Knowledge (XXG)

Redox gradient

Source 📝

498: 462: 450: 474: 510: 486: 40: 604: 618: 632: 31: 141:
of heterogeneity. Collecting a high number of samples can produce high spatial resolution, but at the cost of low temporal resolution since samples only reflect a singular a snapshot in time. In situ monitoring can provide high temporal resolution by collecting continuous real-time measurements, but low spatial resolution since the electrode is in a fixed location.
60:. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients form both spatially and temporally as a result of differences in microbial processes, chemical composition of the environment, and oxidative potential. Common environments where redox gradients exist are 497: 546:
Redox gradients form along contaminant plumes, in both aquatic and terrestrial settings, as a function of the contaminant concentration and the impacts it has on relevant chemical processes and microbial communities. The highest rates of organic pollutant degradation along a redox gradient are found
272:
is also largely a function of hydrological conditions. In the event of a flood, saturated soils can shift from oxic to anoxic, creating a reducing environment as anaerobic microbial processes dominate. Moreover, small anoxic hotspots may develop within soil pore spaces, creating reducing conditions.
140:
can be measured by collecting samples in the field and performing analyses in the lab, or by inserting an electrode into the environment to collect in situ measurements. Typical environments to measure redox potential are in bodies of water, soils, and sediments, all of which can exhibit high levels
43:
Relative favorability of redox reactions in marine sediments based on energy. Start points of arrows indicate energy associated with half-cell reaction. Lengths of arrows indicate an estimate of Gibb's free energy (ΔG) for the reaction where a higher ΔG is more energetically favorable (Adapted from
256:
sediments exhibit redox gradients produced by variations in mineral composition, organic matter availability, structure, and sorption dynamics. Limited transport of dissolved electrons through subsurface sediments, combined with varying pore sizes of sediments creates significant heterogeneity in
156:
Redox gradients are commonly found in the environment as functions of both space and time, particularly in soils and aquatic environments. Gradients are caused by varying physiochemical properties including availability of oxygen, soil hydrology, chemical species present, and microbial processes.
543:, sulfate reduction, etc.) based on the conditions around them and further amplify redox gradients present in the environment. However, distribution of microorganisms cannot solely be determined from thermodynamics (redox ladder), but is also influenced by ecological and physiological factors. 79:
has a global redox gradient with an oxidizing environment at the surface and increasingly reducing conditions below the surface. Redox gradients are generally understood at the macro level, but characterization of redox reactions in heterogeneous environments at the micro-scale require further
461: 551:, where the water table meets soil and fills empty pores. Because this transition zone is both oxic and anoxic, electron acceptors and donors are in high abundance and there is a high level of microbial activity, leading to the highest rates of contaminant biodegradation. 132:
indicates a reducing environment (electrons will be donated). In a redox gradient, the most energetically favorable chemical reaction occurs at the “top” of the redox ladder and the least energetically favorable reaction occurs at the “bottom” of the ladder.
557:
sediments are heterogeneous in nature and subsequently exhibit redox gradients. Due to this heterogeneity, gradients of reducing and oxidizing chemical species do not always overlap enough to support electron transport needs of niche microbial communities.
473: 257:
benthic sediments. Oxygen availability in sediments determines which microbial respiration pathways can occur, resulting in a vertical stratification of redox processes as oxygen availability decreases with depth.
562:
have been characterized as sulfide-oxidizing bacteria that assist in connecting these areas of undersupplied and excess electrons to complete the electron transport for otherwise unavailable redox reactions.
34:
Depiction of common redox reactions in the environment. Adapted from figures by Zhang and Gorny. Redox pairs are listed with the oxidizer (electron acceptor) in red and the reducer (electron donator) in
509: 449: 176:
The following is a list of common reactions that occur in the environment in order from oxidizing to reducing (organisms performing the reaction in parentheses):
1058:
Peiffer, S.; Kappler, A.; Haderlein, S. B.; Schmidt, C.; Byrne, J. M.; Kleindienst, S.; Vogt, C.; Richnow, H. H.; Obst, M.; Angenent, L. T.; Bryce, C. (2021).
1218:"Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy" 210: 825:
Gorny, J.; Billon, G.; Lesven, L.; Dumoulin, D.; Madé, B.; Noiriel, C. (2015). "Arsenic behavior in river sediments under redox gradient: a review".
531:
Redox gradients form based on resource availability and physiochemical conditions (pH, salinity, temperature) and support stratified communities of
916:
Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Cappellen, Philippe Van; Ginder-Vogel, Matthew; Voegelin, Andreas; Campbell, Kate (2009).
280:
of a soil can be restored as water drains and the soil dries out. Soils with redox gradients formed by ascending groundwater are classified as
877: 1404: 419:< +700 mV. 300 mV is the boundary value that separates aerobic from anaerobic conditions in wetland soils. Redox potential (E 503:
Sediment cores like this one collected from estuaries, rivers, lakes, and bays often have redox gradients with depth down into the core.
467:
In productive ocean regions and enclosed basins, oxygen minimum zones and hypoxic zones may experience redox gradients in deep waters.
427:, and both have significant influence on the function of soil-plant-microorganism systems. The main source of electrons in soil is 1384: 695: 589: 1389: 1374: 582: 581:, and at the bottoms of aquatic environments, also exhibit redox gradients. The community of microbes—often metal- or 117: 485: 1379: 148:
imaging, however, further research is needed to fully understand contributions of redox species to polarization.
1280:"Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini review)" 1369: 1364: 690: 536: 220: 1399: 665: 1424: 1409: 645: 194: 585:—produces redox gradients on the micrometer scale as a function of spatial physiochemical variability. 479:
In wetlands, organic-rich soils accumulate over time, and these soils often experience redox gradients.
763: 1332: 1129: 1071: 775: 518:
or gley soils like this one in the Southern Black Forest in Germany often experience redox gradients.
145: 431:. Organic matter consumes oxygen as it decomposes, resulting in reducing soil conditions and lower E 246:) within the water column alter redox chemistry and which redox reactions can occur. Development of 242:
Redox gradients form in water columns and their sediments. Varying levels of oxygen (oxic, suboxic,
1060:"A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems" 660: 428: 247: 243: 180: 57: 24: 1008:
Lau, Maximilian Peter; Niederdorfer, Robert; Sepulveda-Jauregui, Armando; Hupfer, Michael (2018).
144:
Redox properties can also be tracked with high spatial and temporal resolution through the use of
39: 1419: 1394: 1320: 1247: 1095: 953: 917: 850: 807: 609: 547:
at the oxic-anoxic interface. In groundwater, this oxic-anoxic environment is referred to as the
1301: 1239: 1163: 1145: 1087: 945: 937: 883: 873: 842: 799: 791: 655: 578: 184: 101: 1340: 1291: 1229: 1153: 1137: 1079: 1021: 929: 834: 783: 685: 623: 603: 548: 680: 670: 190: 109: 1336: 1133: 1075: 779: 1414: 1321:"The response of trace element redox couples to suboxic conditions in the water column" 1158: 1117: 559: 540: 226: 97: 1344: 1358: 1099: 957: 811: 637: 532: 1251: 1059: 854: 838: 787: 631: 554: 253: 1319:
Rue, Eden L.; Smith, Geoffrey J.; Cutter, Gregory A.; Bruland, Kenneth W. (1997).
157:
Specific environments that are commonly characterized by redox gradients include
128:
indicates an oxidizing environment (electrons will be accepted), and a negative E
1296: 1279: 1026: 1009: 911: 909: 907: 905: 903: 901: 899: 897: 230: 170: 158: 1141: 1083: 302:
generally ranges from −300 to +900 mV. The table below summarizes typical
1234: 1217: 650: 599: 30: 1305: 1243: 1149: 1091: 941: 887: 795: 285: 200: 1167: 949: 846: 803: 918:"Biogeochemical Redox Processes and their Impact on Contaminant Dynamics" 289: 162: 93: 284:, while soils with gradients formed by stagnant water are classified as 574: 570: 566: 515: 281: 216: 166: 933: 675: 76: 61: 53: 38: 29: 20: 764:"Soil redox dynamics under dynamic hydrologic regimes - A review" 88:
Redox conditions are measured according to the redox potential (E
206: 69: 65: 1116:
Zakem, Emily J.; Polz, Martin F.; Follows, Michael J. (2020).
424: 1010:"Synthesizing redox biogeochemistry at aquatic interfaces" 412:
limits that are tolerable by plants are +300 mV <
16:
Variation of the redox potential with distance (or depth)
80:
research and more sophisticated measurement techniques.
1325:
Deep Sea Research Part I: Oceanographic Research Papers
1118:"Redox-informed models of global biogeochemical cycles" 250:also contributes to formation of redox gradients. 455:Wetland soils often experience redox gradients. 108:can be calculated using half reactions and the 592:for coverage of microbial processes in SMTZs. 440:Examples of redox gradients in the environment 92:) in volts, which represents the tendency for 928:(1). American Chemical Society (ACS): 15–23. 872:. Amsterdam Boston: Elsevier/Academic Press. 8: 116:of zero represents the redox couple of the 1295: 1233: 1157: 1025: 311: 19:For broader coverage of this topic, see 707: 445: 922:Environmental Science & Technology 870:Introduction to marine biogeochemistry 491:Some soils experience redox gradients. 1211: 1209: 1207: 1205: 1203: 1201: 1199: 1197: 1003: 1001: 999: 997: 995: 993: 991: 989: 987: 757: 755: 753: 751: 749: 747: 745: 743: 741: 739: 737: 735: 733: 731: 7: 1273: 1271: 1269: 1267: 1265: 1263: 1261: 1195: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 1111: 1109: 1053: 1051: 1049: 1047: 1045: 1043: 1041: 1039: 1037: 985: 983: 981: 979: 977: 975: 973: 971: 969: 967: 827:The Science of the Total Environment 762:Zhang, Zengyu; Furman, Alex (2021). 729: 727: 725: 723: 721: 719: 717: 715: 713: 711: 309:values for various soil conditions: 52:is a series of reduction-oxidation ( 14: 165:, contaminant plumes, and marine 768:Science of the Total Environment 630: 616: 602: 508: 496: 484: 472: 460: 448: 56:) reactions sorted according to 839:10.1016/j.scitotenv.2014.10.011 788:10.1016/j.scitotenv.2020.143026 696:Sulfate-methane transition zone 590:sulfate-methane transition zone 535:. Microbes carry out differing 203:reduction (Manganese reducers) 1: 1345:10.1016/S0967-0637(96)00088-X 344:Aerated – moderately reduced 219:reduction (sulfate reducers: 1278:Vodyanitskii, Yu N. (2016). 1405:Oceanographical terminology 1297:10.1016/j.aasci.2016.07.009 1027:10.1016/j.limno.2017.08.001 118:standard hydrogen electrode 1441: 1284:Annals of Agrarian Science 1142:10.1038/s41467-020-19454-w 1084:10.1038/s41561-021-00742-z 423:) is also closely tied to 209:reduction (iron reducers: 84:Measuring redox conditions 68:, contaminant plumes, and 18: 1235:10.1007/s11104-012-1429-7 583:sulfate-reducing bacteria 374:Aerated – highly reduced 1216:Husson, Olivier (2013). 691:Sediment-water interface 273:With time, the starting 261:Terrestrial environments 221:Sulfur-reducing bacteria 152:Environmental conditions 1385:Environmental chemistry 666:Hypoxia (environmental) 527:Role of microorganisms 211:iron-reducing bacteria 45: 36: 1390:Environmental science 1375:Chemical oceanography 1122:Nature Communications 868:Libes, Susan (2009). 646:Anaerobic respiration 195:denitrifying bacteria 42: 33: 248:oxygen minimum zones 238:Aquatic environments 146:induced-polarization 96:to transfer from an 1337:1997DSRI...44..113R 1134:2020NatCo..11.5680Z 1076:2021NatGe..14..264P 780:2021ScTEn.76343026Z 661:Dead zone (ecology) 405:Generally accepted 181:Aerobic respiration 25:Reduction potential 610:Environment portal 579:hydrothermal vents 359:Aerated – reduced 46: 37: 1064:Nature Geoscience 934:10.1021/es9026248 879:978-0-08-091664-4 656:Gibbs free energy 403: 402: 185:aerobic organisms 159:waterlogged soils 102:electron acceptor 1432: 1380:Electrochemistry 1349: 1348: 1316: 1310: 1309: 1299: 1275: 1256: 1255: 1237: 1228:(1–2): 389–417. 1213: 1172: 1171: 1161: 1113: 1104: 1103: 1055: 1032: 1031: 1029: 1005: 962: 961: 913: 892: 891: 865: 859: 858: 822: 816: 815: 759: 686:Remineralization 640: 635: 634: 626: 624:Chemistry portal 621: 620: 619: 612: 607: 606: 549:capillary fringe 512: 500: 488: 476: 464: 452: 315:Soil conditions 312: 1440: 1439: 1435: 1434: 1433: 1431: 1430: 1429: 1370:Biogeochemistry 1365:Aquatic ecology 1355: 1354: 1353: 1352: 1318: 1317: 1313: 1277: 1276: 1259: 1215: 1214: 1175: 1115: 1114: 1107: 1057: 1056: 1035: 1007: 1006: 965: 915: 914: 895: 880: 867: 866: 862: 824: 823: 819: 761: 760: 709: 704: 681:Redox potential 671:Marine sediment 636: 629: 622: 617: 615: 608: 601: 598: 529: 524: 523: 522: 519: 513: 504: 501: 492: 489: 480: 477: 468: 465: 456: 453: 442: 441: 434: 422: 418: 411: 398: 383: 368: 353: 338: 324: 308: 301: 279: 271: 263: 240: 193:(denitrifiers: 191:Denitrification 154: 139: 131: 127: 123: 115: 110:Nernst equation 107: 91: 86: 62:coastal marshes 58:redox potential 28: 17: 12: 11: 5: 1438: 1436: 1428: 1427: 1422: 1417: 1412: 1407: 1402: 1400:Marine geology 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1357: 1356: 1351: 1350: 1331:(1): 113–134. 1311: 1290:(3): 249–256. 1257: 1222:Plant and Soil 1173: 1105: 1070:(5): 264–272. 1033: 963: 893: 878: 860: 817: 706: 705: 703: 700: 699: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 642: 641: 627: 613: 597: 594: 560:Cable bacteria 541:methanogenesis 528: 525: 521: 520: 514: 507: 505: 502: 495: 493: 490: 483: 481: 478: 471: 469: 466: 459: 457: 454: 447: 444: 443: 439: 438: 437: 432: 429:organic matter 420: 416: 409: 401: 400: 396: 390: 386: 385: 381: 375: 371: 370: 366: 360: 356: 355: 351: 345: 341: 340: 336: 331: 327: 326: 322: 316: 306: 299: 277: 269: 262: 259: 239: 236: 235: 234: 227:Methanogenesis 224: 214: 204: 198: 188: 153: 150: 137: 129: 125: 121: 113: 105: 98:electron donor 89: 85: 82: 50:redox gradient 15: 13: 10: 9: 6: 4: 3: 2: 1437: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1360: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1315: 1312: 1307: 1303: 1298: 1293: 1289: 1285: 1281: 1274: 1272: 1270: 1268: 1266: 1264: 1262: 1258: 1253: 1249: 1245: 1241: 1236: 1231: 1227: 1223: 1219: 1212: 1210: 1208: 1206: 1204: 1202: 1200: 1198: 1196: 1194: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1174: 1169: 1165: 1160: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1112: 1110: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1052: 1050: 1048: 1046: 1044: 1042: 1040: 1038: 1034: 1028: 1023: 1019: 1015: 1011: 1004: 1002: 1000: 998: 996: 994: 992: 990: 988: 986: 984: 982: 980: 978: 976: 974: 972: 970: 968: 964: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 912: 910: 908: 906: 904: 902: 900: 898: 894: 889: 885: 881: 875: 871: 864: 861: 856: 852: 848: 844: 840: 836: 832: 828: 821: 818: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 769: 765: 758: 756: 754: 752: 750: 748: 746: 744: 742: 740: 738: 736: 734: 732: 730: 728: 726: 724: 722: 720: 718: 716: 714: 712: 708: 701: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 643: 639: 638:Oceans portal 633: 628: 625: 614: 611: 605: 600: 595: 593: 591: 586: 584: 580: 576: 572: 568: 564: 561: 556: 552: 550: 544: 542: 538: 534: 526: 517: 511: 506: 499: 494: 487: 482: 475: 470: 463: 458: 451: 446: 436: 430: 426: 415: 408: 395: 391: 388: 387: 380: 376: 373: 372: 365: 361: 358: 357: 350: 346: 343: 342: 335: 332: 329: 328: 321: 317: 314: 313: 310: 305: 298: 293: 291: 287: 283: 276: 268: 260: 258: 255: 251: 249: 245: 237: 232: 228: 225: 222: 218: 215: 212: 208: 205: 202: 199: 196: 192: 189: 186: 182: 179: 178: 177: 174: 172: 168: 164: 160: 151: 149: 147: 142: 134: 119: 111: 103: 99: 95: 83: 81: 78: 73: 71: 67: 63: 59: 55: 51: 44:Libes, 2011). 41: 32: 26: 22: 1425:Soil science 1410:Oceanography 1328: 1324: 1314: 1287: 1283: 1225: 1221: 1125: 1121: 1067: 1063: 1017: 1013: 925: 921: 869: 863: 830: 826: 820: 771: 767: 587: 565: 553: 545: 539:processes ( 530: 413: 406: 404: 393: 378: 363: 348: 333: 330:Waterlogged 319: 303: 296: 294: 274: 266: 264: 252: 241: 175: 155: 143: 135: 124:a positive E 87: 74: 49: 47: 1128:(1): 5680. 1014:Limnologica 833:: 423–434. 571:tidal flats 569:, found in 537:respiration 389:Cultivated 325:range (mV) 231:methanogens 173:sediments. 171:hemipelagic 1359:Categories 774:: 143026. 702:References 651:Chemocline 399:< +500 392:+300 < 384:< −100 377:−300 < 369:< +100 362:−100 < 354:< +400 347:+100 < 339:< +250 286:stagnosols 183:(aerobes: 1420:Sediments 1395:Limnology 1306:1512-1887 1244:0032-079X 1150:2041-1723 1100:233876038 1092:1752-0894 1020:: 59–70. 958:206997593 942:0013-936X 888:643573176 812:226249448 796:0048-9697 290:planosols 201:Manganese 94:electrons 1252:17059599 1168:33173062 950:20000681 855:24877798 847:25461044 804:33143917 596:See also 575:glaciers 567:Biofilms 533:microbes 516:Gleysols 318:Typical 282:gleysols 163:wetlands 1333:Bibcode 1159:7656242 1130:Bibcode 1072:Bibcode 776:Bibcode 555:Benthic 254:Benthic 244:hypoxic 217:Sulfate 167:pelagic 112:. An E 1304:  1250:  1242:  1166:  1156:  1148:  1098:  1090:  956:  948:  940:  886:  876:  853:  845:  810:  802:  794:  100:to an 35:black. 1415:Redox 1248:S2CID 1096:S2CID 954:S2CID 851:S2CID 808:S2CID 676:Redox 295:Soil 265:Soil 77:Earth 70:soils 66:lakes 54:redox 21:Redox 1302:ISSN 1240:ISSN 1164:PMID 1146:ISSN 1088:ISSN 946:PMID 938:ISSN 884:OCLC 874:ISBN 843:PMID 800:PMID 792:ISSN 588:See 288:and 207:Iron 169:and 75:The 23:and 1341:doi 1292:doi 1230:doi 1226:362 1154:PMC 1138:doi 1080:doi 1022:doi 930:doi 835:doi 831:505 784:doi 772:763 120:H/H 104:. E 1361:: 1339:. 1329:44 1327:. 1323:. 1300:. 1288:14 1286:. 1282:. 1260:^ 1246:. 1238:. 1224:. 1220:. 1176:^ 1162:. 1152:. 1144:. 1136:. 1126:11 1124:. 1120:. 1108:^ 1094:. 1086:. 1078:. 1068:14 1066:. 1062:. 1036:^ 1018:68 1016:. 1012:. 966:^ 952:. 944:. 936:. 926:44 924:. 920:. 896:^ 882:. 849:. 841:. 829:. 806:. 798:. 790:. 782:. 770:. 766:. 710:^ 577:, 573:, 435:. 425:pH 292:. 161:, 122:2, 72:. 64:, 48:A 1347:. 1343:: 1335:: 1308:. 1294:: 1254:. 1232:: 1170:. 1140:: 1132:: 1102:. 1082:: 1074:: 1030:. 1024:: 960:. 932:: 890:. 857:. 837:: 814:. 786:: 778:: 433:h 421:h 417:h 414:E 410:h 407:E 397:h 394:E 382:h 379:E 367:h 364:E 352:h 349:E 337:h 334:E 323:h 320:E 307:h 304:E 300:h 297:E 278:h 275:E 270:h 267:E 233:) 229:( 223:) 213:) 197:) 187:) 138:h 136:E 130:h 126:h 114:h 106:h 90:h 27:.

Index

Redox
Reduction potential


redox
redox potential
coastal marshes
lakes
soils
Earth
electrons
electron donor
electron acceptor
Nernst equation
standard hydrogen electrode
induced-polarization
waterlogged soils
wetlands
pelagic
hemipelagic
Aerobic respiration
aerobic organisms
Denitrification
denitrifying bacteria
Manganese
Iron
iron-reducing bacteria
Sulfate
Sulfur-reducing bacteria
Methanogenesis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.