Knowledge

Adaptive radiation

Source 📝

1087:) form the most speciose modern example of adaptive radiation. These lakes are believed to be home to about 2,000 different species of cichlid, spanning a wide range of ecological roles and morphological characteristics. Cichlids in these lakes fill nearly all of the roles typically filled by many fish families, including those of predators, scavengers, and herbivores, with varying dentitions and head shapes to match their dietary habits. In each case, the radiation events are only a few million years old, making the high level of speciation particularly remarkable. Several factors could be responsible for this diversity: the availability of a multitude of niches probably favored specialization, as few other fish taxa are present in the lakes (meaning that sympatric speciation was the most probable mechanism for initial specialization). Also, continual changes in the water level of the lakes during the Pleistocene (which often turned the largest lakes into several smaller ones) could have created the conditions for secondary allopatric speciation. 1200:) in the 1950s proved disastrous for Victoria cichlids, and the collective biomass of the Victoria cichlid species flock has decreased substantially and an unknown number of species have become extinct. However, the original range of morphological and behavioral diversity seen in the lake's cichlid fauna is still mostly present today, if endangered. These again include cichlids specialized for niches across the trophic spectrum, as in Tanganyika and Malawi, but again, there are standouts. Victoria is famously home to many piscivorous cichlid species, some of which feed by sucking the contents out of mouthbrooding females' mouths. Victoria's cichlids constitute a far younger radiation than even that of Lake Malawi, with estimates of the age of the flock ranging from 200,000 years to as little as 14,000. 1408:(Cuba and Hispaniola are both home to more than one species of crown–giant). These anoles are all large, canopy-dwelling species with large heads and large lamellae (scales on the undersides of the fingers and toes that are important for traction in climbing), and yet none of these species are particularly closely related and appear to have evolved these similar traits independently. The same can be said of the other five ecomorphs across the Caribbean's four largest islands. Much like in the case of the cichlids of the three largest African Great Lakes, each of these islands is home to its own convergent 1144:
males looking to steal shells; (2) younger, "sneaker" males looking to fertilize eggs in a dominant male's territory; and (3) tiny, 2–4 cm "parasitic dwarf" males that also attempt to rush in and fertilize eggs in the dominant male's territory. These parasitic dwarf males never grow to the size of dominant males, and the male offspring of dominant and parasitic dwarf males grow with 100% fidelity into the form of their fathers. A number of other highly specialized Tanganyika cichlids exist aside from these examples, including those adapted for life in open lake water up to 200m deep.
1176:). All of the other cichlid species in the lake are descendants of a single original colonist species, which itself was descended from Tanganyikan ancestors. The common ancestor of Malawi's species flock is believed to have reached the lake 3.4 million years ago at the earliest, making Malawi cichlids' diversification into their present numbers particularly rapid. Malawi's cichlids span a similarly range of feeding behaviors to those of Tanganyika, but also show signs of a much more recent origin. For example, all members of the Malawi species flock are 1106:. Lake Tanganyika is also the least speciose of the three largest African Great Lakes, with only around 200 species of cichlid; however, these cichlids are more morphologically divergent and ecologically distinct than their counterparts in lakes Malawi and Victoria, an artifact of Lake Tanganyika's older cichlid fauna. Lake Tanganyika itself is believed to have formed 9–12 million years ago, putting a recent cap on the age of the lake's cichlid fauna. Many of Tanganyika's cichlids live very specialized lifestyles. The giant or emperor cichlid ( 977:, and are derived from a single ancestor that arrived in the Galapagos from mainland South America perhaps just 3 million years ago. Excluding the Cocos finch, each species of Darwin's finch is generally widely distributed in the Galapagos and fills the same niche on each island. For the ground finches, this niche is a diet of seeds, and they have thick bills to facilitate the consumption of these hard materials. The ground finches are further specialized to eat seeds of a particular size: the large ground finch ( 884: 834: 1297: 1343:. The Hawaiian lobelioids are significantly more speciose than the silverswords, perhaps because they have been present in Hawaii for so much longer: they descended from a single common ancestor who arrived in the archipelago up to 15 million years ago. Today the Hawaiian lobelioids form a clade of over 125 species, including succulents, trees, shrubs, epiphytes, etc. Many species have been lost to extinction and many of the surviving species endangered. 70: 904: 625: 1180:, meaning the female keeps her eggs in her mouth until they hatch; in almost all species, the eggs are also fertilized in the female's mouth, and in a few species, the females continue to guard their fry in their mouth after they hatch. Males of most species display predominantly blue coloration when mating. However, a number of particularly divergent species are known from Malawi, including the piscivorous 612: 1209: 1464:
snakes of Madagascar have evolved into fossorial, arboreal, terrestrial, and semi-aquatic forms that converge with the colubroid faunas in the rest of the world. These Madagascan examples are significantly older than most of the other examples presented here: Madagascar's fauna has been evolving in
1322:
consists of twenty-eight species of Hawaiian plants which, aside from the namesake silverswords, includes trees, shrubs, vines, cushion plants, and more. The silversword alliance is believed to have originated in Hawaii no more than 6 million years ago, making this one of Hawaii's youngest adaptive
1246:
form a large, highly morphologically diverse species group of birds that began radiating in the early days of the Hawaiian archipelago. While today only 17 species are known to persist in Hawaii (3 more may or may not be extinct), there were more than 50 species prior to Polynesian colonization of
1143:
is a unique egg-brooding species, with 15 cm-long males amassing collections of shells and guarding them in the hopes of attracting females (about 6 cm in length) to lay eggs in these shells. These dominant males must defend their territories from three types of rival: (1) other dominant
1136:
possesses a large mouth with a protruding upper lip, and feeds by opening this mouth downward onto the sandy lake bottom, sucking in small invertebrates. A number of Tanganyika's cichlids are shell-brooders, meaning that mating pairs lay and fertilize their eggs inside of empty shells on the lake
810:
This new habitat is relatively isolated. When a volcano erupts on the mainland and destroys an adjacent forest, it is likely that the terrestrial plant and animal species that used to live in the destroyed region will recolonize without evolving greatly. However, if a newly formed habitat is
1003:). There is some overlap: for example, the most robust medium ground finches could have beaks larger than those of the smallest large ground finches. Because of this overlap, it can be difficult to tell the species apart by eye, though their songs differ. These three species often occur 954:
Darwin's finches on the Galapagos Islands are a model system for the study of adaptive radiation. Today represented by approximately 15 species, Darwin's finches are Galapagos endemics famously adapted for a specialized feeding behavior (although one species, the Cocos finch
1247:
the archipelago (between 18 and 21 species have gone extinct since the discovery of the islands by westerners). The Hawaiian honeycreepers are known for their beaks, which are specialized to satisfy a wide range of dietary needs: for example, the beak of the Ê»akiapƍlāʻau (
1287:
evolved separately despite once forming the justification for lumping the two genera together. The Hawaiian honeycreepers are believed to have descended from a single common ancestor some 15 to 20 million years ago, though estimates range as low as 3.5 million years.
3174:
Pinto, Gabriel, Luke Mahler, Luke J. Harmon, and Jonathan B. Losos. "Testing the Island Effect in Adaptive Radiation: Rates and Patterns of Morphological Diversification in Caribbean and Mainland Anolis Lizards." NCBI (2008): n. pag. Web. 28 Oct.
1118:, the speckled peacock bass). It is thought that giant cichlids spawn only a single time, breeding in their third year and defending their young until they reach a large size, before dying of starvation some time thereafter. The three species of 1469:, which caused the disappearance of the dinosaurs and most other reptilian megafauna 65 million years ago, is seen as having triggered a global adaptive radiation event that created the mammal diversity that exists today. Also the 1223:
has served as the site of a number of adaptive radiation events, owing to its isolation, recent origin, and large land area. The three most famous examples of these radiations are presented below, though insects like the Hawaiian
1098:
is the site from which nearly all the cichlid lineages of East Africa (including both riverine and lake species) originated. Thus, the species in the lake constitute a single adaptive radiation event but do not form a single
677:
is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new
1011:
studied their feeding behavior in the long dry season, and discovered that when food is scarce, the ground finches use their specialized beaks to eat the seeds that they are best suited to eat and thus avoid starvation.
1360:), they constitute one of the largest radiation events among all lizards. Anole radiation on the mainland has largely been a process of speciation, and is not adaptive to any great degree, but anoles on each of the 1380:) have adaptively radiated in separate, convergent ways. On each of these islands, anoles have evolved with such a consistent set of morphological adaptations that each species can be assigned to one of six " 1007:, and during the rainy season in the Galapagos when food is plentiful, they specialize little and eat the same, easily accessible foods. It was not well-understood why their beaks were so adapted until 1253:) is characterized by a short, sharp lower mandible for scraping bark off of trees, and the much longer, curved upper mandible is used to probe the wood underneath for insects. Meanwhile, the ʻiʻiwi ( 776:
diversity can also increase. In addition, intraspecific competition will increase, promoting divergent selection to use a wider range of resources. This ecological release provides the potential for
1308:
Adaptive radiation is not a strictly vertebrate phenomenon, and examples are also known from among plants. The most famous example of adaptive radiation in plants is quite possibly the Hawaiian
760:), the evolution of a key innovation, or dispersal to a new environment. Any one of these ecological opportunities has the potential to result in an increase in population size and relaxed 2504:
Givnish, Thomas J; Millam, Kendra C; Mast, Austin R; Paterson, Thomas B; Theim, Terra J; Hipp, Andrew L; Henss, Jillian M; Smith, James F; Wood, Kenneth R; Sytsma, Kenneth J (2008-10-14).
1052:. Once they occurred in sympatry, niche specialization was favored so that the different species competed less directly for resources. This second, sympatric event was adaptive radiation. 2838:
by Wilson, E.; Eisner, T.; Briggs, W.; Dickerson, R.; Metzenberg, R.; O'Brien, R.; Susman, M.; Boggs, W. (Sinauer Associates, Inc., Publishers, Stamford, Connecticut), c 1974. Chapters:
1152:
The cichlids of Lake Malawi constitute a "species flock" of up to 1000 endemic species. Only seven cichlid species in Lake Malawi are not a part of the species flock: the Eastern happy (
1506: 341: 1186:, which lies on its side in the substrate until small cichlids, perhaps drawn to its broken white patterning, come to inspect the predator - at which point they are swiftly eaten. 3130:
Petren, K.; Grant, P. R.; Grant, B. R.; Keller, L. F. (2005). "Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation".
1978:
Petren, K.; Grant, P. R.; Grant, B. R.; Keller, L. F. (2005). "Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation".
2636:
Bell, M. A., and W. E. Aguirre. 2013. Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback. Evolutionary Ecology Research 15:377–411.
1275:). In at least some cases, similar morphologies and behaviors appear to have evolved convergently among the Hawaiian honeycreepers; for example, the short, pointed beaks of 1354:
lizards are distributed broadly in the New World, from the Southeastern US to South America. With over 400 species currently recognized, often placed in a single genus (
1584:
Yoder, J. B.; Clancey, E.; Des Roches, S.; Eastman, J. M.; Gentry, L.; Godsoe, W.; Hagey, T. J.; Jochimsen, D.; Oswald, B. P.; Robertson, J.; Sarver, B. A. J. (2010).
752:
Adaptive radiations are thought to be triggered by an ecological opportunity or a new adaptive zone. Sources of ecological opportunity can be the loss of antagonists (
833: 1044:
The mechanism by which the finches initially diversified is still an area of active research. One proposition is that the finches were able to have a non-adaptive,
1037:) has a slender beak which it uses to pick at wood in search of insects; it also uses small sticks to reach insect prey inside the wood, making it one of the few 656: 2780:
Wille, M; NÀgler, T.F.; Lehmann, B; Schröder, S; Kramers, J.D (June 2008). "Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary".
1124:
are also piscivores, but with laterally compressed bodies and thick scales enabling them to chase prey into thin cracks in rocks without damaging their skin.
1511: 264: 891: 575: 1323:
radiation events. This means that the silverswords evolved on Hawaii's modern high islands, and descended from a single common ancestor that arrived on
772:
with population size the expanded population will have more genetic diversity compared to the ancestral population. With reduced stabilizing selection
3315: 383: 1465:
isolation since the island split from India some 88 million years ago, and the Mantellidae originated around 50 mya. Older examples are known: the
1130:
has evolved large, strangely curved teeth that are designed to scrape scales off of the sides of other fish, scales being its main source of food.
89: 2691: 2145: 2103: 1466: 1194:
Lake Victoria's cichlids are also a species flock, once composed of some 500 or more species. The deliberate introduction of the Nile Perch (
814:
The new habitat has a wide availability of niche space. The rare colonist can only adaptively radiate into as many forms as there are niches.
570: 1384:": trunk–ground, trunk–crown, grass–bush, crown–giant, twig, and trunk. Take for example crown–giants from each of these islands: the Cuban 38: 517: 2950:. In Butlin, R.K., J. Bridle, and D. Schluter (eds) Speciation and Patterns of Diversity, Cambridge University Press, page. 102–126. 2723:"Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary" 1765: 787:
A new habitat has opened up: a volcano, for example, can create new ground in the middle of the ocean. This is the case in places like
2575: 2276: 1901: 649: 378: 209: 795:. For aquatic species, the formation of a large new lake habitat could serve the same purpose; the tectonic movement that formed the 2308: 2051: 1955: 1565: 1318:
species with long, silvery leaves that live for up to 20 years before growing a single flowering stalk and then dying. The Hawaiian
983:) is the largest species of Darwin's finch and has the thickest beak for breaking open the toughest seeds, the small ground finch ( 1420:
Presented above are the most well-documented examples of modern adaptive radiation, but other examples are known. Populations of
111: 368: 336: 3052:
Irschick, Duncan J.; et al. (1997). "A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards".
2594:
Irschick, Duncan J.; et al. (1997). "A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards".
590: 373: 934:
A 2020 study found there to be no direct causal relationship between the proportionally most comparable mass radiations and
807:
could effectively achieve this same result, opening up niches that were previously occupied by species that no longer exist.
2215:"Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes" 1482: 1048:
event on separate islands in the archipelago, such that when they reconverged on some islands, they were able to maintain
1025:
cactus nectar and pollen while these plants are flowering, but on seeds during the rest of the year. The warbler-finches (
642: 629: 1327:
from western North America. The closest modern relatives of the silverswords today are California tarweeds of the family
1586:"Ecological opportunity and the origin of adaptive radiations: Ecological opportunity and origin of adaptive radiations" 560: 1790: 1132: 616: 769: 729:
association between environments and the morphological and physiological traits used to exploit those environments.
116: 1112:) is a piscivore often ranked the largest of all cichlids (though it competes for this title with South America's 1015:
The other finches in the Galapagos are similarly uniquely adapted for their particular niche. The cactus finches (
1182: 938:
in terms of "co-occurrence of species", substantially challenging the hypothesis of "creative mass extinctions".
482: 457: 437: 417: 94: 1021:
sp.) have somewhat longer beaks than the ground finches that serve the dual purpose of allowing them to feed on
694:
and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos ("
1889: 1885: 1421: 1208: 1154: 1008: 472: 467: 442: 397: 363: 357: 346: 1160: 1436:
frogs have radiated into forms that mirror other tropical frog faunas, with the brightly colored mantellas (
1139: 585: 492: 487: 432: 393: 194: 2871:
Grant, P.R. 1999. The ecology and evolution of Darwin's Finches. Princeton University Press, Princeton, NJ.
1500: 1049: 497: 452: 274: 169: 31: 3224:
Schluter, D (1995). "Adaptive radiation in sticklebacks: trade-offs in feeding performance and growth".
2851: 1516: 1243: 1045: 777: 761: 595: 477: 422: 388: 301: 883: 743:
in the emergence of new species around the time that ecological and phenotypic divergence is underway.
3233: 3188: 3139: 3061: 3016: 2967: 2907: 2843: 2789: 2734: 2603: 2506:"Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae)" 2458: 2337: 1987: 1828: 1404: 1319: 995:) has a beak of intermediate size for optimal consumption of intermediately sized seeds (relative to 792: 691: 670: 447: 219: 104: 61: 42: 2868:—on adaptive radiation in biology and human evolution, pp. 28–32, 1994, Orion Publishing. 3310: 1386: 1340: 1068: 1038: 991: 695: 537: 527: 462: 427: 311: 214: 139: 74: 2699: 3289: 3249: 3212: 3163: 3118: 3077: 3040: 2813: 2619: 2190: 2011: 1860: 1615: 1494: 1470: 1461: 1126: 985: 979: 824: 580: 512: 296: 224: 1296: 1249: 3281: 3204: 3155: 3110: 3032: 2995: 2935: 2805: 2762: 2673: 2571: 2543: 2525: 2486: 2416: 2365: 2304: 2272: 2246: 2182: 2141: 2099: 2047: 2003: 1951: 1897: 1852: 1844: 1710: 1692: 1653: 1607: 1561: 1072: 800: 796: 765: 733: 281: 159: 149: 144: 69: 1555: 3273: 3241: 3196: 3147: 3102: 3069: 3024: 2985: 2975: 2925: 2915: 2797: 2752: 2742: 2663: 2655: 2611: 2533: 2517: 2476: 2466: 2406: 2398: 2355: 2345: 2236: 2226: 2174: 1995: 1836: 1744: 1700: 1684: 1645: 1597: 1474: 1443: 1381: 1361: 1033: 811:
isolated, the species that colonize it will likely be somewhat random and uncommon arrivals.
804: 679: 316: 3179:
Rainey, P. B.; Travisano, M. (1998). "Adaptive radiation in a heterogeneous environment".
2389: 1947: 1940: 1791:"Artificial intelligence finds surprising patterns in Earth's biological mass extinctions" 1749: 1732: 1478: 1392: 1120: 1114: 1095: 1076: 935: 860: 269: 259: 121: 3237: 3192: 3143: 3065: 3020: 3007:
Gavrilets, S.; Losos, J. B. (2009). "Adaptive radiation: contrasting theory with data".
2971: 2911: 2793: 2738: 2607: 2462: 2341: 1991: 1832: 2930: 2895: 2861: 2757: 2722: 2668: 2647: 2538: 2505: 2411: 2384: 2301:
Evolution in Hawaii: A Supplement to Teaching about Evolution and the Nature of Science
1705: 1672: 1649: 1398: 1266: 351: 254: 2241: 2214: 903: 3304: 3151: 3090: 2990: 2955: 2481: 2446: 2162: 1999: 1864: 1673:"Does population size affect genetic diversity? A test with sympatric lizard species" 1602: 1585: 1314: 1309: 1108: 1084: 1061: 1027: 502: 174: 45:, which are thought to have evolved via an adaptive radiation that diversified their 3216: 3167: 2015: 1816: 1619: 3293: 3122: 3044: 2956:"Age and rate of diversification of the Hawaiian silversword alliance (Compositae)" 2817: 2447:"Age and rate of diversification of the Hawaiian silversword alliance (Compositae)" 2194: 1815:
Hoyal Cuthill, Jennifer F.; Guttenberg, Nicholas; Budd, Graham E. (December 2020).
1432:
are marked by very distinct beak shapes to suit their ecological roles. Madagascan
1271: 1177: 962: 522: 507: 291: 286: 204: 37: 17: 3260:
Schluter, Dolph. The ecology of adaptive radiation. Oxford University Press, 2000.
1255: 1339:
Hawaii is also the site of a separate major floral adaptive radiation event: the
1433: 1373: 1351: 1283: 1269:, is composed of thick-billed, mostly seed-eating birds, like the Laysan finch ( 1230: 1166: 1080: 957: 753: 532: 249: 199: 3277: 2874: 2855: 2842:
pp 824–877. 40 Graphs, w species pictures, also Tables, Photos, etc. Includes
1840: 1817:"Impacts of speciation and extinction measured by an evolutionary decay clock" 1457: 1425: 1369: 1328: 1225: 1196: 966: 683: 306: 229: 184: 164: 78: 2529: 1848: 1696: 783:
Occupying a new environment might take place under the following conditions:
3028: 2980: 2920: 2747: 2471: 1100: 989:) has a smaller beak for eating smaller seeds, and the medium ground finch ( 773: 757: 715: 687: 565: 179: 99: 3285: 3159: 3114: 3036: 2939: 2809: 2766: 2677: 2659: 2547: 2521: 2420: 2402: 2385:"Convergent evolution of 'creepers' in the Hawaiian honeycreeper radiation" 2369: 2250: 2231: 2186: 2007: 1856: 1714: 1657: 1611: 3208: 3091:"Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism" 2999: 2490: 2163:"Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism" 611: 2568:
Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles
1438: 1172: 1031:
sp.) have short, pointed beaks for eating insects. The woodpecker finch (
1017: 1004: 555: 154: 2801: 2648:"Diversification and the adaptive radiation of the vangas of Madagascar" 1688: 1442:) having evolved convergently with the Neotropical poison dart frogs of 27:
A process in which organisms diversify rapidly from an ancestral species
3253: 3081: 2948:
Dynamic patterns of adaptive radiation: evolution of mating preferences
2881:
Kemp, A.C. (1978). "A review of the hornbills: biology and radiation".
2623: 2360: 2350: 2325: 1453: 1448: 1377: 1261: 1064: 1022: 974: 1216:). Note the long, curved beak for sipping nectar from tubular flowers. 2847: 1356: 1277: 1220: 788: 3245: 3073: 2615: 3106: 2383:
Reding, DM; Foster, JT; James, HF; Pratt, HD; Fleisher, RC (2009).
2178: 3200: 1429: 1324: 1295: 1207: 1103: 970: 842: 819:
Relationship between mass-extinctions and mass adaptive radiations
2721:
Feng; Blackburn; Liang; Hillis; Wake; Cannatella; Zhang (2017).
2044:
Lake Victoria Rock Cichlids: taxonomy, ecology, and distribution
1424:
have repeatedly diverged and evolved into distinct ecotypes. On
1365: 46: 1300:
A mixture of blooming and non-blooming Haleakalā silverswords (
736:
advantages of trait values in their corresponding environments.
682:. Starting with a single ancestor, this process results in the 1894:
40 years of Evolution: Darwin's Finches on Daphne Major Island
1265:
flowers. An entire clade of Hawaiian honeycreepers, the tribe
898: 3264:
Seehausen, O (2004). "Hybridization and adaptive radiation".
706:
Four features can be used to identify an adaptive radiation:
1766:"Earth's Biodiversity Bursts Do Not Follow Expected Pattern" 1259:) has a very long curved beak for reaching nectar deep in 2096:
Tanganyika Cichlids in their natural habitat, 3rd Edition
973:
in the true sense, but are members of the tanager family
2326:"Ancient diversification of Hyposmocoma moths in Hawaii" 1507:
List of adaptive radiated Hawaiian honeycreepers by form
49:
shapes, enabling them to exploit different food sources.
2646:
Reddy; Driskell; Rabosky; Hackett; Schulenberg (2012).
2510:
Proceedings of the Royal Society B: Biological Sciences
1942:
The Beak of the Finch: A Story of Evolution in Our Time
915: 825:
Cambrian explosion § End-Ediacaran mass extinction
710:
A common ancestry of component species: specifically a
690:
adaptation of an array of species exhibiting different
30:
For a more general term to describe any radiation, see
894:
Phanerozoic biodiversity as shown by the fossil record
2877:. 2001. What evolution is. Basic Books, New York, NY. 2138:
Malawi Cichlids in their natural habitat, 5th edition
1896:. Princeton: Princeton University Press. p. 16. 1737:
Annual Review of Ecology, Evolution, and Systematics
2098:. El Paso, TX: Cichlid Press. pp. 8, 325–328. 1973: 1971: 1969: 1967: 2692:"Where did all of Madagascar's species come from?" 2303:. Washington, D.C.: The National Academies Press. 1939: 1636:Simpson, G (1949). "Tempo and Mode in Evolution". 698:"), but examples are known from around the world. 2954:Baldwin, Bruce G.; Sanderson, Michael J. (1998). 2445:Baldwin, Bruce G.; Sanderson, Michael J. (1998). 1638:Transactions of the New York Academy of Sciences 2960:Proceedings of the National Academy of Sciences 2570:. Oakland, CA: University of California Press. 2451:Proceedings of the National Academy of Sciences 1733:"Ecological Opportunity and Adaptive Radiation" 1549: 1547: 2262: 2260: 1644:. New York: Columbia University Press: 45–60. 1538:Our Origins: Discovering Physical Anthropology 1503:—a more general term to describe any radiation 1497:—the most notable evolutionary radiation event 1485:were filled up by the emergence of new phyla. 1234:moths have also undergone adaptive radiation. 722:descendants of a common ancestor are included. 714:ancestry. Note that this is not the same as a 2208: 2206: 2204: 650: 8: 2840:The Multiplication of Species; Biogeography, 2037: 2035: 2033: 2031: 2029: 2027: 2025: 1512:List of adaptive radiated marsupials by form 961:), is not found in the Galapagos but on the 799:, ultimately leading to the creation of the 2589: 2587: 2131: 2129: 2127: 2125: 2123: 2121: 2119: 2117: 2115: 2089: 2087: 2085: 2083: 1946:. New York: Alfred A. Knopf, Inc. pp.  1560:. Oxford University Press. pp. 10–11. 2440: 2438: 2436: 2434: 2432: 2430: 2269:Darwin's Dreampond: Drama in Lake Victoria 2213:Salzburger; Mack; Verheyen; Meyer (2005). 2081: 2079: 2077: 2075: 2073: 2071: 2069: 2067: 2065: 2063: 1933: 882: 739:Rapid speciation: presence of one or more 657: 643: 52: 41:Four of the 14 finch species found in the 2989: 2979: 2929: 2919: 2756: 2746: 2667: 2537: 2480: 2470: 2410: 2359: 2349: 2240: 2230: 1931: 1929: 1927: 1925: 1923: 1921: 1919: 1917: 1915: 1913: 1748: 1704: 1601: 1452:species are the Madagascan equivalent of 2896:"Dynamic patterns of adaptive radiation" 2561: 2559: 2557: 2294: 2292: 2290: 2288: 1726: 1724: 36: 1528: 1302:Argyroxiphium sandwicense macrocephalum 725:A phenotype-environment correlation: a 60: 1750:10.1146/annurev-ecolsys-121415-032254 969:). Darwin's finches are not actually 7: 1631: 1629: 1579: 1577: 1164:), and five tilapia species (genera 1671:Hague, M T J; Routman, E J (2016). 1312:, named for alpine desert-dwelling 1056:Cichlids of the African Great Lakes 2652:Proceedings of the Royal Society B 2324:Haines; Schmitz; Rubinoff (2014). 1650:10.1111/j.2164-0947.1945.tb00215.x 1540:(2 ed.). Norton. p. A11. 732:Trait utility: the performance or 25: 3266:Trends in Ecology & Evolution 2946:Gavrilets, S. and A. Vose. 2009. 1557:The Ecology of Adaptive Radiation 3316:Evolutionary biology terminology 3152:10.1111/j.1365-294x.2005.02632.x 2894:Gavrilets, S.; Vose, A. (2005). 2271:. Cambridge, MA: The MIT Press. 2000:10.1111/j.1365-294x.2005.02632.x 1603:10.1111/j.1420-9101.2010.02029.x 902: 832: 624: 623: 610: 68: 1590:Journal of Evolutionary Biology 617:Evolutionary biology portal 2698:. October 2009. Archived from 2654:. 279:1735 (1735): 2062–2071. 2140:. El Paso, TX: Cichlid Press. 576:Creation–evolution controversy 330:History of evolutionary theory 1: 1483:End-Ediacaran mass extinction 780:and thus adaptive radiation. 764:(constraining) selection. As 1204:Adaptive radiation in Hawaii 1109:Boulengerochromis microlepis 803:, is an example of this. An 561:Evolution as fact and theory 1133:Gnathochromis permaxillaris 3332: 3278:10.1016/j.tree.2004.01.003 3089:Losos, Jonathan B (2010). 2267:Goldschmidt, Tijs (1996). 2161:Losos, Jonathan B (2010). 1477:left by the extinction of 1412:adaptive radiation event. 822: 596:Nature-nurture controversy 29: 1938:Weiner, Jonathan (1994). 1841:10.1038/s41586-020-3003-4 1731:Stroud and Losos (2016). 1536:Larsen, Clark S. (2011). 1422:three-spined sticklebacks 483:Evolutionary neuroscience 458:Evolutionary epistemology 438:Evolutionary anthropology 418:Applications of evolution 2566:Losos, Jonathan (2009). 2219:BMC Evolutionary Biology 1554:Schluter, Dolph (2000). 1189: 1183:Nimbochromis livingtonii 1155:Astatotilapia calliptera 1009:Peter and Rosemary Grant 473:Evolutionary linguistics 468:Evolutionary game theory 443:Evolutionary computation 3095:The American Naturalist 3029:10.1126/science.1157966 2981:10.1073/pnas.95.16.9402 2921:10.1073/pnas.0506330102 2866:The Origin of Humankind 2748:10.1073/pnas.1704632114 2472:10.1073/pnas.95.16.9402 2167:The American Naturalist 2042:Seehausen, Ole (1996). 1161:Serranochromis robustus 1140:Lamprologus callipterus 949: 586:Objections to evolution 493:Evolutionary psychology 488:Evolutionary physiology 433:Evolutionary aesthetics 412:Fields and applications 394:History of paleontology 2660:10.1098/rspb.2011.2380 2522:10.1098/rspb.2008.1204 2403:10.1098/rsbl.2008.0589 2232:10.1186/1471-2148-5-17 1501:Evolutionary radiation 1428:, birds of the family 1305: 1244:Hawaiian honeycreepers 1238:Hawaiian honeycreepers 1217: 1050:reproductive isolation 1039:animals that use tools 867:Other mass extinctions 518:Speciation experiments 498:Experimental evolution 453:Evolutionary economics 275:Recent human evolution 133:Processes and outcomes 50: 32:Evolutionary radiation 2330:Nature Communications 2299:Olsen, Steve (2004). 1517:Nonadaptive radiation 1467:K-Pg extinction event 1446:, while the arboreal 1299: 1292:Hawaiian silverswords 1211: 1046:allopatric speciation 1034:Camarhynchus pallidus 980:Geospiza magnirostris 958:Pinaroloxias inornata 849:"Well-defined" genera 778:ecological speciation 478:Evolutionary medicine 423:Biosocial criminology 389:History of speciation 302:Evolutionary taxonomy 265:Timeline of evolution 43:GalĂĄpagos Archipelago 40: 2854:subcontinent, (plus 2136:Konings, Ad (2016). 2094:Konings, Ad (2015). 2046:. Verduyn Cichlids. 1320:silversword alliance 680:environmental niches 671:evolutionary biology 448:Evolutionary ecology 62:Evolutionary biology 3238:1995Ecol...76...82S 3193:1998Natur.394...69R 3144:2005MolEc..14.2943P 3066:1997Ecol...78.2191I 3021:2009Sci...323..732G 2972:1998PNAS...95.9402B 2912:2005PNAS..10218040G 2906:(50): 18040–18045. 2802:10.1038/nature07072 2794:2008Natur.453..767W 2739:2017PNAS..114E5864F 2608:1997Ecol...78.2191I 2463:1998PNAS...95.9402B 2342:2014NatCo...5.3502H 1992:2005MolEc..14.2943P 1833:2020Natur.588..636H 1770:Scientific American 1689:10.1038/hdy.2015.76 1387:Anolis luteogularis 1341:Hawaiian lobelioids 1335:Hawaiian lobelioids 1250:Hemignathus wilsoni 1190:Victoria's cichlids 1091:Tanganyika cichlids 986:Geospiza fuliginosa 877:Thousands of genera 550:Social implications 538:Universal Darwinism 528:Island biogeography 463:Evolutionary ethics 428:Ecological genetics 374:Molecular evolution 312:Transitional fossil 140:Population genetics 56:Part of a series on 18:Radiation (biology) 2834:Wilson, E. et al. 2351:10.1038/ncomms4502 1890:Grant, B. Rosemary 1495:Cambrian explosion 1471:Cambrian Explosion 1306: 1218: 1127:Plecodus straeleni 914:. You can help by 675:adaptive radiation 581:Theistic evolution 513:Selective breeding 225:Parallel evolution 190:Adaptive radiation 51: 3138:(10): 2943–2957. 3132:Molecular Ecology 3015:(5915): 732–737. 2966:(16): 9402–9406. 2844:GalĂĄpagos Islands 2733:(29): 5864–5870. 2516:(1656): 407–416. 2457:(16): 9402–9406. 2147:978-1-932892-23-9 2105:978-1-932892-18-5 1986:(10): 2943–2957. 1980:Molecular Ecology 1827:(7839): 636–641. 1462:pseudoxyrhophiine 1272:Telespiza cantans 1256:Drepanis coccinea 1214:Drepanis coccinea 1075:(particularly in 1073:East African Rift 932: 931: 872:Million years ago 801:Rift Valley Lakes 797:East African Rift 766:genetic diversity 667: 666: 358:Origin of Species 160:Natural selection 16:(Redirected from 3323: 3297: 3257: 3220: 3171: 3126: 3085: 3060:(7): 2191–2203. 3048: 3003: 2993: 2983: 2943: 2933: 2923: 2890: 2822: 2821: 2777: 2771: 2770: 2760: 2750: 2718: 2712: 2711: 2709: 2707: 2688: 2682: 2681: 2671: 2643: 2637: 2634: 2628: 2627: 2602:(7): 2191–2203. 2591: 2582: 2581: 2563: 2552: 2551: 2541: 2501: 2495: 2494: 2484: 2474: 2442: 2425: 2424: 2414: 2380: 2374: 2373: 2363: 2353: 2321: 2315: 2314: 2296: 2283: 2282: 2264: 2255: 2254: 2244: 2234: 2210: 2199: 2198: 2158: 2152: 2151: 2133: 2110: 2109: 2091: 2058: 2057: 2039: 2020: 2019: 1975: 1962: 1961: 1945: 1935: 1908: 1907: 1882: 1876: 1875: 1873: 1871: 1812: 1806: 1805: 1803: 1801: 1787: 1781: 1780: 1778: 1776: 1761: 1755: 1754: 1752: 1728: 1719: 1718: 1708: 1668: 1662: 1661: 1633: 1624: 1623: 1605: 1596:(8): 1581–1596. 1581: 1572: 1571: 1551: 1542: 1541: 1533: 1402:, and Jamaica's 1396:, Puerto Rico's 1362:Greater Antilles 1347:Caribbean anoles 950:Darwin's finches 927: 924: 906: 899: 886: 878: 873: 868: 863: 861:mass extinctions 855: 850: 845: 836: 805:extinction event 696:Darwin's finches 659: 652: 645: 632: 627: 626: 619: 615: 614: 591:Level of support 384:Current research 369:Modern synthesis 364:Before synthesis 317:Extinction event 75:Darwin's finches 72: 53: 21: 3331: 3330: 3326: 3325: 3324: 3322: 3321: 3320: 3301: 3300: 3263: 3246:10.2307/1940633 3223: 3187:(6688): 69–72. 3178: 3129: 3088: 3074:10.2307/2265955 3051: 3006: 2953: 2893: 2883:The Living Bird 2880: 2862:Leakey, Richard 2831: 2829:Further reading 2826: 2825: 2788:(7196): 767–9. 2779: 2778: 2774: 2720: 2719: 2715: 2705: 2703: 2690: 2689: 2685: 2645: 2644: 2640: 2635: 2631: 2616:10.2307/2265955 2593: 2592: 2585: 2578: 2565: 2564: 2555: 2503: 2502: 2498: 2444: 2443: 2428: 2390:Biology Letters 2382: 2381: 2377: 2323: 2322: 2318: 2311: 2298: 2297: 2286: 2279: 2266: 2265: 2258: 2212: 2211: 2202: 2160: 2159: 2155: 2148: 2135: 2134: 2113: 2106: 2093: 2092: 2061: 2054: 2041: 2040: 2023: 1977: 1976: 1965: 1958: 1937: 1936: 1911: 1904: 1886:Grant, David R. 1884: 1883: 1879: 1869: 1867: 1814: 1813: 1809: 1799: 1797: 1789: 1788: 1784: 1774: 1772: 1763: 1762: 1758: 1730: 1729: 1722: 1670: 1669: 1665: 1635: 1634: 1627: 1583: 1582: 1575: 1568: 1553: 1552: 1545: 1535: 1534: 1530: 1525: 1491: 1479:Ediacaran biota 1473:, where vacant 1418: 1393:Anolis ricordii 1390:, Hispaniola's 1349: 1337: 1294: 1240: 1206: 1197:Lates niloticus 1192: 1158:), the sungwa ( 1150: 1148:Malawi cichlids 1121:Altolamprologus 1115:Cichla temensis 1096:Lake Tanganyika 1093: 1077:Lake Tanganyika 1058: 997:G. magnirostris 992:Geospiza fortis 963:island of Cocos 952: 947: 941: 928: 922: 919: 912:needs expansion 897: 896: 895: 893: 888: 887: 880: 879: 876: 874: 871: 869: 866: 864: 858: 856: 853: 851: 848: 846: 840: 837: 827: 821: 750: 704: 702:Characteristics 663: 622: 609: 608: 601: 600: 551: 543: 542: 413: 405: 404: 403: 331: 323: 322: 321: 270:Human evolution 260:History of life 244: 243:Natural history 236: 235: 234: 134: 126: 81: 35: 28: 23: 22: 15: 12: 11: 5: 3329: 3327: 3319: 3318: 3313: 3303: 3302: 3299: 3298: 3272:(4): 198–207. 3261: 3258: 3221: 3176: 3172: 3127: 3107:10.1086/652433 3101:(6): 623–639. 3086: 3049: 3004: 2951: 2944: 2891: 2878: 2872: 2869: 2859: 2858:Island, etc.). 2836:Life on Earth, 2830: 2827: 2824: 2823: 2772: 2713: 2683: 2638: 2629: 2583: 2577:978-0520255913 2576: 2553: 2496: 2426: 2397:(2): 221–224. 2375: 2316: 2309: 2284: 2278:978-0262071789 2277: 2256: 2200: 2179:10.1086/652433 2173:(6): 623–639. 2153: 2146: 2111: 2104: 2059: 2052: 2021: 1963: 1956: 1909: 1903:978-0691160467 1902: 1877: 1807: 1782: 1764:Black, Riley. 1756: 1720: 1663: 1625: 1573: 1566: 1543: 1527: 1526: 1524: 1521: 1520: 1519: 1514: 1509: 1504: 1498: 1490: 1487: 1417: 1416:Other examples 1414: 1405:Anolis garmani 1399:Anolis cuvieri 1348: 1345: 1336: 1333: 1293: 1290: 1267:Psittirostrini 1239: 1236: 1205: 1202: 1191: 1188: 1178:mouth-brooders 1149: 1146: 1092: 1089: 1067:fishes in the 1057: 1054: 951: 948: 946: 943: 930: 929: 909: 907: 890: 889: 881: 875: 870: 865: 857: 852: 847: 839: 838: 831: 830: 829: 828: 820: 817: 816: 815: 812: 808: 768:is positively 749: 746: 745: 744: 737: 730: 723: 703: 700: 665: 664: 662: 661: 654: 647: 639: 636: 635: 634: 633: 620: 603: 602: 599: 598: 593: 588: 583: 578: 573: 571:Social effects 568: 563: 558: 552: 549: 548: 545: 544: 541: 540: 535: 530: 525: 520: 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 445: 440: 435: 430: 425: 420: 414: 411: 410: 407: 406: 402: 401: 391: 386: 381: 376: 371: 366: 361: 354: 349: 344: 339: 333: 332: 329: 328: 325: 324: 320: 319: 314: 309: 304: 299: 297:Classification 294: 289: 284: 279: 278: 277: 267: 262: 257: 255:Common descent 252: 250:Origin of life 246: 245: 242: 241: 238: 237: 233: 232: 227: 222: 217: 212: 207: 202: 197: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 136: 135: 132: 131: 128: 127: 125: 124: 119: 114: 108: 107: 102: 97: 92: 86: 83: 82: 73: 65: 64: 58: 57: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3328: 3317: 3314: 3312: 3309: 3308: 3306: 3295: 3291: 3287: 3283: 3279: 3275: 3271: 3267: 3262: 3259: 3255: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3222: 3218: 3214: 3210: 3206: 3202: 3201:10.1038/27900 3198: 3194: 3190: 3186: 3182: 3177: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3128: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3096: 3092: 3087: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3050: 3046: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3005: 3001: 2997: 2992: 2987: 2982: 2977: 2973: 2969: 2965: 2961: 2957: 2952: 2949: 2945: 2941: 2937: 2932: 2927: 2922: 2917: 2913: 2909: 2905: 2901: 2897: 2892: 2888: 2884: 2879: 2876: 2873: 2870: 2867: 2863: 2860: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2832: 2828: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2776: 2773: 2768: 2764: 2759: 2754: 2749: 2744: 2740: 2736: 2732: 2728: 2724: 2717: 2714: 2702:on 2011-05-16 2701: 2697: 2693: 2687: 2684: 2679: 2675: 2670: 2665: 2661: 2657: 2653: 2649: 2642: 2639: 2633: 2630: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2590: 2588: 2584: 2579: 2573: 2569: 2562: 2560: 2558: 2554: 2549: 2545: 2540: 2535: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2497: 2492: 2488: 2483: 2478: 2473: 2468: 2464: 2460: 2456: 2452: 2448: 2441: 2439: 2437: 2435: 2433: 2431: 2427: 2422: 2418: 2413: 2408: 2404: 2400: 2396: 2392: 2391: 2386: 2379: 2376: 2371: 2367: 2362: 2357: 2352: 2347: 2343: 2339: 2335: 2331: 2327: 2320: 2317: 2312: 2310:0-309-52657-4 2306: 2302: 2295: 2293: 2291: 2289: 2285: 2280: 2274: 2270: 2263: 2261: 2257: 2252: 2248: 2243: 2238: 2233: 2228: 2224: 2220: 2216: 2209: 2207: 2205: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2157: 2154: 2149: 2143: 2139: 2132: 2130: 2128: 2126: 2124: 2122: 2120: 2118: 2116: 2112: 2107: 2101: 2097: 2090: 2088: 2086: 2084: 2082: 2080: 2078: 2076: 2074: 2072: 2070: 2068: 2066: 2064: 2060: 2055: 2053:90-800181-6-3 2049: 2045: 2038: 2036: 2034: 2032: 2030: 2028: 2026: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1972: 1970: 1968: 1964: 1959: 1957:0-679-40003-6 1953: 1949: 1944: 1943: 1934: 1932: 1930: 1928: 1926: 1924: 1922: 1920: 1918: 1916: 1914: 1910: 1905: 1899: 1895: 1891: 1887: 1881: 1878: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1811: 1808: 1796: 1792: 1786: 1783: 1771: 1767: 1760: 1757: 1751: 1746: 1742: 1738: 1734: 1727: 1725: 1721: 1716: 1712: 1707: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1630: 1626: 1621: 1617: 1613: 1609: 1604: 1599: 1595: 1591: 1587: 1580: 1578: 1574: 1569: 1567:0-19-850523-X 1563: 1559: 1558: 1550: 1548: 1544: 1539: 1532: 1529: 1522: 1518: 1515: 1513: 1510: 1508: 1505: 1502: 1499: 1496: 1493: 1492: 1488: 1486: 1484: 1480: 1476: 1472: 1468: 1463: 1459: 1455: 1451: 1450: 1445: 1444:Dendrobatidae 1441: 1440: 1435: 1431: 1427: 1423: 1415: 1413: 1411: 1407: 1406: 1401: 1400: 1395: 1394: 1389: 1388: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1358: 1353: 1346: 1344: 1342: 1334: 1332: 1330: 1326: 1321: 1317: 1316: 1315:Argyroxiphium 1311: 1303: 1298: 1291: 1289: 1286: 1285: 1280: 1279: 1274: 1273: 1268: 1264: 1263: 1258: 1257: 1252: 1251: 1245: 1237: 1235: 1233: 1232: 1227: 1222: 1215: 1210: 1203: 1201: 1199: 1198: 1187: 1185: 1184: 1179: 1175: 1174: 1169: 1168: 1163: 1162: 1157: 1156: 1147: 1145: 1142: 1141: 1135: 1134: 1129: 1128: 1123: 1122: 1117: 1116: 1111: 1110: 1105: 1102: 1097: 1090: 1088: 1086: 1085:Lake Victoria 1082: 1078: 1074: 1070: 1066: 1063: 1062:haplochromine 1055: 1053: 1051: 1047: 1042: 1040: 1036: 1035: 1030: 1029: 1024: 1020: 1019: 1013: 1010: 1006: 1005:sympatrically 1002: 1001:G. fuliginosa 998: 994: 993: 988: 987: 982: 981: 976: 972: 968: 964: 960: 959: 944: 942: 939: 937: 926: 917: 913: 910:This section 908: 905: 901: 900: 892: 885: 862: 844: 835: 826: 818: 813: 809: 806: 802: 798: 794: 790: 786: 785: 784: 781: 779: 775: 771: 767: 763: 759: 755: 747: 742: 738: 735: 731: 728: 724: 721: 717: 713: 709: 708: 707: 701: 699: 697: 693: 692:morphological 689: 685: 681: 676: 672: 660: 655: 653: 648: 646: 641: 640: 638: 637: 631: 621: 618: 613: 607: 606: 605: 604: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 553: 547: 546: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 503:Phylogenetics 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 415: 409: 408: 399: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 360: 359: 355: 353: 350: 348: 347:Before Darwin 345: 343: 340: 338: 335: 334: 327: 326: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 276: 273: 272: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 247: 240: 239: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 175:Genetic drift 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 130: 129: 123: 120: 118: 115: 113: 110: 109: 106: 103: 101: 98: 96: 93: 91: 88: 87: 85: 84: 80: 76: 71: 67: 66: 63: 59: 55: 54: 48: 44: 39: 33: 19: 3269: 3265: 3232:(1): 82–90. 3229: 3225: 3184: 3180: 3135: 3131: 3098: 3094: 3057: 3053: 3012: 3008: 2963: 2959: 2947: 2903: 2899: 2886: 2882: 2865: 2839: 2835: 2785: 2781: 2775: 2730: 2726: 2716: 2704:. Retrieved 2700:the original 2695: 2686: 2651: 2641: 2632: 2599: 2595: 2567: 2513: 2509: 2499: 2454: 2450: 2394: 2388: 2378: 2333: 2329: 2319: 2300: 2268: 2222: 2218: 2170: 2166: 2156: 2137: 2095: 2043: 1983: 1979: 1941: 1893: 1880: 1868:. Retrieved 1824: 1820: 1810: 1798:. Retrieved 1794: 1785: 1773:. Retrieved 1769: 1759: 1740: 1736: 1683:(1): 92–98. 1680: 1676: 1666: 1641: 1637: 1593: 1589: 1556: 1537: 1531: 1447: 1437: 1419: 1409: 1403: 1397: 1391: 1385: 1355: 1350: 1338: 1313: 1310:silverswords 1307: 1301: 1282: 1276: 1270: 1260: 1254: 1248: 1241: 1229: 1219: 1213: 1195: 1193: 1181: 1171: 1165: 1159: 1153: 1151: 1138: 1131: 1125: 1119: 1113: 1107: 1101:monophyletic 1094: 1059: 1043: 1032: 1026: 1016: 1014: 1000: 996: 990: 984: 978: 956: 953: 940: 933: 923:January 2021 920: 916:adding to it 911: 782: 751: 740: 726: 719: 711: 705: 674: 668: 523:Sociobiology 508:Paleontology 356: 292:Biogeography 287:Biodiversity 205:Coextinction 195:Co-operation 189: 170:Polymorphism 95:Introduction 2875:Mayr, Ernst 2361:10125/40006 1743:: 507–532. 1458:glass frogs 1374:Puerto Rico 1231:Hyposmocoma 1226:drosophilid 1212:An Ê»iÊ»iwi ( 1167:Oreochromis 1081:Lake Malawi 1069:Great Lakes 936:extinctions 859:"Big Five" 762:stabilizing 754:competitors 727:significant 533:Systematics 342:Renaissance 220:Convergence 210:Contingency 200:Coevolution 3311:Speciation 3305:Categories 2889:: 105–136. 2856:St. Helena 2225:(17): 17. 1870:17 January 1800:17 January 1775:17 January 1523:References 1454:tree frogs 1426:Madagascar 1370:Hispaniola 1329:Asteraceae 1284:Oreomystis 1228:flies and 975:Thraupidae 967:Costa Rica 854:Trend line 823:See also: 774:phenotypic 770:correlated 748:Conditions 688:phenotypic 684:speciation 307:Cladistics 230:Extinction 215:Divergence 185:Speciation 165:Adaptation 79:John Gould 2852:Australia 2530:0962-8452 1865:228090659 1849:1476-4687 1697:0018-067X 1434:mantellid 1382:ecomorphs 1028:Certhidea 965:south of 793:Galapagos 758:predators 718:in which 716:monophyly 566:Dysgenics 282:Phylogeny 180:Gene flow 150:Diversity 145:Variation 3286:16701254 3217:40896184 3168:20787729 3160:16101765 3115:20412015 3037:19197052 2940:16330783 2810:18509331 2767:28673970 2678:22217720 2548:18854299 2421:19087923 2370:24651317 2336:: 3502. 2251:15723698 2187:20412015 2016:20787729 2008:16101765 1892:(2014). 1857:33299185 1795:phys.org 1715:26306730 1677:Heredity 1658:21012247 1620:25334971 1612:20561138 1489:See also 1439:Mantella 1430:Vangidae 1173:Coptodon 1137:bottom. 1018:Geospiza 945:Examples 791:and the 630:Category 556:Eugenics 398:timeline 379:Evo-devo 337:Overview 155:Mutation 117:Evidence 112:Glossary 3294:9992822 3254:1940633 3234:Bibcode 3226:Ecology 3209:9665128 3189:Bibcode 3140:Bibcode 3123:1657188 3082:2265955 3062:Bibcode 3054:Ecology 3045:5601085 3017:Bibcode 3009:Science 3000:9689092 2968:Bibcode 2931:1312382 2908:Bibcode 2818:4425120 2790:Bibcode 2758:5530686 2735:Bibcode 2706:June 3, 2696:WebCite 2669:3311898 2624:2265955 2604:Bibcode 2596:Ecology 2539:2664350 2491:9689092 2459:Bibcode 2412:2665804 2338:Bibcode 2195:1657188 1988:Bibcode 1829:Bibcode 1706:4675878 1481:during 1449:Boophis 1378:Jamaica 1262:Lobelia 1071:of the 1065:cichlid 1023:Opuntia 971:finches 734:fitness 122:History 105:Outline 3292:  3284:  3252:  3215:  3207:  3181:Nature 3166:  3158:  3121:  3113:  3080:  3043:  3035:  2998:  2988:  2938:  2928:  2850:, and 2848:Hawaii 2816:  2808:  2782:Nature 2765:  2755:  2676:  2666:  2622:  2574:  2546:  2536:  2528:  2489:  2479:  2419:  2409:  2368:  2307:  2275:  2249:  2242:554777 2239:  2193:  2185:  2144:  2102:  2050:  2014:  2006:  1954:  1900:  1888:& 1863:  1855:  1847:  1821:Nature 1713:  1703:  1695:  1656:  1618:  1610:  1564:  1475:niches 1460:. The 1410:Anolis 1376:, and 1357:Anolis 1278:Loxops 1221:Hawaii 1083:, and 843:genera 789:Hawaii 741:bursts 712:recent 628:  352:Darwin 3290:S2CID 3250:JSTOR 3213:S2CID 3175:2014. 3164:S2CID 3119:S2CID 3078:JSTOR 3041:S2CID 2991:21350 2814:S2CID 2620:JSTOR 2482:21350 2191:S2CID 2012:S2CID 1861:S2CID 1616:S2CID 1352:Anole 1325:Kauai 1104:clade 90:Index 3282:PMID 3205:PMID 3156:PMID 3111:PMID 3033:PMID 2996:PMID 2936:PMID 2900:PNAS 2806:PMID 2763:PMID 2727:PNAS 2708:2018 2674:PMID 2572:ISBN 2544:PMID 2526:ISSN 2487:PMID 2417:PMID 2366:PMID 2305:ISBN 2273:ISBN 2247:PMID 2183:PMID 2142:ISBN 2100:ISBN 2048:ISBN 2004:PMID 1952:ISBN 1898:ISBN 1872:2021 1853:PMID 1845:ISSN 1802:2021 1777:2021 1711:PMID 1693:ISSN 1654:PMID 1608:PMID 1562:ISBN 1456:and 1366:Cuba 1281:and 1242:The 1170:and 1060:The 999:and 841:All 686:and 100:Main 47:beak 3274:doi 3242:doi 3197:doi 3185:394 3148:doi 3103:doi 3099:175 3070:doi 3025:doi 3013:323 2986:PMC 2976:doi 2926:PMC 2916:doi 2904:102 2798:doi 2786:453 2753:PMC 2743:doi 2731:114 2664:PMC 2656:doi 2612:doi 2534:PMC 2518:doi 2514:276 2477:PMC 2467:doi 2407:PMC 2399:doi 2356:hdl 2346:doi 2237:PMC 2227:doi 2175:doi 2171:175 1996:doi 1948:207 1837:doi 1825:588 1745:doi 1701:PMC 1685:doi 1681:116 1646:doi 1598:doi 918:. 756:or 720:all 669:In 77:by 3307:: 3288:. 3280:. 3270:19 3268:. 3248:. 3240:. 3230:76 3228:. 3211:. 3203:. 3195:. 3183:. 3162:. 3154:. 3146:. 3136:14 3134:. 3117:. 3109:. 3097:. 3093:. 3076:. 3068:. 3058:78 3056:. 3039:. 3031:. 3023:. 3011:. 2994:. 2984:. 2974:. 2964:95 2962:. 2958:. 2934:. 2924:. 2914:. 2902:. 2898:. 2887:17 2885:. 2864:. 2846:, 2812:. 2804:. 2796:. 2784:. 2761:. 2751:. 2741:. 2729:. 2725:. 2694:. 2672:. 2662:. 2650:. 2618:. 2610:. 2600:78 2598:. 2586:^ 2556:^ 2542:. 2532:. 2524:. 2512:. 2508:. 2485:. 2475:. 2465:. 2455:95 2453:. 2449:. 2429:^ 2415:. 2405:. 2393:. 2387:. 2364:. 2354:. 2344:. 2332:. 2328:. 2287:^ 2259:^ 2245:. 2235:. 2221:. 2217:. 2203:^ 2189:. 2181:. 2169:. 2165:. 2114:^ 2062:^ 2024:^ 2010:. 2002:. 1994:. 1984:14 1982:. 1966:^ 1950:. 1912:^ 1859:. 1851:. 1843:. 1835:. 1823:. 1819:. 1793:. 1768:. 1741:47 1739:. 1735:. 1723:^ 1709:. 1699:. 1691:. 1679:. 1675:. 1652:. 1640:. 1628:^ 1614:. 1606:. 1594:23 1592:. 1588:. 1576:^ 1546:^ 1372:, 1368:, 1331:. 1304:). 1079:, 1041:. 673:, 3296:. 3276:: 3256:. 3244:: 3236:: 3219:. 3199:: 3191:: 3170:. 3150:: 3142:: 3125:. 3105:: 3084:. 3072:: 3064:: 3047:. 3027:: 3019:: 3002:. 2978:: 2970:: 2942:. 2918:: 2910:: 2820:. 2800:: 2792:: 2769:. 2745:: 2737:: 2710:. 2680:. 2658:: 2626:. 2614:: 2606:: 2580:. 2550:. 2520:: 2493:. 2469:: 2461:: 2423:. 2401:: 2395:5 2372:. 2358:: 2348:: 2340:: 2334:5 2313:. 2281:. 2253:. 2229:: 2223:5 2197:. 2177:: 2150:. 2108:. 2056:. 2018:. 1998:: 1990:: 1960:. 1906:. 1874:. 1839:: 1831:: 1804:. 1779:. 1753:. 1747:: 1717:. 1687:: 1660:. 1648:: 1642:8 1622:. 1600:: 1570:. 1364:( 955:( 925:) 921:( 658:e 651:t 644:v 400:) 396:( 34:. 20:)

Index

Radiation (biology)
Evolutionary radiation

GalĂĄpagos Archipelago
beak
Evolutionary biology

Darwin's finches
John Gould
Index
Introduction
Main
Outline
Glossary
Evidence
History
Population genetics
Variation
Diversity
Mutation
Natural selection
Adaptation
Polymorphism
Genetic drift
Gene flow
Speciation
Adaptive radiation
Co-operation
Coevolution
Coextinction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑