Knowledge (XXG)

Quadratic residue code

Source 📝

1672:
of the quadratic residue codes with the code length up to 113. However, decoding of long binary quadratic residue codes and non-binary quadratic residue codes continue to be a challenge. Currently, decoding quadratic residue codes is still an active research area in the theory of error-correcting
1626:
Since late 1980, there are many algebraic decoding algorithms were developed for correcting errors on quadratic residue codes. These algorithms can achieve the (true) error-correcting capacity
475: 1376: 949: 1670: 1148: 568: 1461: 1577: 990: 839: 1616: 1503: 1737:
Y. Li, Y. Duan, H. C. Chang, H. Liu, T. K. Truong, Using the difference of syndromes to decode quadratic residue codes, IEEE Trans. Inf. Theory 64(7), 5179-5190 (2018)
1181: 772: 136: 1071: 792: 588: 203: 732: 640: 298: 238: 171: 104: 69: 1405: 1313: 1016: 1204: 1523: 1437: 1284: 1264: 1244: 1224: 1091: 1036: 879: 859: 812: 700: 680: 660: 608: 518: 498: 402: 378: 358: 338: 318: 266: 1719:
Reed, I.S., Truong, T.K., Chen, X., Yin, X., The algebraic decoding of the (41, 21, 9) quadratic residue code. IEEE Trans. Inf. Theory 38(3), 974–986 (1992)
1713:
M. Elia, Algebraic decoding of the (23,12,7) Golay code, IEEE Transactions on Information Theory, Volume: 33, Issue: 1, pg. 150-151, January 1987.
1716:
Reed, I.S., Yin, X., Truong, T.K., Algebraic decoding of the (32, 16, 8) quadratic residue code. IEEE Trans. Inf. Theory 36(4), 876–880 (1990)
1731:
He, R., Reed, I.S., Truong, T.K., Chen, X., Decoding the (47, 24, 11) quadratic residue code. IEEE Trans. Inf. Theory 47(3), 1181–1186 (2001)
1725:
Chen, X., Reed, I.S., Truong, T.K., Decoding the (73, 37, 13) quadratic-residue code. IEE Proc., Comput. Digit. Tech. 141(5), 253–258 (1994)
1722:
Humphreys, J.F. Algebraic decoding of the ternary (13, 7, 5) quadratic-residue code. IEEE Trans. Inf. Theory 38(3), 1122–1125 (May 1992)
1728:
Higgs, R.J., Humphreys, J.F.: Decoding the ternary (23, 12, 8) quadratic-residue code. IEE Proc., Comm. 142(3), 129–134 (June 1995)
410: 1750: 1318: 1525:) an extended quadratic residue code is self-dual; otherwise it is equivalent but not equal to its dual. By the 890: 1629: 1537:), the automorphism group of an extended quadratic residue code has a subgroup which is isomorphic to either 1096: 1755: 523: 1442: 205: 1540: 957: 817: 1582: 1482: 381: 138: 1153: 737: 109: 1702: 1041: 777: 573: 176: 705: 613: 271: 211: 144: 77: 42: 1381: 1289: 995: 1186: 1530: 1508: 1422: 1416: 1269: 1249: 1229: 1209: 1076: 1021: 864: 844: 797: 685: 665: 645: 593: 503: 483: 387: 363: 343: 323: 303: 251: 1744: 1534: 1690: 841:
either results in the same code or an equivalent code, according to whether or not
71: 28: 1475:
Adding an overall parity-check digit to a quadratic residue code gives an
17: 1706: 1315:
also generates a quadratic residue code; more precisely the ideal of
1686:, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. 884:
An alternative construction avoids roots of unity. Define
404:. Its generator polynomial as a cyclic code is given by 1632: 1585: 1543: 1511: 1485: 1445: 1425: 1384: 1321: 1292: 1272: 1252: 1232: 1212: 1189: 1156: 1099: 1079: 1044: 1024: 998: 960: 893: 867: 847: 820: 800: 780: 740: 708: 688: 668: 648: 616: 596: 576: 526: 506: 486: 413: 390: 366: 346: 326: 306: 274: 254: 214: 179: 147: 112: 80: 45: 610:th root of unity in some finite extension field of 1664: 1610: 1571: 1517: 1497: 1455: 1431: 1399: 1370: 1307: 1278: 1258: 1238: 1218: 1198: 1175: 1142: 1085: 1065: 1030: 1010: 984: 943: 873: 853: 833: 806: 786: 766: 726: 694: 674: 654: 634: 602: 582: 562: 512: 492: 470:{\displaystyle f(x)=\prod _{j\in Q}(x-\zeta ^{j})} 469: 396: 372: 352: 332: 312: 292: 260: 232: 197: 165: 130: 98: 63: 1701:(5), Piscataway, NJ, USA: IEEE Press: 1269–1273, 1693:(September 2006), "The Gleason-Prange theorem", 39:Examples of quadratic residue codes include the 1371:{\displaystyle F_{l}/\langle X^{p}-1\rangle } 8: 1659: 1633: 1365: 1346: 557: 527: 248:There is a quadratic residue code of length 1407:corresponds to the quadratic residue code. 944:{\displaystyle g(x)=c+\sum _{j\in Q}x^{j}} 1651: 1631: 1593: 1584: 1554: 1542: 1510: 1484: 1446: 1444: 1424: 1383: 1353: 1341: 1326: 1320: 1291: 1271: 1251: 1231: 1211: 1188: 1161: 1155: 1132: 1121: 1115: 1098: 1078: 1043: 1023: 997: 959: 935: 919: 892: 866: 846: 825: 819: 799: 779: 756: 739: 707: 687: 667: 647: 615: 595: 575: 525: 505: 485: 458: 433: 412: 389: 365: 345: 325: 305: 273: 253: 213: 178: 146: 111: 79: 44: 1682:F. J. MacWilliams and N. J. A. Sloane, 1665:{\displaystyle \lfloor (d-1)/2\rfloor } 1143:{\displaystyle c=(1+{\sqrt {p^{*}}})/2} 1419:of a quadratic residue code of length 7: 1684:The Theory of Error-Correcting Codes 500:is the set of quadratic residues of 563:{\displaystyle \{1,2,\ldots ,p-1\}} 14: 682:ensures that the coefficients of 1477:extended quadratic residue code 734:. The dimension of the code is 1648: 1636: 1605: 1599: 1566: 1560: 1394: 1388: 1338: 1332: 1302: 1296: 1129: 1106: 1054: 1048: 979: 973: 903: 897: 753: 741: 721: 715: 629: 623: 464: 445: 423: 417: 287: 281: 227: 221: 192: 180: 160: 154: 125: 113: 93: 87: 58: 46: 1: 1456:{\displaystyle {\sqrt {p}}} 1772: 1572:{\displaystyle PSL_{2}(p)} 985:{\displaystyle c\in GF(l)} 861:is a quadratic residue of 834:{\displaystyle \zeta ^{r}} 662:is a quadratic residue of 15: 1611:{\displaystyle SL_{2}(p)} 1498:{\displaystyle p\equiv 3} 16:Not to be confused with 1695:IEEE Trans. Inf. Theory 1176:{\displaystyle p^{*}=p} 767:{\displaystyle (p+1)/2} 131:{\displaystyle (23,12)} 1666: 1612: 1573: 1527:Gleason–Prange theorem 1519: 1499: 1457: 1433: 1401: 1372: 1309: 1280: 1260: 1240: 1220: 1200: 1177: 1144: 1087: 1067: 1066:{\displaystyle g(1)=1} 1032: 1012: 986: 945: 875: 855: 835: 808: 788: 787:{\displaystyle \zeta } 768: 728: 696: 676: 656: 636: 604: 584: 583:{\displaystyle \zeta } 564: 514: 494: 471: 398: 374: 354: 334: 314: 294: 268:over the finite field 262: 234: 199: 198:{\displaystyle (11,6)} 167: 132: 100: 65: 25:quadratic residue code 1667: 1613: 1574: 1520: 1500: 1458: 1434: 1402: 1373: 1310: 1281: 1261: 1241: 1221: 1206:according to whether 1201: 1178: 1145: 1088: 1068: 1033: 1013: 987: 946: 876: 856: 836: 809: 794:by another primitive 789: 769: 729: 727:{\displaystyle GF(l)} 697: 677: 657: 642:. The condition that 637: 635:{\displaystyle GF(l)} 605: 585: 565: 515: 495: 472: 399: 375: 355: 335: 315: 295: 293:{\displaystyle GF(l)} 263: 235: 233:{\displaystyle GF(3)} 200: 168: 166:{\displaystyle GF(2)} 133: 101: 99:{\displaystyle GF(2)} 66: 64:{\displaystyle (7,4)} 1630: 1583: 1541: 1509: 1483: 1443: 1423: 1400:{\displaystyle g(x)} 1382: 1319: 1308:{\displaystyle g(x)} 1290: 1270: 1250: 1230: 1210: 1187: 1154: 1097: 1077: 1042: 1022: 996: 958: 891: 865: 845: 818: 798: 778: 738: 706: 686: 666: 646: 614: 594: 574: 524: 504: 484: 411: 388: 364: 344: 324: 304: 272: 252: 212: 177: 145: 110: 78: 43: 1011:{\displaystyle l=2} 1662: 1608: 1569: 1515: 1495: 1453: 1429: 1397: 1368: 1305: 1276: 1256: 1236: 1216: 1199:{\displaystyle -p} 1196: 1173: 1140: 1083: 1063: 1028: 1008: 982: 941: 930: 871: 851: 831: 814:-th root of unity 804: 784: 764: 724: 692: 672: 652: 632: 600: 580: 560: 510: 490: 467: 444: 394: 370: 350: 330: 310: 290: 258: 230: 206:ternary Golay code 195: 163: 128: 96: 61: 1751:Quadratic residue 1707:10.1109/18.133245 1518:{\displaystyle 4} 1465:square root bound 1451: 1432:{\displaystyle p} 1279:{\displaystyle 4} 1259:{\displaystyle 3} 1239:{\displaystyle 1} 1219:{\displaystyle p} 1127: 1086:{\displaystyle l} 1031:{\displaystyle c} 915: 874:{\displaystyle p} 854:{\displaystyle r} 807:{\displaystyle p} 695:{\displaystyle f} 675:{\displaystyle p} 655:{\displaystyle l} 603:{\displaystyle p} 513:{\displaystyle p} 493:{\displaystyle Q} 429: 397:{\displaystyle p} 382:quadratic residue 373:{\displaystyle l} 353:{\displaystyle p} 333:{\displaystyle l} 313:{\displaystyle p} 261:{\displaystyle p} 139:binary Golay code 1763: 1709: 1671: 1669: 1668: 1663: 1655: 1617: 1615: 1614: 1609: 1598: 1597: 1578: 1576: 1575: 1570: 1559: 1558: 1524: 1522: 1521: 1516: 1504: 1502: 1501: 1496: 1462: 1460: 1459: 1454: 1452: 1447: 1439:is greater than 1438: 1436: 1435: 1430: 1406: 1404: 1403: 1398: 1377: 1375: 1374: 1369: 1358: 1357: 1345: 1331: 1330: 1314: 1312: 1311: 1306: 1285: 1283: 1282: 1277: 1265: 1263: 1262: 1257: 1245: 1243: 1242: 1237: 1226:is congruent to 1225: 1223: 1222: 1217: 1205: 1203: 1202: 1197: 1182: 1180: 1179: 1174: 1166: 1165: 1149: 1147: 1146: 1141: 1136: 1128: 1126: 1125: 1116: 1093:is odd, choose 1092: 1090: 1089: 1084: 1072: 1070: 1069: 1064: 1037: 1035: 1034: 1029: 1017: 1015: 1014: 1009: 991: 989: 988: 983: 950: 948: 947: 942: 940: 939: 929: 880: 878: 877: 872: 860: 858: 857: 852: 840: 838: 837: 832: 830: 829: 813: 811: 810: 805: 793: 791: 790: 785: 773: 771: 770: 765: 760: 733: 731: 730: 725: 701: 699: 698: 693: 681: 679: 678: 673: 661: 659: 658: 653: 641: 639: 638: 633: 609: 607: 606: 601: 589: 587: 586: 581: 569: 567: 566: 561: 519: 517: 516: 511: 499: 497: 496: 491: 476: 474: 473: 468: 463: 462: 443: 403: 401: 400: 395: 379: 377: 376: 371: 359: 357: 356: 351: 339: 337: 336: 331: 319: 317: 316: 311: 299: 297: 296: 291: 267: 265: 264: 259: 239: 237: 236: 231: 204: 202: 201: 196: 172: 170: 169: 164: 137: 135: 134: 129: 105: 103: 102: 97: 70: 68: 67: 62: 1771: 1770: 1766: 1765: 1764: 1762: 1761: 1760: 1741: 1740: 1689: 1679: 1628: 1627: 1624: 1622:Decoding Method 1589: 1581: 1580: 1550: 1539: 1538: 1507: 1506: 1481: 1480: 1473: 1441: 1440: 1421: 1420: 1413: 1380: 1379: 1349: 1322: 1317: 1316: 1288: 1287: 1268: 1267: 1248: 1247: 1228: 1227: 1208: 1207: 1185: 1184: 1157: 1152: 1151: 1117: 1095: 1094: 1075: 1074: 1040: 1039: 1038:to ensure that 1020: 1019: 994: 993: 956: 955: 954:for a suitable 931: 889: 888: 863: 862: 843: 842: 821: 816: 815: 796: 795: 776: 775: 736: 735: 704: 703: 684: 683: 664: 663: 644: 643: 612: 611: 592: 591: 590:is a primitive 572: 571: 522: 521: 502: 501: 482: 481: 454: 409: 408: 386: 385: 362: 361: 342: 341: 322: 321: 302: 301: 270: 269: 250: 249: 246: 210: 209: 175: 174: 143: 142: 108: 107: 76: 75: 41: 40: 37: 21: 12: 11: 5: 1769: 1767: 1759: 1758: 1753: 1743: 1742: 1739: 1738: 1735: 1732: 1729: 1726: 1723: 1720: 1717: 1714: 1711: 1687: 1678: 1675: 1661: 1658: 1654: 1650: 1647: 1644: 1641: 1638: 1635: 1623: 1620: 1607: 1604: 1601: 1596: 1592: 1588: 1568: 1565: 1562: 1557: 1553: 1549: 1546: 1531:Andrew Gleason 1514: 1494: 1491: 1488: 1472: 1469: 1463:; this is the 1450: 1428: 1417:minimum weight 1412: 1409: 1396: 1393: 1390: 1387: 1367: 1364: 1361: 1356: 1352: 1348: 1344: 1340: 1337: 1334: 1329: 1325: 1304: 1301: 1298: 1295: 1275: 1255: 1235: 1215: 1195: 1192: 1172: 1169: 1164: 1160: 1139: 1135: 1131: 1124: 1120: 1114: 1111: 1108: 1105: 1102: 1082: 1062: 1059: 1056: 1053: 1050: 1047: 1027: 1007: 1004: 1001: 981: 978: 975: 972: 969: 966: 963: 952: 951: 938: 934: 928: 925: 922: 918: 914: 911: 908: 905: 902: 899: 896: 870: 850: 828: 824: 803: 783: 763: 759: 755: 752: 749: 746: 743: 723: 720: 717: 714: 711: 691: 671: 651: 631: 628: 625: 622: 619: 599: 579: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 509: 489: 478: 477: 466: 461: 457: 453: 450: 447: 442: 439: 436: 432: 428: 425: 422: 419: 416: 393: 369: 349: 329: 309: 289: 286: 283: 280: 277: 257: 245: 242: 229: 226: 223: 220: 217: 194: 191: 188: 185: 182: 162: 159: 156: 153: 150: 127: 124: 121: 118: 115: 95: 92: 89: 86: 83: 60: 57: 54: 51: 48: 36: 33: 13: 10: 9: 6: 4: 3: 2: 1768: 1757: 1756:Coding theory 1754: 1752: 1749: 1748: 1746: 1736: 1733: 1730: 1727: 1724: 1721: 1718: 1715: 1712: 1708: 1704: 1700: 1696: 1692: 1691:Blahut, R. E. 1688: 1685: 1681: 1680: 1676: 1674: 1656: 1652: 1645: 1642: 1639: 1621: 1619: 1602: 1594: 1590: 1586: 1563: 1555: 1551: 1547: 1544: 1536: 1535:Eugene Prange 1532: 1528: 1512: 1492: 1489: 1486: 1478: 1471:Extended code 1470: 1468: 1466: 1448: 1426: 1418: 1410: 1408: 1391: 1385: 1378:generated by 1362: 1359: 1354: 1350: 1342: 1335: 1327: 1323: 1299: 1293: 1273: 1253: 1233: 1213: 1193: 1190: 1170: 1167: 1162: 1158: 1137: 1133: 1122: 1118: 1112: 1109: 1103: 1100: 1080: 1060: 1057: 1051: 1045: 1025: 1005: 1002: 999: 976: 970: 967: 964: 961: 936: 932: 926: 923: 920: 916: 912: 909: 906: 900: 894: 887: 886: 885: 882: 868: 848: 826: 822: 801: 781: 761: 757: 750: 747: 744: 718: 712: 709: 689: 669: 649: 626: 620: 617: 597: 577: 554: 551: 548: 545: 542: 539: 536: 533: 530: 507: 487: 459: 455: 451: 448: 440: 437: 434: 430: 426: 420: 414: 407: 406: 405: 391: 383: 367: 360:is odd, and 347: 327: 307: 284: 278: 275: 255: 244:Constructions 243: 241: 224: 218: 215: 207: 189: 186: 183: 157: 151: 148: 140: 122: 119: 116: 90: 84: 81: 73: 55: 52: 49: 34: 32: 30: 27:is a type of 26: 19: 1698: 1694: 1683: 1625: 1526: 1476: 1474: 1464: 1414: 953: 883: 774:. Replacing 479: 340:are primes, 247: 72:Hamming code 38: 24: 22: 1529:(named for 520:in the set 29:cyclic code 1745:Categories 1677:References 1660:⌋ 1643:− 1634:⌊ 1490:≡ 1366:⟩ 1360:− 1347:⟨ 1191:− 1163:∗ 1123:∗ 965:∈ 924:∈ 917:∑ 823:ζ 782:ζ 578:ζ 552:− 543:… 456:ζ 452:− 438:∈ 431:∏ 300:whenever 1673:code. 1150:, where 173:and the 35:Examples 1479:. When 1286:. Then 1266:modulo 1018:choose 992:. When 702:lie in 384:modulo 18:QR Code 1411:Weight 480:where 106:, the 1505:(mod 1073:. If 380:is a 208:over 141:over 74:over 1533:and 1415:The 570:and 320:and 1703:doi 1579:or 1246:or 1183:or 1747:: 1734:…. 1699:37 1697:, 1618:. 1467:. 881:. 240:. 184:11 123:12 117:23 31:. 23:A 1710:. 1705:: 1657:2 1653:/ 1649:) 1646:1 1640:d 1637:( 1606:) 1603:p 1600:( 1595:2 1591:L 1587:S 1567:) 1564:p 1561:( 1556:2 1552:L 1548:S 1545:P 1513:4 1493:3 1487:p 1449:p 1427:p 1395:) 1392:x 1389:( 1386:g 1363:1 1355:p 1351:X 1343:/ 1339:] 1336:X 1333:[ 1328:l 1324:F 1303:) 1300:x 1297:( 1294:g 1274:4 1254:3 1234:1 1214:p 1194:p 1171:p 1168:= 1159:p 1138:2 1134:/ 1130:) 1119:p 1113:+ 1110:1 1107:( 1104:= 1101:c 1081:l 1061:1 1058:= 1055:) 1052:1 1049:( 1046:g 1026:c 1006:2 1003:= 1000:l 980:) 977:l 974:( 971:F 968:G 962:c 937:j 933:x 927:Q 921:j 913:+ 910:c 907:= 904:) 901:x 898:( 895:g 869:p 849:r 827:r 802:p 762:2 758:/ 754:) 751:1 748:+ 745:p 742:( 722:) 719:l 716:( 713:F 710:G 690:f 670:p 650:l 630:) 627:l 624:( 621:F 618:G 598:p 558:} 555:1 549:p 546:, 540:, 537:2 534:, 531:1 528:{ 508:p 488:Q 465:) 460:j 449:x 446:( 441:Q 435:j 427:= 424:) 421:x 418:( 415:f 392:p 368:l 348:p 328:l 308:p 288:) 285:l 282:( 279:F 276:G 256:p 228:) 225:3 222:( 219:F 216:G 193:) 190:6 187:, 181:( 161:) 158:2 155:( 152:F 149:G 126:) 120:, 114:( 94:) 91:2 88:( 85:F 82:G 59:) 56:4 53:, 50:7 47:( 20:.

Index

QR Code
cyclic code
Hamming code
binary Golay code
ternary Golay code
quadratic residue
minimum weight
Andrew Gleason
Eugene Prange
Blahut, R. E.
doi
10.1109/18.133245
Categories
Quadratic residue
Coding theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.