Knowledge (XXG)

Reed–Frost model

Source 📝

72:, so that an infection rate at a given time was proportional to the number of susceptible and infectious ones at that time. It is effective for moderately large populations, but it does not take into account multiple infections that come into contact with the same individual. Therefore, in small populations, the model greatly overestimates the number of susceptibles that become infected. 53:
During the 1920s, mathematician Lowell Reed and physician Wade Hampton Frost developed a binomial chain model for disease propagation, used in their biostatistics and epidemiology classes at Johns Hopkins University. Despite not having published their results, several other academics have done them
141:
With this information, a simple formula allows the calculation of how many individuals will be infected, and how many immune, in the next time interval. This is repeated until the entire population is immune, or no infective individuals remain. The model can then be run repeatedly, adjusting the
75:
Reed and Frost modified the Soper model to account for the fact that only one new case would be produced if a particular susceptible includes contact with two or more cases. The Reed-Frost model has been widely used and served as the basis for the development of more detailed disease propagation
88:
The Reed–Frost model is one of the simplest stochastic epidemic models. It was formulated by Lowell Reed and Wade Frost in 1928 (in unpublished work) and describes the evolution of an infection in generations. Each infected individual in generation t (t = 1,2,...) independently infects each
630: 873: 89:
susceptible individual in the population with some probability p. The individuals that become infected by the individuals in generation t then constitute generation t + 1 and the individuals in generation t are removed from the epidemic process.
45:. While originally presented in a talk by Frost in 1928 and used in courses at Hopkins for two decades, the mathematical formulation was not published until the 1950s, when it was also made into a TV episode. 452: 111:
Each individual has a fixed probability of coming into adequate contact with any other specified individual in the group within one time interval, and this probability is the same for every member of the
68:
in 1929 for measles. Soper's model was deterministic, in which all members of the population were equally susceptible to disease and had the ability to transmit disease. The model is also based on the
713: 457: 108:
individual in a given period, will develop the infection and will be infectious to others only within the following time period; in subsequent time periods, he is wholly and permanently immune.
224: 708: 359: 678: 61:
In the program, Lowell Reed, after explaining the formal definition of the model, demonstrates its application through experimentation with marbles of different colors.
306: 259: 445: 698: 419: 399: 379: 326: 279: 888: 97:
The infection is spread directly from infected individuals to others by a certain type of contact (termed "adequate contact") and in no other way.
700:
is the probability that a person comes in contact with another person in one time-step and that that contact results in disease transmission.
625:{\displaystyle {\begin{aligned}I_{t+1}&=\sum _{k=0}^{S_{t}}{\mathcal {B}}(1-(1-p)^{I_{t}}),\\S_{t+1}&=S_{t}-I_{t+1}\end{aligned}}} 54:
in their studies. It was not until 1950 that mathematical formulation was published and turned into a television program entitled
883: 84:
This is an example of a "chain binomial" model, a simplified, iterative model of how an epidemic will behave over time.
868:{\displaystyle {\begin{aligned}I_{t+1}&=S_{t}\,(1-(1-p)^{I_{t}}),\\S_{t+1}&=S_{t}\,(1-p)^{I_{t}}\end{aligned}}} 1205:"A box, a trough and marbles: How the Reed-Frost epidemic theory shaped epidemiological reasoning in the 20th century" 160: 1178: 157:– in a large population when the initial number of infecteds is small, an infected individual is expected to cause 154: 42: 1262:"A Unified Analysis of the Final Size and Severity Distribution in Collective Reed-Frost Epidemic Processes" 1038:"A Unified Analysis of the Final Size and Severity Distribution in Collective Reed-Frost Epidemic Processes" 1382: 331: 65: 989:"A note on chain-binomial models of epidemic spread: What is wrong with the Reed-Frost formulation?" 447:. Making use of the random-variable multiplication convention, we can write the Reed–Frost model as 637: 115:
The individuals are wholly segregated from others outside the group. (It is a closed population.)
1345: 1319: 1289: 1160: 1111: 1057: 143: 69: 38: 26: 1337: 1281: 1242: 1224: 1152: 1103: 1049: 1018: 947: 939: 703:
The deterministic limit is (found by replacing the random variables with their expectations),
1329: 1273: 1232: 1216: 1142: 1095: 1008: 1000: 284: 237: 126: 424: 1237: 683: 404: 384: 364: 311: 264: 1376: 1307: 1164: 1004: 988: 1363: 1349: 923: 34: 1220: 1333: 1147: 1130: 974: 105: 1285: 1228: 1204: 1156: 1107: 1053: 1022: 943: 927: 30: 1341: 1246: 951: 1013: 281:. Assume all cases recover or are removed in exactly one time-step. Let 1293: 1261: 1115: 1083: 1061: 1037: 977:, retrieved 21 March 2021. Johns Hopkins Science Review, Baltimore, MD 101: 1277: 1099: 1324: 1179:"Lowell Reed | Johns Hopkins Bloomberg School of Public Health" 149:
The probability of adequate contact corresponds roughly with R
1131:"Epidemics: the fitting of the first dynamic models to data" 634:
with initial number of susceptible and infected individuals
513: 337: 167: 93:
The Reed–Frost model is based on the following assumptions:
146:, to see how these affect the progression of the epidemic. 1084:"The Interpretation of Periodicity in Disease Prevalence" 1310:(2011). "Epidemics and vaccination on weighted graphs". 308:
represent the number of susceptible individuals at time
928:"An examination of the Reed-Frost theory of epidemics" 711: 686: 640: 455: 427: 407: 387: 367: 334: 314: 287: 267: 240: 163: 118:
These conditions remain constant during the epidemic.
104:
individual in the group, after such contact with an
261:represent the number of cases of infection at time 867: 692: 672: 624: 439: 413: 393: 373: 353: 320: 300: 273: 253: 218: 64:The model is an extension of what was proposed by 219:{\displaystyle {\mathcal {R}}_{0}=\ln(1/(1-p))} 1135:Journal of Contemporary Mathematical Analysis 8: 906:Schwabe CW, Riemann HP, Franti CE. (1977). 889:Mathematical modelling of infectious disease 361:be a Bernoulli random variable that returns 122:The following parameters are set initially: 1209:History and Philosophy of the Life Sciences 1025:– via Elsevier Science Publishing Co. 1260:Picard, Philippe; Lefevre, Claude (1990). 1036:Picard, Philippe; Lefevre, Claude (1990). 1366:. Ohio Supercomputer Center. 29 May 2012. 1323: 1236: 1146: 1048:(2). Applied Probability Trust: 269–294. 1012: 853: 848: 831: 825: 802: 780: 775: 749: 743: 720: 712: 710: 685: 661: 648: 639: 606: 593: 570: 548: 543: 512: 511: 503: 498: 487: 464: 456: 454: 426: 406: 386: 366: 336: 335: 333: 313: 292: 286: 266: 245: 239: 193: 172: 166: 165: 162: 1088:Journal of the Royal Statistical Society 918: 916: 899: 7: 965: 963: 961: 131:Number of individuals already immune 1203:Engelmann, Lukas (30 August 2021). 908:Epidemiology in Veterinary Practice 134:Number of cases (usually set at 1) 14: 910:. Lea & Febiger. pp. 258–260 354:{\displaystyle {\mathcal {B}}(x)} 1266:Advances in Applied Probability 1042:Advances in Applied Probability 137:Probability of adequate contact 845: 832: 788: 772: 759: 750: 667: 641: 556: 540: 527: 518: 348: 342: 213: 210: 198: 187: 1: 673:{\displaystyle (S_{0},I_{0})} 1005:10.1016/0025-5564(87)90034-4 971:Epidemic Theory: What Is It? 56:Epidemic theory: What is it? 1364:"Reed–Frost Epidemic Model" 1129:Dietz, Klaus (3 May 2009). 1399: 1221:10.1007/s40656-021-00445-z 33:put forth in the 1920s by 1334:10.1016/j.mbs.2011.04.003 1148:10.3103/S1068362309020034 987:Jacquez, John A. (1987). 884:Kermack–McKendrick theory 155:basic reproduction number 16:Stochastic epidemic model 1312:Mathematical Biosciences 993:Mathematical Biosciences 43:Johns Hopkins University 869: 694: 674: 626: 510: 441: 415: 395: 375: 355: 322: 302: 275: 255: 220: 127:Size of the population 91: 1082:Soper, H. E. (1929). 973:(Television program) 870: 695: 675: 627: 483: 442: 416: 396: 376: 356: 323: 303: 301:{\displaystyle S_{t}} 276: 256: 254:{\displaystyle I_{t}} 221: 86: 1183:publichealth.jhu.edu 969:Reed, Lowell (1951) 709: 684: 638: 453: 425: 405: 385: 365: 332: 312: 285: 265: 238: 161: 76:simulation studies. 440:{\displaystyle 1-x} 865: 863: 690: 670: 622: 620: 437: 411: 391: 371: 351: 318: 298: 271: 251: 216: 144:initial conditions 70:law of mass action 39:Wade Hampton Frost 27:mathematical model 693:{\displaystyle p} 421:with probability 414:{\displaystyle 0} 394:{\displaystyle x} 381:with probability 374:{\displaystyle 1} 321:{\displaystyle t} 274:{\displaystyle t} 1390: 1368: 1367: 1360: 1354: 1353: 1327: 1304: 1298: 1297: 1257: 1251: 1250: 1240: 1200: 1194: 1193: 1191: 1189: 1175: 1169: 1168: 1150: 1126: 1120: 1119: 1079: 1073: 1072: 1070: 1068: 1033: 1027: 1026: 1016: 984: 978: 967: 956: 955: 920: 911: 904: 874: 872: 871: 866: 864: 860: 859: 858: 857: 830: 829: 813: 812: 787: 786: 785: 784: 748: 747: 731: 730: 699: 697: 696: 691: 679: 677: 676: 671: 666: 665: 653: 652: 631: 629: 628: 623: 621: 617: 616: 598: 597: 581: 580: 555: 554: 553: 552: 517: 516: 509: 508: 507: 497: 475: 474: 446: 444: 443: 438: 420: 418: 417: 412: 400: 398: 397: 392: 380: 378: 377: 372: 360: 358: 357: 352: 341: 340: 327: 325: 324: 319: 307: 305: 304: 299: 297: 296: 280: 278: 277: 272: 260: 258: 257: 252: 250: 249: 225: 223: 222: 217: 197: 177: 176: 171: 170: 23:Reed–Frost model 1398: 1397: 1393: 1392: 1391: 1389: 1388: 1387: 1373: 1372: 1371: 1362: 1361: 1357: 1306: 1305: 1301: 1278:10.2307/1427536 1259: 1258: 1254: 1202: 1201: 1197: 1187: 1185: 1177: 1176: 1172: 1128: 1127: 1123: 1100:10.2307/2341437 1081: 1080: 1076: 1066: 1064: 1035: 1034: 1030: 986: 985: 981: 968: 959: 922: 921: 914: 905: 901: 897: 880: 862: 861: 849: 844: 821: 814: 798: 795: 794: 776: 771: 739: 732: 716: 707: 706: 682: 681: 657: 644: 636: 635: 619: 618: 602: 589: 582: 566: 563: 562: 544: 539: 499: 476: 460: 451: 450: 423: 422: 403: 402: 383: 382: 363: 362: 330: 329: 310: 309: 288: 283: 282: 263: 262: 241: 236: 235: 232: 164: 159: 158: 152: 82: 51: 17: 12: 11: 5: 1396: 1394: 1386: 1385: 1375: 1374: 1370: 1369: 1355: 1308:Deijfen, Maria 1299: 1272:(2): 269–294. 1252: 1195: 1170: 1121: 1074: 1028: 979: 957: 938:(3): 201–233. 912: 898: 896: 893: 892: 891: 886: 879: 876: 856: 852: 847: 843: 840: 837: 834: 828: 824: 820: 817: 815: 811: 808: 805: 801: 797: 796: 793: 790: 783: 779: 774: 770: 767: 764: 761: 758: 755: 752: 746: 742: 738: 735: 733: 729: 726: 723: 719: 715: 714: 689: 669: 664: 660: 656: 651: 647: 643: 615: 612: 609: 605: 601: 596: 592: 588: 585: 583: 579: 576: 573: 569: 565: 564: 561: 558: 551: 547: 542: 538: 535: 532: 529: 526: 523: 520: 515: 506: 502: 496: 493: 490: 486: 482: 479: 477: 473: 470: 467: 463: 459: 458: 436: 433: 430: 410: 390: 370: 350: 347: 344: 339: 317: 295: 291: 270: 248: 244: 231: 228: 215: 212: 209: 206: 203: 200: 196: 192: 189: 186: 183: 180: 175: 169: 150: 139: 138: 135: 132: 129: 120: 119: 116: 113: 109: 98: 81: 78: 50: 47: 15: 13: 10: 9: 6: 4: 3: 2: 1395: 1384: 1381: 1380: 1378: 1365: 1359: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1326: 1321: 1317: 1313: 1309: 1303: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1256: 1253: 1248: 1244: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1196: 1184: 1180: 1174: 1171: 1166: 1162: 1158: 1154: 1149: 1144: 1140: 1136: 1132: 1125: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1078: 1075: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1029: 1024: 1020: 1015: 1014:2027.42/26512 1010: 1006: 1002: 998: 994: 990: 983: 980: 976: 972: 966: 964: 962: 958: 953: 949: 945: 941: 937: 933: 932:Human Biology 929: 925: 919: 917: 913: 909: 903: 900: 894: 890: 887: 885: 882: 881: 877: 875: 854: 850: 841: 838: 835: 826: 822: 818: 816: 809: 806: 803: 799: 791: 781: 777: 768: 765: 762: 756: 753: 744: 740: 736: 734: 727: 724: 721: 717: 704: 701: 687: 680:given. Here, 662: 658: 654: 649: 645: 632: 613: 610: 607: 603: 599: 594: 590: 586: 584: 577: 574: 571: 567: 559: 549: 545: 536: 533: 530: 524: 521: 504: 500: 494: 491: 488: 484: 480: 478: 471: 468: 465: 461: 448: 434: 431: 428: 408: 388: 368: 345: 315: 293: 289: 268: 246: 242: 229: 227: 207: 204: 201: 194: 190: 184: 181: 178: 173: 156: 147: 145: 136: 133: 130: 128: 125: 124: 123: 117: 114: 110: 107: 103: 99: 96: 95: 94: 90: 85: 79: 77: 73: 71: 67: 62: 59: 57: 48: 46: 44: 40: 36: 32: 28: 24: 19: 1383:Epidemiology 1358: 1318:(1): 57–65. 1315: 1311: 1302: 1269: 1265: 1255: 1212: 1208: 1198: 1186:. Retrieved 1182: 1173: 1138: 1134: 1124: 1094:(1): 34–73. 1091: 1087: 1077: 1065:. Retrieved 1045: 1041: 1031: 996: 992: 982: 970: 935: 931: 907: 902: 705: 702: 633: 449: 233: 148: 140: 121: 92: 87: 83: 74: 63: 60: 55: 52: 22: 20: 18: 230:Mathematics 226:new cases. 80:Description 35:Lowell Reed 1215:(3): 105. 1188:29 October 895:References 106:infectious 66:H.E. Soper 1325:1101.4154 1286:0001-8678 1229:1742-6316 1165:162120980 1157:1934-9416 1141:(2): 97. 1108:0952-8385 1054:0001-8678 1023:0025-5564 999:: 73–82. 944:0018-7143 924:Abbey, H. 839:− 766:− 757:− 600:− 534:− 525:− 485:∑ 432:− 205:− 185:⁡ 31:epidemics 1377:Category 1342:21536052 1247:34462807 1067:9 August 952:12990130 926:(1952). 878:See also 100:Any non- 1350:1744357 1294:1427536 1238:8404547 1116:2341437 1062:1427536 975:Youtube 49:History 1348:  1340:  1292:  1284:  1245:  1235:  1227:  1163:  1155:  1114:  1106:  1060:  1052:  1021:  950:  942:  328:. Let 153:, the 112:group. 102:immune 1346:S2CID 1320:arXiv 1290:JSTOR 1161:S2CID 1112:JSTOR 1058:JSTOR 41:, of 25:is a 1338:PMID 1282:ISSN 1243:PMID 1225:ISSN 1190:2021 1153:ISSN 1104:ISSN 1069:2024 1050:ISSN 1019:ISSN 948:PMID 940:ISSN 401:and 234:Let 37:and 21:The 1330:doi 1316:232 1274:doi 1233:PMC 1217:doi 1143:doi 1096:doi 1009:hdl 1001:doi 29:of 1379:: 1344:. 1336:. 1328:. 1314:. 1288:. 1280:. 1270:22 1268:. 1264:. 1241:. 1231:. 1223:. 1213:43 1211:. 1207:. 1181:. 1159:. 1151:. 1139:44 1137:. 1133:. 1110:. 1102:. 1092:92 1090:. 1086:. 1056:. 1046:22 1044:. 1040:. 1017:. 1007:. 997:87 995:. 991:. 960:^ 946:. 936:24 934:. 930:. 915:^ 182:ln 58:. 1352:. 1332:: 1322:: 1296:. 1276:: 1249:. 1219:: 1192:. 1167:. 1145:: 1118:. 1098:: 1071:. 1011:: 1003:: 954:. 855:t 851:I 846:) 842:p 836:1 833:( 827:t 823:S 819:= 810:1 807:+ 804:t 800:S 792:, 789:) 782:t 778:I 773:) 769:p 763:1 760:( 754:1 751:( 745:t 741:S 737:= 728:1 725:+ 722:t 718:I 688:p 668:) 663:0 659:I 655:, 650:0 646:S 642:( 614:1 611:+ 608:t 604:I 595:t 591:S 587:= 578:1 575:+ 572:t 568:S 560:, 557:) 550:t 546:I 541:) 537:p 531:1 528:( 522:1 519:( 514:B 505:t 501:S 495:0 492:= 489:k 481:= 472:1 469:+ 466:t 462:I 435:x 429:1 409:0 389:x 369:1 349:) 346:x 343:( 338:B 316:t 294:t 290:S 269:t 247:t 243:I 214:) 211:) 208:p 202:1 199:( 195:/ 191:1 188:( 179:= 174:0 168:R 151:0

Index

mathematical model
epidemics
Lowell Reed
Wade Hampton Frost
Johns Hopkins University
H.E. Soper
law of mass action
immune
infectious
Size of the population
initial conditions
basic reproduction number
Kermack–McKendrick theory
Mathematical modelling of infectious disease


Abbey, H.
"An examination of the Reed-Frost theory of epidemics"
ISSN
0018-7143
PMID
12990130



Youtube
"A note on chain-binomial models of epidemic spread: What is wrong with the Reed-Frost formulation?"
doi
10.1016/0025-5564(87)90034-4
hdl

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.