Knowledge (XXG)

Rayleigh–Gans approximation

Source 📝

272:, that is, that the incident field is not greatly altered within one particle so that each volume element is considered to be illuminated by an intensity and phase determined only by its position relative to the incident wave, unaffected by scattering from other volume elements. 1372: 431: 1208: 1058: 605: 1854:
Jen, Shih-Hui; Dai, Hai-Lung; Gonella, Grazia (18 February 2010). "The Effect of Particle Size in Second Harmonic Generation from the Surface of Spherical Colloidal Particles. II: The Nonlinear Rayleigh−Gans−Debye Model".
827: 942: 496:
affecting the scattering from each volume element are dependent only on their positions with respect to the incoming wave and the scattering direction. Integrating, the scattering amplitude function thus obtains:
714: 1889: 1455: 1214: 293: 222: 268:
of the particle. The first condition allows for a simplification in expressing the material polarizability in the derivation below. The second condition is a statement of the
1069: 865: 162: 961: 113: 494: 454: 35:
of particle is close to that of the surrounding medium. The approximation holds for particles of arbitrary shape that are relatively small but can be larger than
503: 262: 242: 184: 729: 43: 1386: 1737:
Farias, T. L.; Köylü, Ü. Ö.; Carvalho, M. G. (1996). "Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates".
1577: 873: 614:
phases contributing to the scattering direction (θ, φ), remains to be solved according to the particular geometry of the scatterer. Calling
1894: 628: 1857: 1721: 1660: 1063:
Then the scattered radiation intensity, relative to the intensity of the incident wave, for each polarization can be written as:
1488: 465: 1819: 1537: 28: 46:
in 1881 and was applied to homogeneous spheres, spherical shells, radially inhomogeneous spheres and infinite cylinders.
1532: 1593:
Turner, Leaf (1973). "Rayleigh-Gans-Born Light Scattering by Ensembles of Randomly Oriented Anisotropic Particles".
1367:{\displaystyle I_{2}/I_{0}=\left({\frac {k^{4}V^{2}}{4\pi ^{2}r^{2}}}\right)(n-1)^{2}P(\theta ,\phi )cos^{2}\theta } 1503: 426:{\displaystyle dS_{1}(\theta ,\phi )=i{\frac {3}{4\pi }}k^{3}\left({\frac {n^{2}-1}{n^{2}+2}}\right)e^{i\delta }dV} 1899: 1398: 1782:
Chong, C.S.; Colbow, Konrad (17 June 1976). "Light scattering and turbidity measurements on lipid vesicles".
189: 1709: 1389: 461: 622:
for scattering with the electric field polarization normal to the plane of incidence (s polarization) as
618:
the entire volume of the scattering object, over which this integration is performed, one can write that
1203:{\displaystyle I_{1}/I_{0}=\left({\frac {k^{4}V^{2}}{4\pi ^{2}r^{2}}}\right)(n-1)^{2}P(\theta ,\phi )} 1817:
Koch, Arthur L. (19 August 1961). "Some calculations on the turbidity of mitochondria and bacteria".
1748: 1604: 284: 280: 1053:{\displaystyle P(\theta ,\phi )=\left({\frac {1}{V^{2}}}\right)\left|\int e^{i\delta }dV\right|^{2}} 276: 36: 835: 119: 1468:
Rayleigh–Gans approximation has been applied on the calculation of the optical cross sections of
269: 55: 76: 1836: 1799: 1764: 1717: 1656: 1620: 1573: 611: 59: 479: 439: 1866: 1828: 1791: 1756: 1689: 1678:"Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes" 1612: 1499: 265: 32: 600:{\displaystyle S_{1}(\theta ,\phi )\approx {\frac {i}{2\pi }}k^{3}(n-1)\int e^{i\delta }dV} 460:
difference due to each individual element, and the fraction in parentheses is the electric
1507: 1480: 1382: 50:
has contributed to the theory in 1881. The theory for homogeneous sphere was rederived by
1752: 1608: 1739: 1652: 1595: 1527: 247: 1883: 1832: 1795: 457: 275:
The particle is divided into small volume elements, which are treated as independent
227: 169: 51: 1542: 1515: 1477: 47: 1511: 1473: 948: 822:{\displaystyle S_{2}={\frac {i}{2\pi }}k^{3}(n-1)VR(\theta ,\phi )cos\theta } 1484: 1840: 1768: 1624: 1803: 1760: 1616: 1492: 619: 31:
by optically soft particles. Optical softness implies that the relative
1469: 1870: 937:{\displaystyle R(\theta ,\phi )={\frac {1}{V}}\int {}{}e^{i\delta }dV} 1381:
is the distance from the scatterer to the observation point. Per the
1694: 1677: 709:{\displaystyle S_{1}={\frac {i}{2\pi }}k^{3}(n-1)VR(\theta ,\phi )} 1676:
Leinonen, Jussi; Kneifel, Stefan; Hogan, Robin J. (12 June 2017).
70:
The validity conditions for the approximation can be denoted as:
1649:
The Scattering of Light and Other Electromagnetic Radiation
1890:
Scattering, absorption and radiative transfer (optics)
838: 610:
in which only the final integral, which describes the
230: 192: 172: 1570:
Absorption and scattering of light by small particles
1401: 1217: 1072: 964: 876: 732: 631: 506: 482: 442: 296: 250: 122: 79: 1487:
calculations on biological structures such as lipid
1682:
Advances in Remote Sensing of Rainfall and Snowfall
287:contribution from each volume element is given as: 1784:Biochimica et Biophysica Acta (BBA) - Biomembranes 1502:Rayleigh−Gans−Debye model was used to investigate 1449: 1366: 1202: 1052: 936: 859: 821: 708: 599: 488: 448: 425: 256: 236: 216: 178: 156: 107: 244:refers to the linear dimension of the particle. 1647:Kerker, Milton (1969). Loebl, Ernest M. (ed.). 955:as the squared magnitude of the form factor: 464:as found from the refractive index using the 8: 867:denotes the "form factor" of the scatterer: 1472:aggregates. The theory was also applied to 1450:{\displaystyle C_{abs}=2kV\mathbb {Im} (n)} 723:the plane of incidence (p polarization) as 54:in 1925. The approximation is analogous to 1460:which is independent of the polarization. 1693: 1434: 1431: 1430: 1406: 1400: 1355: 1321: 1292: 1282: 1267: 1257: 1250: 1237: 1228: 1222: 1216: 1176: 1147: 1137: 1122: 1112: 1105: 1092: 1083: 1077: 1071: 1044: 1024: 999: 990: 963: 919: 913: 911: 898: 875: 837: 765: 746: 737: 731: 664: 645: 636: 630: 582: 554: 535: 511: 505: 481: 441: 408: 385: 367: 360: 350: 331: 304: 295: 249: 229: 199: 191: 171: 143: 129: 121: 94: 80: 78: 1642: 1640: 1638: 1636: 1634: 1563: 1561: 1559: 1557: 217:{\textstyle k={\frac {2\pi }{\lambda }}} 1568:Bohren, C. F.; Huffmann, D. R. (2010). 1553: 472:, this factor can be approximated as 7: 1858:The Journal of Physical Chemistry C 1714:Light scattering by small particles 14: 1716:. New York: John Wiley and Sons. 21:Rayleigh–Gans–Debye approximation 1572:. New York: Wiley-Interscience. 186:is the wavevector of the light ( 27:, is an approximate solution to 25:Rayleigh–Gans–Born approximation 1444: 1438: 1342: 1330: 1318: 1305: 1197: 1185: 1173: 1160: 980: 968: 892: 880: 854: 842: 804: 792: 783: 771: 703: 691: 682: 670: 572: 560: 529: 517: 322: 310: 144: 130: 95: 81: 1: 1820:Biochimica et Biophysica Acta 1538:Discrete dipole approximation 860:{\textstyle R(\theta ,\phi )} 1833:10.1016/0006-3002(61)90599-6 1796:10.1016/0005-2736(76)90192-9 1533:Anomalous diffraction theory 279:. For an inbound light with 157:{\displaystyle kd|n-1|\ll 1} 1895:Radio frequency propagation 1476:spheres for nanostructured 17:Rayleigh–Gans approximation 1916: 1504:second-harmonic generation 466:Clausius–Mossotti relation 108:{\displaystyle |n-1|\ll 1} 42:The theory was derived by 266:complex refractive index 489:{\displaystyle \delta } 449:{\displaystyle \delta } 1451: 1368: 1204: 1054: 947:In order to only find 938: 861: 823: 710: 601: 490: 468:. Under the condition 450: 427: 258: 238: 218: 180: 158: 109: 1452: 1369: 1205: 1055: 939: 862: 824: 719:and for polarization 711: 602: 491: 451: 428: 259: 239: 219: 181: 159: 110: 1761:10.1364/AO.35.006560 1617:10.1364/AO.12.001085 1399: 1215: 1070: 962: 874: 836: 730: 629: 620:scattering parameter 504: 480: 440: 294: 285:scattering amplitude 248: 228: 190: 170: 120: 77: 1753:1996ApOpt..35.6560F 1710:van de Hulst, H. C. 1609:1973ApOpt..12.1085T 277:Rayleigh scatterers 37:Rayleigh scattering 1447: 1364: 1200: 1050: 934: 857: 819: 706: 597: 486: 446: 423: 270:Born approximation 254: 234: 214: 176: 154: 105: 56:Born approximation 1871:10.1021/jp910144c 1865:(10): 4302–4308. 1747:(33): 6560–6567. 1579:978-3-527-40664-7 1299: 1154: 1005: 906: 759: 658: 548: 398: 344: 257:{\displaystyle n} 212: 60:quantum mechanics 1907: 1900:X-ray scattering 1875: 1874: 1851: 1845: 1844: 1814: 1808: 1807: 1779: 1773: 1772: 1734: 1728: 1727: 1706: 1700: 1699: 1697: 1673: 1667: 1666: 1644: 1629: 1628: 1603:(5): 1085–1090. 1590: 1584: 1583: 1565: 1456: 1454: 1453: 1448: 1437: 1417: 1416: 1373: 1371: 1370: 1365: 1360: 1359: 1326: 1325: 1304: 1300: 1298: 1297: 1296: 1287: 1286: 1273: 1272: 1271: 1262: 1261: 1251: 1242: 1241: 1232: 1227: 1226: 1209: 1207: 1206: 1201: 1181: 1180: 1159: 1155: 1153: 1152: 1151: 1142: 1141: 1128: 1127: 1126: 1117: 1116: 1106: 1097: 1096: 1087: 1082: 1081: 1059: 1057: 1056: 1051: 1049: 1048: 1043: 1039: 1032: 1031: 1010: 1006: 1004: 1003: 991: 943: 941: 940: 935: 927: 926: 914: 912: 907: 899: 866: 864: 863: 858: 828: 826: 825: 820: 770: 769: 760: 758: 747: 742: 741: 715: 713: 712: 707: 669: 668: 659: 657: 646: 641: 640: 606: 604: 603: 598: 590: 589: 559: 558: 549: 547: 536: 516: 515: 495: 493: 492: 487: 470:(n-1) << 1 455: 453: 452: 447: 432: 430: 429: 424: 416: 415: 403: 399: 397: 390: 389: 379: 372: 371: 361: 355: 354: 345: 343: 332: 309: 308: 263: 261: 260: 255: 243: 241: 240: 235: 223: 221: 220: 215: 213: 208: 200: 185: 183: 182: 177: 163: 161: 160: 155: 147: 133: 114: 112: 111: 106: 98: 84: 33:refractive index 29:light scattering 19:, also known as 1915: 1914: 1910: 1909: 1908: 1906: 1905: 1904: 1880: 1879: 1878: 1853: 1852: 1848: 1816: 1815: 1811: 1781: 1780: 1776: 1736: 1735: 1731: 1724: 1708: 1707: 1703: 1695:10.1002/qj.3093 1675: 1674: 1670: 1663: 1646: 1645: 1632: 1592: 1591: 1587: 1580: 1567: 1566: 1555: 1551: 1524: 1508:malachite green 1478:polycrystalline 1466: 1402: 1397: 1396: 1383:optical theorem 1351: 1317: 1288: 1278: 1274: 1263: 1253: 1252: 1246: 1233: 1218: 1213: 1212: 1172: 1143: 1133: 1129: 1118: 1108: 1107: 1101: 1088: 1073: 1068: 1067: 1020: 1016: 1012: 1011: 995: 986: 960: 959: 915: 872: 871: 834: 833: 761: 751: 733: 728: 727: 660: 650: 632: 627: 626: 578: 550: 540: 507: 502: 501: 478: 477: 438: 437: 404: 381: 380: 363: 362: 356: 346: 336: 300: 292: 291: 246: 245: 226: 225: 201: 188: 187: 168: 167: 118: 117: 75: 74: 68: 12: 11: 5: 1913: 1911: 1903: 1902: 1897: 1892: 1882: 1881: 1877: 1876: 1846: 1827:(3): 429–441. 1809: 1790:(2): 260–282. 1774: 1740:Applied Optics 1729: 1722: 1701: 1668: 1661: 1653:Academic Press 1630: 1596:Applied Optics 1585: 1578: 1552: 1550: 1547: 1546: 1545: 1540: 1535: 1530: 1528:Mie scattering 1523: 1520: 1465: 1462: 1458: 1457: 1446: 1443: 1440: 1436: 1433: 1429: 1426: 1423: 1420: 1415: 1412: 1409: 1405: 1375: 1374: 1363: 1358: 1354: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1324: 1320: 1316: 1313: 1310: 1307: 1303: 1295: 1291: 1285: 1281: 1277: 1270: 1266: 1260: 1256: 1249: 1245: 1240: 1236: 1231: 1225: 1221: 1210: 1199: 1196: 1193: 1190: 1187: 1184: 1179: 1175: 1171: 1168: 1165: 1162: 1158: 1150: 1146: 1140: 1136: 1132: 1125: 1121: 1115: 1111: 1104: 1100: 1095: 1091: 1086: 1080: 1076: 1061: 1060: 1047: 1042: 1038: 1035: 1030: 1027: 1023: 1019: 1015: 1009: 1002: 998: 994: 989: 985: 982: 979: 976: 973: 970: 967: 951:we can define 945: 944: 933: 930: 925: 922: 918: 910: 905: 902: 897: 894: 891: 888: 885: 882: 879: 856: 853: 850: 847: 844: 841: 830: 829: 818: 815: 812: 809: 806: 803: 800: 797: 794: 791: 788: 785: 782: 779: 776: 773: 768: 764: 757: 754: 750: 745: 740: 736: 717: 716: 705: 702: 699: 696: 693: 690: 687: 684: 681: 678: 675: 672: 667: 663: 656: 653: 649: 644: 639: 635: 608: 607: 596: 593: 588: 585: 581: 577: 574: 571: 568: 565: 562: 557: 553: 546: 543: 539: 534: 531: 528: 525: 522: 519: 514: 510: 485: 462:polarizability 445: 434: 433: 422: 419: 414: 411: 407: 402: 396: 393: 388: 384: 378: 375: 370: 366: 359: 353: 349: 342: 339: 335: 330: 327: 324: 321: 318: 315: 312: 307: 303: 299: 281:s polarization 253: 237:{\textstyle d} 233: 211: 207: 204: 198: 195: 179:{\textstyle k} 175: 165: 164: 153: 150: 146: 142: 139: 136: 132: 128: 125: 115: 104: 101: 97: 93: 90: 87: 83: 67: 64: 13: 10: 9: 6: 4: 3: 2: 1912: 1901: 1898: 1896: 1893: 1891: 1888: 1887: 1885: 1872: 1868: 1864: 1860: 1859: 1850: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1821: 1813: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1778: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1741: 1733: 1730: 1725: 1723:9780486139753 1719: 1715: 1711: 1705: 1702: 1696: 1691: 1687: 1683: 1679: 1672: 1669: 1664: 1662:9780124045507 1658: 1654: 1650: 1643: 1641: 1639: 1637: 1635: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1597: 1589: 1586: 1581: 1575: 1571: 1564: 1562: 1560: 1558: 1554: 1548: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1525: 1521: 1519: 1517: 1513: 1509: 1505: 1501: 1496: 1494: 1490: 1486: 1482: 1479: 1475: 1471: 1463: 1461: 1441: 1427: 1424: 1421: 1418: 1413: 1410: 1407: 1403: 1395: 1394: 1393: 1392:is given as: 1391: 1390:cross section 1388: 1384: 1380: 1361: 1356: 1352: 1348: 1345: 1339: 1336: 1333: 1327: 1322: 1314: 1311: 1308: 1301: 1293: 1289: 1283: 1279: 1275: 1268: 1264: 1258: 1254: 1247: 1243: 1238: 1234: 1229: 1223: 1219: 1211: 1194: 1191: 1188: 1182: 1177: 1169: 1166: 1163: 1156: 1148: 1144: 1138: 1134: 1130: 1123: 1119: 1113: 1109: 1102: 1098: 1093: 1089: 1084: 1078: 1074: 1066: 1065: 1064: 1045: 1040: 1036: 1033: 1028: 1025: 1021: 1017: 1013: 1007: 1000: 996: 992: 987: 983: 977: 974: 971: 965: 958: 957: 956: 954: 950: 931: 928: 923: 920: 916: 908: 903: 900: 895: 889: 886: 883: 877: 870: 869: 868: 851: 848: 845: 839: 816: 813: 810: 807: 801: 798: 795: 789: 786: 780: 777: 774: 766: 762: 755: 752: 748: 743: 738: 734: 726: 725: 724: 722: 700: 697: 694: 688: 685: 679: 676: 673: 665: 661: 654: 651: 647: 642: 637: 633: 625: 624: 623: 621: 617: 613: 594: 591: 586: 583: 579: 575: 569: 566: 563: 555: 551: 544: 541: 537: 532: 526: 523: 520: 512: 508: 500: 499: 498: 483: 476:. The phases 475: 471: 467: 463: 459: 443: 420: 417: 412: 409: 405: 400: 394: 391: 386: 382: 376: 373: 368: 364: 357: 351: 347: 340: 337: 333: 328: 325: 319: 316: 313: 305: 301: 297: 290: 289: 288: 286: 282: 278: 273: 271: 267: 251: 231: 209: 205: 202: 196: 193: 173: 151: 148: 140: 137: 134: 126: 123: 116: 102: 99: 91: 88: 85: 73: 72: 71: 65: 63: 61: 57: 53: 49: 45: 44:Lord Rayleigh 40: 38: 34: 30: 26: 22: 18: 1862: 1856: 1849: 1824: 1818: 1812: 1787: 1783: 1777: 1744: 1738: 1732: 1713: 1704: 1685: 1681: 1671: 1651:. New York: 1648: 1600: 1594: 1588: 1569: 1497: 1467: 1464:Applications 1459: 1378: 1376: 1062: 952: 946: 831: 720: 718: 615: 609: 473: 469: 456:denotes the 435: 274: 166: 69: 52:Richard Gans 41: 24: 20: 16: 15: 1543:Gans theory 1518:particles. 1516:polystyrene 1474:anisotropic 949:intensities 612:interfering 224:), whereas 48:Peter Debye 1884:Categories 1549:References 1510:molecules 1387:absorption 1688:: 77–88. 1500:nonlinear 1485:turbidity 1362:θ 1340:ϕ 1334:θ 1312:− 1280:π 1195:ϕ 1189:θ 1167:− 1135:π 1029:δ 1018:∫ 978:ϕ 972:θ 924:δ 909:∫ 890:ϕ 884:θ 852:ϕ 846:θ 817:θ 802:ϕ 796:θ 778:− 756:π 701:ϕ 695:θ 677:− 655:π 587:δ 576:∫ 567:− 545:π 533:≈ 527:ϕ 521:θ 484:δ 444:δ 413:δ 374:− 341:π 320:ϕ 314:θ 210:λ 206:π 149:≪ 138:− 100:≪ 89:− 1841:14457538 1769:21127680 1712:(1957). 1625:20125471 1522:See also 1512:adsorbed 1493:bacteria 1489:vesicles 474:2(n-1)/3 39:limits. 1804:1276217 1749:Bibcode 1605:Bibcode 1481:alumina 1470:fractal 264:is the 1839:  1802:  1767:  1720:  1659:  1623:  1576:  1377:where 832:where 436:where 283:, the 66:Theory 458:phase 1837:PMID 1800:PMID 1765:PMID 1718:ISBN 1657:ISBN 1621:PMID 1574:ISBN 1491:and 1483:and 23:and 1867:doi 1863:114 1829:doi 1792:doi 1788:436 1757:doi 1690:doi 1686:144 1613:doi 1514:on 1506:in 58:in 1886:: 1861:. 1835:. 1825:51 1823:. 1798:. 1786:. 1763:. 1755:. 1745:35 1743:. 1684:. 1680:. 1655:. 1633:^ 1619:. 1611:. 1601:12 1599:. 1556:^ 1498:A 1495:. 1385:, 721:in 62:. 1873:. 1869:: 1843:. 1831:: 1806:. 1794:: 1771:. 1759:: 1751:: 1726:. 1698:. 1692:: 1665:. 1627:. 1615:: 1607:: 1582:. 1445:) 1442:n 1439:( 1435:m 1432:I 1428:V 1425:k 1422:2 1419:= 1414:s 1411:b 1408:a 1404:C 1379:r 1357:2 1353:s 1349:o 1346:c 1343:) 1337:, 1331:( 1328:P 1323:2 1319:) 1315:1 1309:n 1306:( 1302:) 1294:2 1290:r 1284:2 1276:4 1269:2 1265:V 1259:4 1255:k 1248:( 1244:= 1239:0 1235:I 1230:/ 1224:2 1220:I 1198:) 1192:, 1186:( 1183:P 1178:2 1174:) 1170:1 1164:n 1161:( 1157:) 1149:2 1145:r 1139:2 1131:4 1124:2 1120:V 1114:4 1110:k 1103:( 1099:= 1094:0 1090:I 1085:/ 1079:1 1075:I 1046:2 1041:| 1037:V 1034:d 1026:i 1022:e 1014:| 1008:) 1001:2 997:V 993:1 988:( 984:= 981:) 975:, 969:( 966:P 953:P 932:V 929:d 921:i 917:e 904:V 901:1 896:= 893:) 887:, 881:( 878:R 855:) 849:, 843:( 840:R 814:s 811:o 808:c 805:) 799:, 793:( 790:R 787:V 784:) 781:1 775:n 772:( 767:3 763:k 753:2 749:i 744:= 739:2 735:S 704:) 698:, 692:( 689:R 686:V 683:) 680:1 674:n 671:( 666:3 662:k 652:2 648:i 643:= 638:1 634:S 616:V 595:V 592:d 584:i 580:e 573:) 570:1 564:n 561:( 556:3 552:k 542:2 538:i 530:) 524:, 518:( 513:1 509:S 421:V 418:d 410:i 406:e 401:) 395:2 392:+ 387:2 383:n 377:1 369:2 365:n 358:( 352:3 348:k 338:4 334:3 329:i 326:= 323:) 317:, 311:( 306:1 302:S 298:d 252:n 232:d 203:2 197:= 194:k 174:k 152:1 145:| 141:1 135:n 131:| 127:d 124:k 103:1 96:| 92:1 86:n 82:|

Index

light scattering
refractive index
Rayleigh scattering
Lord Rayleigh
Peter Debye
Richard Gans
Born approximation
quantum mechanics
complex refractive index
Born approximation
Rayleigh scatterers
s polarization
scattering amplitude
phase
polarizability
Clausius–Mossotti relation
interfering
scattering parameter
intensities
optical theorem
absorption
cross section
fractal
anisotropic
polycrystalline
alumina
turbidity
vesicles
bacteria
nonlinear

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.