: 823:Faraday constant 820: 818: 817: 812: 798: 796: 795: 790: 788: 787: 784: 778: 777: 769: 753: 751: 750: 745: 743: 742: 739: 733: 732: 724: 706: 704: 703: 698: 681: 679: 678: 673: 671: 670: 662: 642: 640: 639: 634: 616: 614: 613: 608: 586: 584: 583: 578: 576: 574: 573: 572: 569: 563: 562: 554: 544: 543: 542: 539: 533: 532: 524: 514: 309:was awarded the 74:potential energy 21: 3083: 3082: 3078: 3077: 3076: 3074: 3073: 3072: 3048: 3047: 3039: 3000: 2985: 2975: 2973:Further reading 2970: 2969: 2915: 2914: 2910: 2858: 2857: 2853: 2846: 2825: 2824: 2820: 2813: 2795: 2794: 2787: 2749: 2748: 2739: 2717: 2716: 2712: 2705: 2692: 2691: 2680: 2673: 2662:Bioenergetics 2 2655: 2654: 2637: 2630: 2613: 2612: 2608: 2601: 2582: 2581: 2577: 2568: 2564: 2557: 2540: 2539: 2535: 2489: 2488: 2484: 2479: 2447: 2438: 2422: 2391: 2379: 2369:self-organized 2359: 2354: 2339: 2292:purple bacteria 2247:chemical energy 2235: 2215:phosphorylation 2211:thylakoid lumen 2175:light reactions 2171: 2156: 2119: 2064: 2062:In mitochondria 2053: 2025: 2016: 2015: 1992: 1991: 1943: 1935: 1934: 1906: 1881: 1834: 1810: 1805: 1804: 1778: 1769: 1768: 1736: 1735: 1708: 1707: 1676: 1675: 1640: 1639: 1614: 1613: 1590: 1589: 1564: 1559: 1550: 1549: 1505: 1501: 1473: 1472: 1445: 1444: 1406: 1405: 1373: 1343: 1338: 1329: 1328: 1294: 1288: 1283: 1263: 1262: 1223: 1203: 1183: 1182: 1096: 1084: 1080: 1069: 1057: 1053: 1009: 1004: 995: 994: 966: 965: 921: 916: 907: 906: 883: 882: 855: 854: 829: 828: 803: 802: 779: 764: 756: 755: 734: 719: 711: 710: 686: 685: 657: 652: 651: 625: 624: 595: 594: 564: 549: 545: 534: 519: 515: 470: 469: 459: 346:chemical energy 338: 197: 163: 28: 23: 22: 15: 12: 11: 5: 3081: 3079: 3071: 3070: 3065: 3060: 3050: 3049: 3046: 3045: 3038: 3037:External links 3035: 3034: 3033: 2994: 2981:NCBI bookshelf 2974: 2971: 2968: 2967: 2908: 2871:(4): 429–452. 2851: 2844: 2818: 2812:978-1781250365 2811: 2785: 2758:(3): 229–241. 2737: 2710: 2704:978-0716720096 2703: 2678: 2671: 2657:Nicholls D. G. 2635: 2628: 2606: 2599: 2575: 2562: 2555: 2533: 2481: 2480: 2478: 2475: 2474: 2473: 2468: 2463: 2458: 2453: 2446: 2443: 2437: 2434: 2421: 2418: 2417: 2416: 2415: 2414: 2413: 2412: 2411: 2410: 2409: 2408: 2405: 2399: 2393: 2389: 2383: 2377: 2363:origin of life 2358: 2355: 2338: 2335: 2300:photosynthetic 2251:photosynthesis 2234: 2233:In prokaryotes 2231: 2219:light reaction 2191:Photosystem II 2179:photosynthesis 2170: 2167: 2154: 2117: 2088:photosynthesis 2063: 2060: 2051: 2033: 2028: 2023: 2003: 1999: 1979: 1975: 1972: 1969: 1965: 1961: 1957: 1952: 1947: 1942: 1931: 1930: 1918: 1913: 1909: 1904: 1899: 1896: 1891: 1888: 1885: 1880: 1875: 1872: 1867: 1862: 1859: 1856: 1853: 1848: 1843: 1838: 1833: 1828: 1825: 1820: 1817: 1814: 1786: 1781: 1776: 1753: 1750: 1747: 1743: 1732: 1731: 1719: 1715: 1704: 1691: 1688: 1683: 1651: 1647: 1624: 1621: 1601: 1597: 1573: 1568: 1562: 1557: 1533: 1530: 1525: 1521: 1516: 1513: 1508: 1504: 1500: 1497: 1493: 1490: 1487: 1484: 1480: 1457: 1452: 1431: 1428: 1423: 1420: 1417: 1413: 1391: 1388: 1383: 1380: 1377: 1370: 1367: 1362: 1359: 1352: 1347: 1341: 1336: 1325: 1324: 1310: 1301: 1297: 1291: 1286: 1280: 1277: 1274: 1270: 1252: 1251: 1236: 1230: 1227: 1222: 1216: 1210: 1207: 1202: 1198: 1195: 1190: 1168: 1167: 1155: 1152: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1117: 1114: 1111: 1099: 1093: 1088: 1083: 1072: 1066: 1061: 1056: 1050: 1047: 1044: 1041: 1038: 1035: 1031: 1028: 1025: 1018: 1013: 1007: 1002: 979: 976: 973: 947: 943: 940: 933: 930: 925: 919: 914: 894: 890: 879: 878: 862: 852: 836: 826: 810: 800: 782: 776: 773: 768: 763: 737: 731: 728: 723: 718: 708: 696: 693: 683: 669: 666: 661: 632: 622: 606: 602: 588: 587: 567: 561: 558: 553: 548: 537: 531: 528: 523: 518: 512: 509: 506: 503: 500: 497: 493: 490: 487: 484: 481: 477: 458: 455: 404:Lipid bilayers 394: 393: 375: 337: 334: 195: 162: 159: 151:stroma (fluid) 63:photosynthesis 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3080: 3069: 3066: 3064: 3061: 3059: 3056: 3055: 3053: 3044: 3041: 3040: 3036: 3030: 3026: 3021: 3016: 3012: 3008: 3004: 2998: 2995: 2991: 2990: 2983: 2982: 2977: 2976: 2972: 2963: 2959: 2954: 2949: 2944: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2909: 2904: 2900: 2895: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2855: 2852: 2847: 2841: 2837: 2833: 2829: 2822: 2819: 2814: 2808: 2804: 2803: 2798: 2792: 2790: 2786: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2746: 2744: 2742: 2738: 2733: 2729: 2725: 2721: 2714: 2711: 2706: 2700: 2696: 2689: 2687: 2685: 2683: 2679: 2674: 2672:9780125181242 2668: 2664: 2663: 2658: 2652: 2650: 2648: 2646: 2644: 2642: 2640: 2636: 2631: 2629:0-8153-4072-9 2625: 2621: 2617: 2610: 2607: 2602: 2600:0-87893-119-8 2596: 2592: 2591: 2586: 2579: 2576: 2572: 2566: 2563: 2558: 2556:0-8153-4072-9 2552: 2548: 2544: 2537: 2534: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2483: 2476: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2448: 2444: 2442: 2435: 2433: 2431: 2427: 2419: 2406: 2403: 2402: 2400: 2397: 2396: 2394: 2387: 2386: 2384: 2382: 2375: 2374: 2372: 2368: 2367: 2366: 2364: 2356: 2353: 2343: 2336: 2334: 2332: 2328: 2324: 2322: 2318: 2314: 2311:also contain 2310: 2309: 2304: 2301: 2297: 2293: 2289: 2285: 2284:Cyanobacteria 2281: 2277: 2270: 2266: 2262: 2261: 2256: 2252: 2248: 2244: 2239: 2232: 2230: 2228: 2224: 2223:Photosystem I 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2168: 2166: 2164: 2160: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2109: 2105: 2097: 2093: 2089: 2085: 2081: 2077: 2073: 2072:mitochondrion 2068: 2061: 2059: 2055: 2048: 2026: 2001: 1959: 1950: 1911: 1902: 1897: 1894: 1873: 1870: 1865: 1846: 1841: 1831: 1826: 1823: 1803: 1802: 1801: 1779: 1765: 1751: 1748: 1745: 1717: 1705: 1673: 1672: 1671: 1668: 1664: 1649: 1636: 1622: 1599: 1571: 1560: 1546: 1519: 1506: 1502: 1498: 1495: 1488: 1485: 1482: 1470: 1450: 1421: 1418: 1415: 1389: 1386: 1360: 1357: 1350: 1339: 1327:For example, 1308: 1299: 1289: 1278: 1275: 1272: 1261: 1260: 1259: 1257: 1220: 1200: 1181: 1180: 1179: 1172: 1143: 1140: 1134: 1131: 1128: 1122: 1119: 1112: 1109: 1091: 1064: 1048: 1045: 1042: 1039: 1036: 1033: 1026: 1023: 1016: 1005: 993: 992: 991: 977: 974: 971: 964: 959: 945: 938: 931: 928: 917: 892: 876: 860: 853: 850: 834: 827: 824: 808: 801: 774: 771: 729: 726: 709: 694: 684: 667: 664: 650: 646: 645:charge number 630: 623: 620: 604: 593: 592: 591: 559: 556: 529: 526: 510: 507: 504: 501: 498: 495: 488: 485: 482: 479: 468: 467: 466: 464: 456: 454: 451: 447: 442: 440: 436: 432: 428: 423: 421: 417: 413: 409: 405: 401: 399: 391: 387: 383: 379: 376: 373: 370: 369: 368: 362: 358: 355: 351: 347: 342: 335: 333: 331: 327: 323: 319: 314: 312: 308: 304: 298: 297:to form ATP. 296: 292: 288: 284: 280: 276: 272: 269:(ETC) in the 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 224: 220: 216: 212: 208: 206: 202: 198: 191: 187: 184:by using the 183: 179: 175: 171: 167: 160: 158: 156: 152: 148: 144: 140: 136: 132: 128: 125: 124:phosphorylate 121: 117: 113: 109: 107: 103: 99: 95: 91: 83: 79: 75: 70: 66: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 3063:Cell biology 3010: 3006: 2996: 2989:Biochemistry 2988: 2978: 2928:(1): 12447. 2925: 2921: 2911: 2868: 2865:Astrobiology 2864: 2854: 2827: 2821: 2800: 2755: 2751: 2723: 2719: 2713: 2695:Biochemistry 2694: 2661: 2619: 2609: 2589: 2578: 2565: 2546: 2536: 2495: 2491: 2485: 2439: 2430:ion channels 2423: 2381:ATP Synthase 2360: 2326: 2325: 2317:chloroplasts 2313:ATP synthase 2306: 2274: 2271:is omitted. 2264: 2258: 2199:energy level 2197:to a higher 2172: 2143:ATP synthase 2101: 2094:is omitted, 2056: 2049: 1932: 1766: 1733: 1669: 1665: 1637: 1547: 1471: 1326: 1255: 1253: 1177: 962: 960: 880: 849:gas constant 589: 460: 443: 426: 424: 420:ATP synthase 412:ion channels 402: 395: 366: 361:ATP synthase 322:chloroplasts 318:mitochondria 315: 299: 291:ATP synthase 287:ATP synthase 228: 223:mitochondria 182:mitochondria 164: 147:chloroplasts 135:chloroplasts 131:mitochondria 112:ATP synthase 110: 87: 31:Chemiosmosis 30: 29: 2622:. Garland. 2571:Nobel Prize 2549:. Garland. 2352:Abiogenesis 2265:H. halobium 2123:Krebs cycle 2076:chloroplast 875:temperature 384:gradient - 233:to produce 231:metabolized 120:free energy 3052:Categories 2726:(1): 1–3. 2477:References 2466:Glycolysis 2371:convection 2255:halophilic 2127:glycolysis 437:, such as 435:counterion 380:caused by 257:(NAD) and 235:acetyl CoA 2424:Deep-sea 2331:phosphate 2269:cell wall 2249:) during 2209:into the 2195:electrons 2169:In plants 2151:oxidation 2092:cell wall 2022:Δ 1998:Δ 1898:− 1879:→ 1874:− 1827:− 1775:Δ 1746:ρ 1742:Δ 1718:ψ 1714:Δ 1682:Δ 1650:ψ 1646:Δ 1620:Δ 1596:Δ 1561:μ 1556:Δ 1524:Δ 1496:ψ 1492:Δ 1489:− 1479:Δ 1412:Δ 1387:− 1340:μ 1335:Δ 1290:μ 1285:Δ 1279:− 1269:Δ 1258:(PMF) as 1221:− 1189:Δ 1147:Δ 1132:⁡ 1123:− 1120:ψ 1116:Δ 1049:⁡ 1034:ψ 1030:Δ 1006:μ 1001:Δ 942:Δ 918:μ 913:Δ 889:Δ 695:ψ 692:Δ 601:Δ 511:⁡ 496:ψ 492:Δ 476:Δ 457:Equations 372:Diffusion 357:catalysed 324:and many 295:phosphate 277:from the 263:electrons 251:reduction 239:oxidation 201:molecules 174:respiring 37:across a 2962:31462644 2903:31841362 2799:(2015). 2772:24706236 2520:13771349 2445:See also 2276:Bacteria 2187:sunlight 2131:pyruvate 1404:implies 439:chloride 352:and the 326:bacteria 203:such as 139:bacteria 55:membrane 51:hydrogen 3029:6469951 2953:6713726 2930:Bibcode 2894:7133448 2873:Bibcode 2780:1840860 2528:1784050 2500:Bibcode 2308:E. coli 2280:archaea 2253:in the 2183:photons 2104:glucose 2082:cells ( 2078:and in 961:For an 873:is the 847:is the 821:is the 647:of the 643:is the 619:cations 386:cations 359:by the 330:archaea 275:protons 265:to the 205:glucose 143:archaea 114:is the 102:osmosis 94:diffuse 92:, will 90:protons 82:channel 57:during 3027:  2960:  2950:  2901:  2891:  2842:  2809:  2797:Lane N 2778:  2770:  2701:  2669:  2626:  2597:  2553:  2526:  2518:  2492:Nature 2346:pumps. 2290:, and 2263:(syn. 2221:reach 2129:, and 1178:where 649:cation 590:where 390:Anions 279:matrix 186:energy 116:enzyme 84:(red). 2776:S2CID 2524:S2CID 2227:NADPH 2161:into 1703:) and 1443:. At 851:; and 450:redox 441:Cl). 106:water 3025:PMID 2958:PMID 2899:PMID 2840:ISBN 2807:ISBN 2768:PMID 2724:1183 2699:ISBN 2667:ISBN 2624:ISBN 2595:ISBN 2569:The 2551:ISBN 2516:PMID 2278:and 2173:The 2116:FADH 2114:and 2112:NADH 2086:and 2014:and 1507:59.1 1422:10.4 754:and 328:and 194:FADH 192:and 190:NADH 141:and 133:and 35:ions 3015:doi 3011:259 2948:PMC 2938:doi 2889:PMC 2881:doi 2832:doi 2760:doi 2728:doi 2508:doi 2496:191 2185:in 2177:of 2163:ATP 2159:ADP 1635:). 1451:298 448:of 406:of 241:of 188:of 61:or 3054:: 3023:. 3009:. 3005:. 2999:– 2984:– 2956:. 2946:. 2936:. 2924:. 2920:. 2897:. 2887:. 2879:. 2869:20 2867:. 2863:. 2838:. 2788:^ 2774:. 2766:. 2756:46 2754:. 2740:^ 2722:. 2681:^ 2638:^ 2618:. 2587:. 2545:. 2522:. 2514:. 2506:. 2494:. 2286:, 2165:. 2141:. 2125:, 2074:, 1545:. 1135:10 1129:ln 1046:ln 958:. 508:ln 400:. 332:. 320:, 313:. 207:. 65:. 3031:. 3017:: 2964:. 2940:: 2932:: 2926:9 2905:. 2883:: 2875:: 2848:. 2834:: 2815:. 2782:. 2762:: 2734:. 2730:: 2707:. 2675:. 2632:. 2603:. 2559:. 2530:. 2510:: 2502:: 2390:o 2378:1 2155:2 2118:2 2052:p 2032:p 2027:G 2002:p 1978:] 1974:P 1971:T 1968:A 1964:[ 1960:/ 1956:] 1951:+ 1946:H 1941:[ 1917:O 1912:2 1908:H 1903:+ 1895:4 1890:P 1887:T 1884:A 1871:2 1866:3 1861:O 1858:P 1855:O 1852:H 1847:+ 1842:+ 1837:H 1832:+ 1824:4 1819:P 1816:D 1813:A 1785:p 1780:G 1752:0 1749:= 1730:. 1690:H 1687:p 1623:E 1600:G 1572:+ 1567:H 1532:H 1529:p 1520:) 1515:V 1512:m 1503:( 1499:+ 1486:= 1483:p 1456:K 1430:V 1427:m 1419:= 1416:p 1390:1 1382:l 1379:o 1376:m 1369:J 1366:k 1361:1 1358:= 1351:+ 1346:H 1323:. 1309:F 1300:+ 1296:H 1276:= 1273:p 1250:. 1235:P 1229:H 1226:p 1215:N 1209:H 1206:p 1201:= 1197:H 1194:p 1154:H 1151:p 1144:T 1141:R 1138:) 1126:( 1113:F 1110:= 1102:P 1098:] 1092:+ 1087:H 1082:[ 1075:N 1071:] 1065:+ 1060:H 1055:[ 1043:T 1040:R 1037:+ 1027:F 1024:= 1017:+ 1012:H 978:1 975:= 972:z 946:G 939:= 932:+ 929:z 924:X 893:G 877:. 861:T 835:R 825:; 809:F 785:N 781:] 775:+ 772:z 767:X 762:[ 740:P 736:] 730:+ 727:z 722:X 717:[ 682:; 668:+ 665:z 660:X 631:z 605:G 570:P 566:] 560:+ 557:z 552:X 547:[ 540:N 536:] 530:+ 527:z 522:X 517:[ 505:T 502:R 499:+ 489:F 486:z 483:= 480:G 363:. 225:. 196:2 20:)

Index

Proton motive force
ions
semipermeable membrane
electrochemical gradient
adenosine triphosphate (ATP)
hydrogen
membrane
cellular respiration
photosynthesis

potential energy
chemical reactions
channel
protons
diffuse
electrochemical concentration gradient
osmosis
water
ATP synthase
enzyme
free energy
phosphorylate
adenosine diphosphate
mitochondria
chloroplasts
bacteria
archaea
chloroplasts
stroma (fluid)
photophosphorylate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.