Knowledge (XXG)

Raman spectroelectrochemistry

Source 📝

260: 189: 311:. It records the scattered radiation and provides the Raman spectra of the molecules. In Raman-SEC, spectrometers are usually combined with confocal microscopes (micro-Raman) to remove the information out of the focus, obtaining an excellent spectral resolution. However, it is possible to work with low resolution Raman spectrometers obtaining very good results. 99:
Surface-Enhanced Raman Scattering (SERS) is a technique capable of increasing Raman signal intensity up to 10 times. This phenomenon is based on the interaction of monochromatic light with materials that exhibit plasmonic properties. The most common metals used in SERS are nanostructured metals with
88:
The Raman resonance effect produces an increase in Raman intensity up to 10 times. In this phenomenon, the monochromatic light interaction with the sample produces the transition of the molecules from the fundamental state to an excited electronic state, instead of a virtual state as in normal Raman
69:
The main advantage of Raman spectroelectrochemistry is that it is not limited to the selected solvent, and aqueous and organic solutions can be used. However, the main disadvantage is the intrinsic low Raman signal intensity. Different methods as well as new substrates were developed to improve the
127:
Surface-oxidation enhanced Raman scattering (SOERS) is a process similar to SERS, which allows the Raman signal to be enhanced when a silver electrode is oxidized in a particular electrolyte composition. This process is carried out at sufficiently positive potentials to ensure the oxidation of the
181:
Tip-enhanced Raman scattering (TERS) is a technique that provides molecular information at nanoscale. In these experiments, metal nanostructures are replaced by a sharp metal tip of nanometric size, concentrating the roughness directly on a small region that improves the spatial resolution of
222:, since it is possible to focus and collect the scattered photons in a highly efficient way. Low resolution Raman spectrometers can be also used, providing suitable results. Using this setup, the sampling area is larger and average information about the electrode surface is obtained. 300:
that interacts with the sample during the electrochemical process. In Raman-SEC, the light source is usually a laser corresponding to the VIS or NIR regions, which commonly emits at 532, 633, 785 or 1064 nm, although there is the possibility of using many other lasers, including
283:, a spectroelectrochemical cell, a three-electrode system, radiation beam conducting devices, data collection and analysis devices. Nowadays, there are commercial instruments that integrate all these elements in a single instrument, significantly simplifying the performance of 116:
electrode surfaces can be generated by depositing metallic nanostructures of these materials. A disadvantage of this phenomenon is, sometimes, the lack of reproducibility of the spectra due to the difficulty of obtaining identical nanostructured surfaces in each experiment.
842:
Królikowska, Agata (2013-07-26), Wieckowski, Andrzej; Korzeniewski, Carol; Braunschweig, Björn (eds.), "Surface-Enhanced Resonance Raman Scattering (SERRS) Studies of Electron-Transfer Redox-Active Protein Attached to Thiol-Modified Metal: Case of Cytochrome c",
385:
over long distances with hardly any losses. In addition, they simplify the optical configurations since they allow working with a small amount of solution; in this way, it is easier to conduct and collect the light in the nearness of the
369:. It is the device that includes the three-electrode system and allows the simultaneous recording of the Raman spectra of the species and the electrochemical signal. It is the link between optical and electrochemical techniques. 30:
of monochromatic light related to chemical compounds involved in an electrode process. This technique provides information about vibrational energy transitions of molecules, using a monochromatic light source, usually from a
263:
Raman-SEC configurations. The first picture shows the normal arrangement, the second the inverted microscope configuration and the last the angle arrangement. All of them are shown on screen-printed electrodes.
162:
signals by preventing the molecules from being directly adsorbed onto them. Silica and alumina coating can improve the chemical and thermal stability of nanoparticles. This fact has great importance in the
205:
provides spectra with very weak Raman bands, therefore, a very well aligned optical configuration is required. Laser has to be focused on the electrode surface and an efficient collection of the scattered
158:. The metallic nucleus (Au or Ag) is responsible of the enhancement of the Raman signals of the nearby molecules, while the coating layers eliminate the influence of the metallic nucleus on the Raman and 73:
For researchers, a few experimental considerations related to Raman spectroelectrochemistry include electrode preparation, cell design, laser parameters, electrochemical sequence and data process.
738:
Perales-Rondon, Juan V.; Hernandez, Sheila; Martin-Yerga, Daniel; Fanjul-Bolado, Pablo; Heras, Aranzazu; Colina, Alvaro (2018). "Electrochemical surface oxidation enhanced Raman scattering".
470:
Transfer processes at the liquid/liquid interfaces: Raman-SEC is used to monitor ion or electron transfer processes at polarizable interfaces between immiscible electrolyte solutions.
35:
that belongs to the UV, Vis or NIR region. Raman spectroelectrochemistry provides specific information about structural changes, composition and orientation of the molecules on the
167:
study of catalytic reactions. The high sensitivity of the SHINERS surfaces makes these nanostructures a promising tool for the study of liquid-solid interfaces, especially in
1201:
Zhang, Hua; Duan, Sai; Radjenovic, Petar M.; Tian, Zhong-Qun; Li, Jian-Feng (2020-04-21). "Core–Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis".
1108:
Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun (2017-04-12). "Core–Shell Nanoparticle-Enhanced Raman Spectroscopy".
408:
In recent years Raman-SEC has become an important tool in the study of electrochemical processes and in the characterization of many molecules, providing specific
50:
are scattered elastically, with the same energy than the incident light. However, a small fraction is scattered inelastically, being the energy of the laser
232:. The laser beam samples the electrode/solution interface in a normal way respect to the electrode surface. The scattered radiation is collected, and the 978:"In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts" 606:
Garoz‐Ruiz, Jesus; Perales‐Rondon, Juan Victor; Heras, Aranzazu; Colina, Alvaro (2019). "Spectroelectrochemical Sensing: Current Trends and Challenges".
66:
techniques, makes Raman spectroelectrochemistry a powerful technique in the identification, characterization and quantification of molecules.
860: 128:
electrode surface. There are significant differences with the SERS effect, but it is a phenomenon that also enhances the Raman signal.
499:"Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques" 244:. In this configuration the electrode/solution is sampled from behind the electrode, using optically transparent electrodes (OTE). 358: 678:
Garoz‐Ruiz, Jesus; Perales‐Rondon, Juan V.; Heras, Aranzazu; Colina, Alvaro (2019). "Spectroelectrochemistry of Quantum Dots".
259: 1081:
López-Lorente, Ángela I.; Kranz, Christine (2017). "Recent advances in biomolecular vibrational spectroelectrochemistry".
1463: 391:
Data collection and analysis devices. It consists of a computer to collect simultaneously the signals provided by the
1154:
Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun (2016).
441:
Qualitative and quantitative analysis: Raman-SEC can be applied to highly complex samples, such as the detection of
1468: 382: 297: 89:
spectroscopy. This phenomenon of increased intensity could be observed in materials such as carbon nanotubes.
284: 168: 18: 556:"Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions" 1308: 1167: 989: 937: 803: 510: 23: 1299:
Rasmussen, A.; Deckert, V. (2006). "Surface- and tip-enhanced Raman scattering of DNA components".
924:
Jorio, A; Pimenta, M A; Filho, A G Souza; Saito, R; Dresselhaus, G; Dresselhaus, M S (2003-10-16).
787: 354: 350: 334: 330: 219: 55: 1409: 1234: 906: 765: 713: 641: 252:. This configuration is usually selected when electrochemical techniques are combined with TERS. 465:
Energy. Raman-SEC were used in the study of solar cells, batteries and catalysts for fuel cells.
416:
Materials: Raman-SEC is widely used in the study and characterization of new materials, such as
1401: 1324: 1281: 1273: 1226: 1218: 1183: 1133: 1125: 1063: 1055: 1013: 1005: 955: 898: 856: 821: 705: 633: 577: 536: 528: 346: 326: 275:
The experimental setup to perform Raman spectroelectrochemistry consists of a light source, a
1439: 1391: 1358: 1316: 1265: 1210: 1175: 1117: 1090: 1047: 997: 945: 888: 848: 811: 755: 747: 695: 687: 623: 615: 567: 518: 433: 202: 188: 159: 63: 59: 40: 27: 1156:"Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials" 210:
is mandatory. Many of the instruments used for Raman-SEC are based on the combination of a
421: 236:
allows passing only the light beam with wavelengths different from that of the laser used.
151: 1312: 1171: 993: 941: 807: 514: 192:
Diagram of the different energy levels showing the states involved in the Raman signal
1347:"Electrochemical tip-enhanced Raman spectroscopy imaging with 8 nm lateral resolution" 46:
When a monochromatic light beam samples the electrode/solution interface, most of the
1457: 1413: 1238: 910: 769: 717: 645: 378: 233: 113: 950: 925: 816: 791: 751: 392: 317: 307: 280: 276: 215: 211: 155: 139: 43:
reaction, being the Raman spectra registered a real fingerprint of the compounds.
1155: 1430:
LeĂłn, L.; Mozo, J.D. (2018). "Designing spectroelectrochemical cells: A review".
1363: 1346: 1345:
Touzalin, Thomas; Joiret, Suzanne; Lucas, Ivan T.; Maisonhaute, Emmanuel (2019).
1214: 1094: 54:
shifted up or down. When the scattering is elastic, the phenomenon is denoted as
1121: 321: 1443: 1179: 1034:
Zhai, Yanling; Zhu, Zhijun; Zhou, Susan; Zhu, Chengzhou; Dong, Shaojun (2018).
497:
Lozeman, Jasper J. A.; FĂŒhrer, Pascal; Olthuis, Wouter; Odijk, Mathieu (2020).
399:, the generated signals can be acquired, transformed, analyzed and interpreted. 1380:"Beginner's Guide to Raman Spectroelectrochemistry for Electrocatalysis Study" 877:"Beginner's Guide to Raman Spectroelectrochemistry for Electrocatalysis Study" 852: 147: 1405: 1328: 1277: 1222: 1187: 1129: 1059: 1009: 959: 902: 825: 709: 637: 581: 532: 436:
capable of forming monolayers on the electrode, and in the study of proteins.
572: 555: 453: 449: 36: 1396: 1379: 1285: 1230: 1137: 1067: 1017: 893: 876: 691: 619: 540: 325:. It is the electronic device that allows controlling the potential of the 442: 417: 396: 926:"Characterizing carbon nanotube samples with resonance Raman scattering" 792:"Characterizing carbon nanotube samples with resonance Raman scattering" 1051: 1035: 1001: 977: 523: 498: 425: 201:
Different configurations can be used to perform Raman-SEC experiments.
143: 760: 700: 628: 1320: 1269: 1253: 460:, among others. In addition, very low concentrations can be detected. 207: 109: 105: 51: 47: 786:
Jorio, A; Pimenta, M A; Filho, A G Souza; Saito, R; Dresselhaus, G;
847:, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 151–219, 457: 291: 258: 187: 32: 133:
SHINERS (Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy)
101: 70:
sensitivity and selectivity of this multirresponse technique.
446: 429: 445:
in milk, the identification of bacteria, the detection of
395:
and the electrochemical instrument. Using an appropriate
333:, or controlling the current that passes respect to the 361:
that include all three electrodes in a single holder.
428:, among others. It is also applied in the study of 122:
SOERS (Surface-Oxidation-Enhanced Raman Scattering)
845:Vibrational Spectroscopy at Electrified Interfaces 146:properties are coated with ultra-thin homogeneous 412:information about them. Some applications are: 8: 1036:"Recent advances in spectroelectrochemistry" 182:scanning techniques in Raman spectroscopy. 22:(Raman-SEC) is a technique that studies the 554:Schmid, Thomas; Dariz, Petra (2019-06-14). 58:, while when it is inelastic it is called 1395: 1362: 949: 892: 815: 759: 699: 627: 571: 522: 375:Devices for conducting the radiation beam 357:. This system can be simplified by using 94:SERS (Surface-Enhanced Raman Scattering) 976:Joya, Khurram S.; Sala, Xavier (2015). 480: 83:RRS effect (Resonance Raman Scaterring) 1425: 1423: 1252:Bailo, Elena; Deckert, Volker (2008). 367:Spectroelectrochemical cell (SEC cell) 1340: 1338: 1149: 1147: 1029: 1027: 971: 969: 225:Typical configurations in Raman-SEC: 7: 837: 835: 781: 779: 733: 731: 729: 727: 673: 671: 669: 667: 665: 663: 661: 659: 657: 655: 601: 599: 597: 595: 593: 591: 492: 490: 488: 486: 484: 176:TERS (Tip-Enhanced Raman Scattering) 1432:TrAC Trends in Analytical Chemistry 1083:Current Opinion in Electrochemistry 982:Physical Chemistry Chemical Physics 62:. Raman spectroscopy combined with 14: 296:. It provides the monochromatic 1351:Electrochemistry Communications 1254:"Tip-enhanced Raman scattering" 752:10.1016/j.electacta.2018.06.079 1: 1301:Journal of Raman Spectroscopy 1203:Accounts of Chemical Research 1378:Zheng, Weiran (2022-10-26). 1364:10.1016/j.elecom.2019.106557 1215:10.1021/acs.accounts.9b00545 1095:10.1016/j.coelec.2017.07.011 875:Zheng, Weiran (2022-10-26). 381:. The last ones conduct the 1122:10.1021/acs.chemrev.6b00596 680:Israel Journal of Chemistry 1485: 1444:10.1016/j.trac.2018.02.002 1180:10.1038/natrevmats.2016.21 951:10.1088/1367-2630/5/1/139 853:10.1002/9781118658871.ch5 817:10.1088/1367-2630/5/1/139 383:electromagnetic radiation 377:: lenses, mirrors and/or 359:screen-printed electrodes 298:electromagnetic radiation 154:layers, forming isolated 1258:Chemical Society Reviews 1160:Nature Reviews Materials 573:10.3390/heritage2020102 169:spectroelectrochemistry 39:surface involved in an 19:spectroelectrochemistry 1397:10.1002/cmtd.202200042 930:New Journal of Physics 894:10.1002/cmtd.202200042 796:New Journal of Physics 692:10.1002/ijch.201900028 620:10.1002/elan.201900075 343:Three-electrode system 285:spectroelectrochemical 264: 193: 262: 250:Angular configuration 191: 138:In SHINERS, metallic 230:Normal configuration 24:inelastic scattering 1313:2006JRSp...37..311R 1172:2016NatRM...116021D 994:2015PCCP...1721094J 988:(33): 21094–21103. 942:2003NJPh....5..139J 808:2003NJPh....5..139J 740:Electrochimica Acta 515:2020Ana...145.2482L 355:auxiliary electrode 351:reference electrode 335:auxiliary electrode 331:reference electrode 242:Inverted microscope 220:confocal microscope 56:Rayleigh scattering 1464:Raman spectroscopy 1384:Chemistry: Methods 1052:10.1039/C7NR07803J 1002:10.1039/C4CP05053C 881:Chemistry: Methods 524:10.1039/C9AN02105A 265: 194: 862:978-1-118-65887-1 434:organic molecules 347:working electrode 327:working electrode 1476: 1469:Electrochemistry 1448: 1447: 1427: 1418: 1417: 1399: 1375: 1369: 1368: 1366: 1342: 1333: 1332: 1321:10.1002/jrs.1480 1307:(1–3): 311–317. 1296: 1290: 1289: 1270:10.1039/b705967c 1249: 1243: 1242: 1198: 1192: 1191: 1151: 1142: 1141: 1116:(7): 5002–5069. 1110:Chemical Reviews 1105: 1099: 1098: 1078: 1072: 1071: 1046:(7): 3089–3111. 1031: 1022: 1021: 973: 964: 963: 953: 921: 915: 914: 896: 872: 866: 865: 839: 830: 829: 819: 788:Dresselhaus, M S 783: 774: 773: 763: 735: 722: 721: 703: 675: 650: 649: 631: 614:(7): 1254–1278. 603: 586: 585: 575: 566:(2): 1662–1683. 551: 545: 544: 526: 509:(7): 2482–2509. 494: 422:carbon nanotubes 345:. It contains a 203:Raman scattering 100:plasmonic band ( 60:Raman scattering 28:Raman scattering 1484: 1483: 1479: 1478: 1477: 1475: 1474: 1473: 1454: 1453: 1452: 1451: 1429: 1428: 1421: 1377: 1376: 1372: 1344: 1343: 1336: 1298: 1297: 1293: 1251: 1250: 1246: 1200: 1199: 1195: 1153: 1152: 1145: 1107: 1106: 1102: 1080: 1079: 1075: 1033: 1032: 1025: 975: 974: 967: 923: 922: 918: 874: 873: 869: 863: 841: 840: 833: 785: 784: 777: 737: 736: 725: 677: 676: 653: 608:Electroanalysis 605: 604: 589: 553: 552: 548: 496: 495: 482: 477: 406: 329:respect to the 273: 271:Instrumentation 267: 256: 199: 185: 160:electrochemical 79: 64:electrochemical 41:electrochemical 12: 11: 5: 1482: 1480: 1472: 1471: 1466: 1456: 1455: 1450: 1449: 1419: 1370: 1334: 1291: 1264:(5): 921–930. 1244: 1209:(4): 729–739. 1193: 1143: 1100: 1089:(1): 106–113. 1073: 1023: 965: 916: 867: 861: 831: 790:(2003-10-16). 775: 723: 686:(8): 679–694. 651: 587: 546: 479: 478: 476: 473: 472: 471: 467: 466: 462: 461: 438: 437: 424:or conductive 405: 402: 401: 400: 388: 387: 379:optical fibres 371: 370: 363: 362: 339: 338: 313: 312: 303: 302: 287:experiments. 272: 269: 254: 253: 246: 245: 238: 237: 198: 195: 179: 178: 136: 135: 125: 124: 114:Nanostructured 97: 96: 86: 85: 78: 75: 13: 10: 9: 6: 4: 3: 2: 1481: 1470: 1467: 1465: 1462: 1461: 1459: 1445: 1441: 1437: 1433: 1426: 1424: 1420: 1415: 1411: 1407: 1403: 1398: 1393: 1389: 1385: 1381: 1374: 1371: 1365: 1360: 1356: 1352: 1348: 1341: 1339: 1335: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1295: 1292: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1245: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1197: 1194: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1148: 1144: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1101: 1096: 1092: 1088: 1084: 1077: 1074: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1028: 1024: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 972: 970: 966: 961: 957: 952: 947: 943: 939: 935: 931: 927: 920: 917: 912: 908: 904: 900: 895: 890: 886: 882: 878: 871: 868: 864: 858: 854: 850: 846: 838: 836: 832: 827: 823: 818: 813: 809: 805: 801: 797: 793: 789: 782: 780: 776: 771: 767: 762: 757: 753: 749: 745: 741: 734: 732: 730: 728: 724: 719: 715: 711: 707: 702: 697: 693: 689: 685: 681: 674: 672: 670: 668: 666: 664: 662: 660: 658: 656: 652: 647: 643: 639: 635: 630: 625: 621: 617: 613: 609: 602: 600: 598: 596: 594: 592: 588: 583: 579: 574: 569: 565: 561: 557: 550: 547: 542: 538: 534: 530: 525: 520: 516: 512: 508: 504: 500: 493: 491: 489: 487: 485: 481: 474: 469: 468: 464: 463: 459: 455: 451: 448: 444: 440: 439: 435: 431: 427: 423: 419: 415: 414: 413: 411: 403: 398: 394: 390: 389: 384: 380: 376: 373: 372: 368: 365: 364: 360: 356: 352: 348: 344: 341: 340: 336: 332: 328: 324: 323: 319: 315: 314: 310: 309: 305: 304: 299: 295: 294: 290: 289: 288: 286: 282: 278: 270: 268: 261: 257: 251: 248: 247: 243: 240: 239: 235: 234:monochromator 231: 228: 227: 226: 223: 221: 217: 213: 209: 204: 197:Configuration 196: 190: 186: 183: 177: 174: 173: 172: 170: 166: 161: 157: 156:nanoparticles 153: 149: 145: 141: 140:nanoparticles 134: 131: 130: 129: 123: 120: 119: 118: 115: 111: 107: 103: 95: 92: 91: 90: 84: 81: 80: 76: 74: 71: 67: 65: 61: 57: 53: 49: 44: 42: 38: 34: 29: 25: 21: 20: 1435: 1431: 1387: 1383: 1373: 1354: 1350: 1304: 1300: 1294: 1261: 1257: 1247: 1206: 1202: 1196: 1166:(6): 16021. 1163: 1159: 1113: 1109: 1103: 1086: 1082: 1076: 1043: 1039: 985: 981: 933: 929: 919: 884: 880: 870: 844: 799: 795: 743: 739: 683: 679: 611: 607: 563: 559: 549: 506: 502: 409: 407: 404:Applications 393:spectrometer 374: 366: 342: 318:Potentiostat 316: 308:Spectrometer 306: 293:Light source 292: 281:potentiostat 277:spectrometer 274: 266: 255: 249: 241: 229: 224: 216:potentiostat 212:spectrometer 200: 184: 180: 175: 164: 137: 132: 126: 121: 98: 93: 87: 82: 72: 68: 45: 16: 15: 1438:: 147–169. 746:: 377–383. 503:The Analyst 322:Galvanostat 1458:Categories 1357:: 106557. 936:(1): 139. 802:(1): 139. 761:10259/4832 701:10259/6123 629:10259/6122 475:References 450:biomarkers 386:electrode. 301:UV-lasers. 1414:253166002 1406:2628-9725 1329:0377-0486 1278:0306-0012 1239:211046645 1223:0001-4842 1188:2058-8437 1130:0009-2665 1060:2040-3364 1040:Nanoscale 1010:1463-9076 960:1367-2630 911:253166002 903:2628-9725 826:1367-2630 770:103005252 718:155767924 710:0021-2148 646:133304199 638:1040-0397 582:2571-9408 533:0003-2654 454:uric acid 144:plasmonic 37:electrode 1286:18443677 1231:32031367 1138:28271881 1068:29379916 1018:25698502 560:Heritage 541:31998878 443:melamine 426:polymers 418:graphene 397:software 1309:Bibcode 1168:Bibcode 990:Bibcode 938:Bibcode 804:Bibcode 511:Bibcode 452:and/or 410:in situ 353:and an 208:photons 165:in-situ 152:alumina 77:Methods 52:photons 48:photons 1412:  1404:  1327:  1284:  1276:  1237:  1229:  1221:  1186:  1136:  1128:  1066:  1058:  1016:  1008:  958:  909:  901:  859:  824:  768:  716:  708:  644:  636:  580:  539:  531:  218:and a 148:silica 110:copper 106:silver 17:Raman 1410:S2CID 1390:(2). 1235:S2CID 907:S2CID 887:(2). 766:S2CID 714:S2CID 642:S2CID 458:urine 142:with 33:laser 1402:ISSN 1325:ISSN 1282:PMID 1274:ISSN 1227:PMID 1219:ISSN 1184:ISSN 1134:PMID 1126:ISSN 1064:PMID 1056:ISSN 1014:PMID 1006:ISSN 956:ISSN 899:ISSN 857:ISBN 822:ISSN 706:ISSN 634:ISSN 578:ISSN 537:PMID 529:ISSN 430:dyes 349:, a 279:, a 214:, a 102:gold 1440:doi 1436:102 1392:doi 1359:doi 1355:108 1317:doi 1266:doi 1211:doi 1176:doi 1118:doi 1114:117 1091:doi 1048:doi 998:doi 946:doi 889:doi 849:doi 812:doi 756:hdl 748:doi 744:282 696:hdl 688:doi 624:hdl 616:doi 568:doi 519:doi 507:145 456:in 447:DNA 171:. 150:or 112:). 108:or 26:or 1460:: 1434:. 1422:^ 1408:. 1400:. 1386:. 1382:. 1353:. 1349:. 1337:^ 1323:. 1315:. 1305:37 1303:. 1280:. 1272:. 1262:37 1260:. 1256:. 1233:. 1225:. 1217:. 1207:53 1205:. 1182:. 1174:. 1162:. 1158:. 1146:^ 1132:. 1124:. 1112:. 1085:. 1062:. 1054:. 1044:10 1042:. 1038:. 1026:^ 1012:. 1004:. 996:. 986:17 984:. 980:. 968:^ 954:. 944:. 932:. 928:. 905:. 897:. 883:. 879:. 855:, 834:^ 820:. 810:. 798:. 794:. 778:^ 764:. 754:. 742:. 726:^ 712:. 704:. 694:. 684:59 682:. 654:^ 640:. 632:. 622:. 612:31 610:. 590:^ 576:. 562:. 558:. 535:. 527:. 517:. 505:. 501:. 483:^ 432:, 420:, 337:. 104:, 1446:. 1442:: 1416:. 1394:: 1388:3 1367:. 1361:: 1331:. 1319:: 1311:: 1288:. 1268:: 1241:. 1213:: 1190:. 1178:: 1170:: 1164:1 1140:. 1120:: 1097:. 1093:: 1087:5 1070:. 1050:: 1020:. 1000:: 992:: 962:. 948:: 940:: 934:5 913:. 891:: 885:3 851:: 828:. 814:: 806:: 800:5 772:. 758:: 750:: 720:. 698:: 690:: 648:. 626:: 618:: 584:. 570:: 564:2 543:. 521:: 513:: 320:/

Index

spectroelectrochemistry
inelastic scattering
Raman scattering
laser
electrode
electrochemical
photons
photons
Rayleigh scattering
Raman scattering
electrochemical
gold
silver
copper
Nanostructured
nanoparticles
plasmonic
silica
alumina
nanoparticles
electrochemical
spectroelectrochemistry

Raman scattering
photons
spectrometer
potentiostat
confocal microscope
monochromator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑