Knowledge (XXG)

Pseudoknot

Source 📝

32: 20: 120:
It is possible to identify a limited class of pseudoknots using dynamic programming, but these methods are not exhaustive and scale worse as a function of sequence length than non-pseudoknotted algorithms. The general problem of predicting lowest free energy structures with pseudoknots has been shown
153:
Many types of pseudoknots exist, differing by how they cross and how many times they cross. To reflect this difference, pseudoknots are classed into H-, K-, L-, M-types, with each successive type adding a layer of step intercalation. The simple telomerase P2b-P3 example in the article, for example,
161:
indicating basepairs in a stem and dots representing loops. The interrupted stems of pseudoknots mean that such notation must be extended with extra brackets, or even letters, so that different sets of stems can be represented. One such extension uses, in nesting order,
173:.]]]]]]. drawing 1 CGCGCGCUGUUUUUCUCGCUGACUUUCAGCGGGCGA---AAAAAAUGUCAGCU 50 ALIGN |.||||||||||||||||||||||||| .|.| |||||| ||||||. 1ymo 1 ---GGGCUGUUUUUCUCGCUGACUUUCAGC--CCCAAACAAAAAA-GUCAGCA 47 ((((((........ 97:
in pseudoknots is not well nested; that is, base pairs occur that "overlap" one another in sequence position. This makes the presence of pseudoknots in RNA sequences more difficult to
588: 336:
Dirks, R.M. Pierce N.A. (2004) An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. "J Computation Chemistry". 25:1295-1304, 2004.
93:
The structural configuration of pseudoknots does not lend itself well to bio-computational detection due to its context-sensitivity or "overlapping" nature. The
145:
contains a pseudoknot that is critical for activity, and several viruses use a pseudoknot structure to form a tRNA-like motif to infiltrate the host cell.
180:
Note that U bulge at the end is normally present in telomerase RNA. It was removed in the 1ymo solution model for enhanced stability of the pseudoknot.
105:, which use a recursive scoring system to identify paired stems and consequently, most cannot detect non-nested base pairs. The newer method of 686: 581: 110: 117:
will not predict pseudoknot structures present in a query sequence; they will only identify the more stable of the two pseudoknot stems.
73:
structures in which half of one stem is intercalated between the two halves of another stem. The pseudoknot was first recognized in the
691: 681: 98: 671: 66: 35:
Three dimensional structure of almost the same pseudoknot from telomerase RNA. (A) sticks (B) backbone. The pdb-file is based on
676: 574: 106: 638: 628: 133:
Several important biological processes rely on RNA molecules that form pseudoknots, which are often RNAs with extensive
701: 618: 114: 623: 74: 757: 613: 520:"Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function" 320:
Rivas E, Eddy S. (1999). "A dynamic programming algorithm for RNA structure prediction including pseudoknots".
142: 658: 648: 597: 189: 134: 361:
Lyngsø, R. B. (2004). Complexity of pseudoknot prediction in simple models. Paper presented at the ICALP.
666: 157:
RNA secondary structure is usually represented by the dot-bracket notation, with pairing round brackets
224: 174: 166:
for closing. The structure for the two (slightly varying) telomerase examples, in this notation, is:
170: 727: 696: 102: 78: 633: 605: 541: 500: 451: 402: 303: 252: 37: 752: 531: 490: 482: 441: 433: 392: 384: 293: 283: 242: 232: 82: 77:
in 1982. Pseudoknots fold into knot-shaped three-dimensional conformations but are not true
471:"New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation" 109:
suffers from the same problem. Thus, popular secondary structure prediction methods like
469:
Antczak, M; Popenda, M; Zok, T; Zurkowski, M; Adamiak, RW; Szachniuk, M (15 April 2018).
228: 23:
This example of a naturally occurring pseudoknot is found in the RNA component of human
722: 643: 495: 470: 446: 421: 298: 271: 247: 212: 397: 372: 774: 486: 437: 345:
Lyngsø RB, Pedersen CN. (2000). "RNA pseudoknot prediction in energy-based models".
780: 737: 536: 519: 288: 122: 217:
Proceedings of the National Academy of Sciences of the United States of America
732: 31: 24: 388: 237: 94: 70: 545: 504: 455: 307: 256: 85:
framework, which, in contrast to knot theory, is a contact-based approach.
406: 566: 213:"Functional analysis of the pseudoknot structure in human telomerase RNA" 717: 138: 19: 41: 81:. These structures are categorized as cross (X) topology within the 420:
Kucharík, M; Hofacker, IL; Stadler, PF; Qin, J (15 January 2016).
561: 570: 141:
is one of the most conserved elements in all of evolution. The
747: 742: 373:"A new principle of RNA folding based on pseudoknotting" 272:"Pseudoknots: RNA structures with diverse functions" 710: 657: 604: 518:Theimer, CA; Blois, CA; Feigon, J (4 March 2005). 582: 8: 589: 575: 567: 535: 494: 445: 396: 297: 287: 246: 236: 137:. For example, the pseudoknot region of 30: 27:. Sequence from Chen and Greider (2005). 18: 422:"Pseudoknots in RNA folding landscapes" 200: 371:Pleij CW, Rietveld K, Bosch L (1985). 206: 204: 211:Chen, JL; Greider, CW (7 June 2005). 7: 270:Staple DW, Butcher SE (June 2005). 14: 562:Rfam entry for PK-HAV pseudoknot 107:stochastic context-free grammars 67:nucleic acid secondary structure 16:Nucleic acid secondary structure 1: 487:10.1093/bioinformatics/btx783 438:10.1093/bioinformatics/btv572 89:Prediction and identification 537:10.1016/j.molcel.2005.01.017 289:10.1371/journal.pbio.0030213 797: 101:by the standard method of 75:turnip yellow mosaic virus 758:Nucleic acid double helix 154:is an H-type pseudoknot. 149:Representing pseudoknots 143:telomerase RNA component 69:containing at least two 238:10.1073/pnas.0502259102 129:Biological significance 659:Nucleic acid structure 598:Biomolecular structure 190:Long range pseudoknots 58: 28: 389:10.1093/nar/13.5.1717 34: 22: 728:Protein engineering 229:2005PNAS..102.8080C 103:dynamic programming 135:tertiary structure 59: 29: 766: 765: 606:Protein structure 377:Nucleic Acids Res 169:(((.(((((........ 79:topological knots 45:​. Colors: 788: 753:Structural motif 591: 584: 577: 568: 550: 549: 539: 515: 509: 508: 498: 481:(8): 1304–1312. 466: 460: 459: 449: 417: 411: 410: 400: 368: 362: 359: 353: 343: 337: 334: 328: 318: 312: 311: 301: 291: 267: 261: 260: 250: 240: 208: 175:)))) ))........ 171:))))).))). ... 165: 160: 83:circuit topology 57: 54: 51: 48: 44: 796: 795: 791: 790: 789: 787: 786: 785: 771: 770: 767: 762: 706: 653: 600: 595: 558: 553: 517: 516: 512: 468: 467: 463: 419: 418: 414: 370: 369: 365: 360: 356: 352:(3–4): 409–427. 344: 340: 335: 331: 327:(5): 2053–2068. 319: 315: 269: 268: 264: 210: 209: 202: 198: 186: 178: 163: 158: 151: 131: 91: 55: 52: 49: 46: 36: 17: 12: 11: 5: 794: 792: 784: 783: 773: 772: 764: 763: 761: 760: 755: 750: 745: 740: 735: 730: 725: 723:Protein domain 720: 714: 712: 708: 707: 705: 704: 702:Thermodynamics 699: 694: 689: 684: 679: 674: 669: 663: 661: 655: 654: 652: 651: 649:Thermodynamics 646: 641: 636: 631: 626: 621: 616: 610: 608: 602: 601: 596: 594: 593: 586: 579: 571: 565: 564: 557: 556:External links 554: 552: 551: 524:Molecular Cell 510: 475:Bioinformatics 461: 426:Bioinformatics 412: 383:(5): 1717–31. 363: 354: 338: 329: 313: 262: 223:(23): 8077–9. 199: 197: 194: 193: 192: 185: 182: 168: 150: 147: 130: 127: 90: 87: 15: 13: 10: 9: 6: 4: 3: 2: 793: 782: 779: 778: 776: 769: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 715: 713: 709: 703: 700: 698: 695: 693: 690: 688: 687:Determination 685: 683: 680: 678: 675: 673: 670: 668: 665: 664: 662: 660: 656: 650: 647: 645: 642: 640: 637: 635: 634:Determination 632: 630: 627: 625: 622: 620: 617: 615: 612: 611: 609: 607: 603: 599: 592: 587: 585: 580: 578: 573: 572: 569: 563: 560: 559: 555: 547: 543: 538: 533: 530:(5): 671–82. 529: 525: 521: 514: 511: 506: 502: 497: 492: 488: 484: 480: 476: 472: 465: 462: 457: 453: 448: 443: 439: 435: 432:(2): 187–94. 431: 427: 423: 416: 413: 408: 404: 399: 394: 390: 386: 382: 378: 374: 367: 364: 358: 355: 351: 348: 347:J Comput Biol 342: 339: 333: 330: 326: 323: 317: 314: 309: 305: 300: 295: 290: 285: 281: 277: 273: 266: 263: 258: 254: 249: 244: 239: 234: 230: 226: 222: 218: 214: 207: 205: 201: 195: 191: 188: 187: 183: 181: 176: 172: 167: 155: 148: 146: 144: 140: 136: 128: 126: 124: 118: 116: 112: 108: 104: 100: 96: 88: 86: 84: 80: 76: 72: 68: 64: 43: 39: 33: 26: 21: 768: 738:Nucleic acid 527: 523: 513: 478: 474: 464: 429: 425: 415: 380: 376: 366: 357: 349: 346: 341: 332: 324: 321: 316: 279: 275: 265: 220: 216: 179: 156: 152: 132: 119: 95:base pairing 92: 62: 60: 282:(6): e213. 123:NP-complete 733:Proteasome 692:Prediction 682:Quaternary 639:Prediction 629:Quaternary 322:J Mol Biol 196:References 63:pseudoknot 25:telomerase 672:Secondary 619:Secondary 276:PLOS Biol 177:.]]]]]]. 71:stem-loop 775:Category 711:See also 677:Tertiary 624:Tertiary 546:15749017 505:29236971 456:26428288 308:15941360 257:15849264 184:See also 718:Protein 667:Primary 614:Primary 496:5905660 447:4708108 407:4000943 299:1149493 248:1149427 225:Bibcode 139:RNase P 99:predict 697:Design 644:Design 544:  503:  493:  454:  444:  405:  398:341107 395:  306:  296:  255:  245:  121:to be 115:Pfold 111:Mfold 65:is a 542:PMID 501:PMID 452:PMID 403:PMID 304:PMID 253:PMID 113:and 42:1YMO 781:RNA 748:RNA 743:DNA 532:doi 491:PMC 483:doi 442:PMC 434:doi 393:PMC 385:doi 325:285 294:PMC 284:doi 243:PMC 233:doi 221:102 38:PDB 777:: 540:. 528:17 526:. 522:. 499:. 489:. 479:34 477:. 473:. 450:. 440:. 430:32 428:. 424:. 401:. 391:. 381:13 379:. 375:. 302:. 292:. 278:. 274:. 251:. 241:. 231:. 219:. 215:. 203:^ 164:() 159:() 125:. 61:A 40:: 590:e 583:t 576:v 548:. 534:: 507:. 485:: 458:. 436:: 409:. 387:: 350:7 310:. 286:: 280:3 259:. 235:: 227:: 56:G 53:C 50:U 47:A

Index


telomerase

PDB
1YMO
nucleic acid secondary structure
stem-loop
turnip yellow mosaic virus
topological knots
circuit topology
base pairing
predict
dynamic programming
stochastic context-free grammars
Mfold
Pfold
NP-complete
tertiary structure
RNase P
telomerase RNA component
))))).))). ...
)))) ))........
Long range pseudoknots


"Functional analysis of the pseudoknot structure in human telomerase RNA"
Bibcode
2005PNAS..102.8080C
doi
10.1073/pnas.0502259102

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.