Knowledge (XXG)

Relativistic heat conduction

Source đź“ť

1663: 959: 646: 379: 46:
for non-relativistic heat conduction must be modified, as it leads to faster-than-light signal propagation. Relativistic heat conduction, therefore, encompasses a set of models for heat propagation in continuous media (solids, fluids, gases) that are consistent with relativistic
771:, leading to faster-than-light propagation of information. For example, consider a pulse of heat at the origin; then according to Fourier equation, it is felt (i.e. temperature changes) at any distant point, instantaneously. The speed of propagation of heat is faster than the 741: 1101: 826: 532: 240: 523: 141: 653: 1007: 436: 59:, in the sense that differences in temperature propagate both slower than light and are damped over time (this stability property is intimately intertwined with relativistic causality). 1201: 1203:
This equation for the heat flux is often referred to as "Maxwell-Cattaneo equation". The most important implication of the hyperbolic equation is that by switching from a parabolic (
444: 1743: 78: 1134: 231: 821: 954:{\displaystyle {\frac {1}{C^{2}}}~{\frac {\partial ^{2}\theta }{\partial t^{2}}}~+~{\frac {1}{\alpha }}~{\frac {\partial \theta }{\partial t}}~=~\nabla ^{2}\theta .} 641:{\displaystyle \nabla ~=~\mathbf {i} ~{\frac {\partial }{\partial x}}~+~\mathbf {j} ~{\frac {\partial }{\partial y}}~+~\mathbf {k} ~{\frac {\partial }{\partial z}}.} 1704: 374:{\displaystyle \nabla ^{2}~=~{\frac {\partial ^{2}}{\partial x^{2}}}~+~{\frac {\partial ^{2}}{\partial y^{2}}}~+~{\frac {\partial ^{2}}{\partial z^{2}}}.} 1607:
Barletta, A.; Zanchini, E. (1996). "Hyperbolic heat conduction and thermal resonances in a cylindrical solid carrying a steady periodic electric field".
984: 800: 796: 72: 998:
For the HHC equation to remain compatible with the first law of thermodynamics, it is necessary to modify the definition of heat flux vector,
987:
heat conduction" (HHC) equation. Mathematically, the above equation is called "telegraph equation", as it is formally equivalent to the
392: 1697: 787:) is incompatible with the theory of relativity for at least one reason: it admits infinite speed of propagation of the continuum 792: 736:{\displaystyle \nabla \cdot \left({\frac {\mathbf {q} }{\theta }}\right)~+~\rho ~{\frac {\partial s}{\partial t}}~=~\sigma ,} 1758: 1212: 1634:
Tzou, D. Y. (1989). "Shock wave formation around a moving heat source in a solid with finite speed of heat propagation".
1289:
Cattaneo, C. R. (1958). "Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée".
1753: 1738: 1690: 1733: 439: 234: 784: 988: 1723: 1143: 1405:
Barletta, A.; Zanchini, E. (1997). "Hyperbolic heat conduction and local equilibrium: a second law analysis".
992: 783:
The parabolic model for heat conduction discussed above shows that the Fourier equation (and the more general
650:
It can be shown that this definition of the heat flux vector also satisfies the second law of thermodynamics,
383:
This Fourier equation can be derived by substituting Fourier’s linear approximation of the heat flux vector,
1728: 1096:{\displaystyle \tau _{_{0}}~{\frac {\partial \mathbf {q} }{\partial t}}~+~\mathbf {q} ~=~-k~\nabla \theta ,} 199: 1553:
Mandrusiak, G. D. (1997). "Analysis of non-Fourier conduction waves from a reciprocating heat source".
1527: 1477: 1331: 1252: 183: 1580:
Xu, M.; Wang, L. (2002). "Thermal oscillation and resonance in dual-phase-lagging heat conduction".
1662: 760: 175: 48: 1748: 1355: 1321: 756: 56: 39: 35: 31: 791:(in this case: heat, or temperature gradients). To overcome this contradiction, workers such as 518:{\displaystyle \rho ~c~{\frac {\partial \theta }{\partial t}}~+~\nabla \cdot \mathbf {q} ~=~0,} 1347: 1268: 1106: 1674: 806: 209: 55:
associated to its cause. Any reasonable relativistic model for heat conduction must also be
1643: 1616: 1589: 1562: 1535: 1485: 1414: 1339: 1260: 1208: 203: 795:, Vernotte, Chester, and others proposed that Fourier equation should be upgraded from the 1468: 1309: 1137: 788: 156: 23: 1447:
Vernotte, P. (1958). "Les paradoxes de la theorie continue de l'Ă©quation de la chaleur".
1531: 1481: 1335: 1256: 1670: 772: 1593: 1240: 1717: 1647: 1620: 1418: 1359: 1264: 976: 972: 68: 43: 136:{\displaystyle {\frac {\partial \theta }{\partial t}}~=~\alpha ~\nabla ^{2}\theta ,} 1343: 968: 1220: 1204: 764: 148: 768: 52: 1539: 1489: 1272: 1216: 27: 1351: 759:. This mathematical model is inconsistent with special relativity: the 748: 191: 775:
in vacuum, which is inadmissible within the framework of relativity.
980: 1566: 1326: 526: 67:
Heat conduction in a Newtonian context is modelled by the
51:, namely the principle that an effect must be within the 1308:
Gavassino, L.; Antonelli, M.; Haskell, B. (2022-01-06).
1215:, there is the possibility of phenomena such as thermal 1678: 1146: 1109: 212: 1010: 829: 809: 656: 535: 447: 395: 243: 81: 1518:Joseph, D. D.; Preziosi, L. (1989). "Heat waves". 1195: 1128: 1095: 953: 815: 735: 640: 517: 430: 373: 225: 135: 431:{\displaystyle \mathbf {q} ~=~-k~\nabla \theta ,} 1636:International Journal of Heat and Mass Transfer 1609:International Journal of Heat and Mass Transfer 1582:International Journal of Heat and Mass Transfer 1407:International Journal of Heat and Mass Transfer 763:associated to the heat equation (also known as 1466:Chester, M. (1963). "Second sound in solids". 1698: 8: 1377:(Second ed.). Oxford: University Press. 1310:"Thermodynamic Stability Implies Causality" 1705: 1691: 1555:Journal of Thermophysics and Heat Transfer 1196:{\textstyle C^{2}~=~\alpha /\tau _{_{0}}.} 1744:Hyperbolic partial differential equations 1325: 1241:"A model for relativistic heat transport" 1182: 1178: 1169: 1151: 1145: 1118: 1114: 1108: 1061: 1036: 1030: 1019: 1015: 1009: 939: 906: 893: 875: 857: 850: 839: 830: 828: 808: 803:form, where the n, the temperature field 698: 669: 667: 655: 620: 612: 588: 580: 556: 548: 534: 495: 460: 446: 396: 394: 389:, as a function of temperature gradient, 359: 345: 339: 321: 307: 301: 283: 269: 263: 248: 242: 217: 211: 121: 82: 80: 16:Model compatible with special relativity 1432:Eckert, E. R. G.; Drake, R. M. (1972). 1231: 767:) has support that extends outside the 529:operator, ∇, is defined in 3D as 73:parabolic partial differential equation 1373:Carslaw, H. S.; Jaeger, J. C. (1959). 7: 1659: 1657: 1284: 1282: 30:processes) in a way compatible with 1503:Morse, P. M.; Feshbach, H. (1953). 1677:. You can help Knowledge (XXG) by 1434:Analysis of Heat and Mass Transfer 1084: 1043: 1033: 936: 917: 909: 868: 854: 709: 701: 657: 626: 622: 594: 590: 562: 558: 536: 489: 471: 463: 419: 352: 342: 314: 304: 276: 266: 245: 214: 118: 93: 85: 63:Parabolic model (non-relativistic) 14: 983:). The equation is known as the " 1661: 1436:. Tokyo: McGraw-Hill, Kogakusha. 1239:van Kampen, N. G. (1970-03-02). 1062: 1037: 670: 613: 581: 549: 496: 397: 779:Hyperbolic model (relativistic) 1505:Methods of Theoretical Physics 1344:10.1103/PhysRevLett.128.010606 1207:) to a hyperbolic (includes a 1: 1594:10.1016/S0017-9310(01)00199-5 1213:partial differential equation 1648:10.1016/0017-9310(89)90166-X 1621:10.1016/0017-9310(95)00202-2 1419:10.1016/0017-9310(96)00211-6 1375:Conduction of Heat in Solids 1265:10.1016/0031-8914(70)90231-4 991:, which can be derived from 20:Relativistic heat conduction 440:first law of thermodynamics 22:refers to the modelling of 1775: 1656: 1520:Reviews of Modern Physics 1129:{\textstyle \tau _{_{0}}} 1540:10.1103/RevModPhys.61.41 1507:. New York: McGraw-Hill. 1490:10.1103/PhysRev.131.2013 226:{\textstyle \nabla ^{2}} 42:) relativity, the usual 1314:Physical Review Letters 989:telegrapher's equations 967:is called the speed of 816:{\displaystyle \theta } 785:Fick's law of diffusion 1673:-related article is a 1387:Some authors also use 1197: 1130: 1097: 995:of electrodynamics. 955: 817: 737: 642: 519: 432: 375: 227: 200:specific heat capacity 137: 1198: 1131: 1098: 956: 818: 738: 643: 520: 433: 376: 235:Cartesian coordinates 228: 138: 1759:Thermodynamics stubs 1144: 1107: 1008: 971:(that is related to 827: 807: 654: 533: 445: 393: 241: 210: 184:thermal conductivity 79: 1754:Transport phenomena 1739:Concepts in physics 1532:1989RvMP...61...41J 1482:1963PhRv..131.2013C 1336:2022PhRvL.128a0606G 1257:1970Phy....46..315V 993:Maxwell’s equations 176:thermal diffusivity 1734:Special relativity 1193: 1126: 1093: 963:In this equation, 951: 813: 757:entropy production 733: 638: 515: 428: 371: 223: 133: 32:special relativity 1686: 1685: 1642:(10): 1979–1987. 1476:(15): 2013–2015. 1165: 1159: 1083: 1074: 1068: 1060: 1054: 1050: 1029: 934: 928: 924: 905: 901: 892: 886: 882: 849: 845: 726: 720: 716: 697: 691: 685: 677: 633: 619: 611: 605: 601: 587: 579: 573: 569: 555: 547: 541: 508: 502: 488: 482: 478: 459: 453: 418: 409: 403: 366: 338: 332: 328: 300: 294: 290: 262: 256: 116: 110: 104: 100: 1766: 1707: 1700: 1693: 1665: 1658: 1652: 1651: 1631: 1625: 1624: 1615:(6): 1307–1315. 1604: 1598: 1597: 1588:(5): 1055–1061. 1577: 1571: 1570: 1550: 1544: 1543: 1515: 1509: 1508: 1500: 1494: 1493: 1463: 1457: 1456: 1444: 1438: 1437: 1429: 1423: 1422: 1413:(5): 1007–1016. 1402: 1396: 1385: 1379: 1378: 1370: 1364: 1363: 1329: 1305: 1299: 1298: 1286: 1277: 1276: 1236: 1202: 1200: 1199: 1194: 1189: 1188: 1187: 1186: 1173: 1163: 1157: 1156: 1155: 1135: 1133: 1132: 1127: 1125: 1124: 1123: 1122: 1102: 1100: 1099: 1094: 1081: 1072: 1066: 1065: 1058: 1052: 1051: 1049: 1041: 1040: 1031: 1027: 1026: 1025: 1024: 1023: 960: 958: 957: 952: 944: 943: 932: 926: 925: 923: 915: 907: 903: 902: 894: 890: 884: 883: 881: 880: 879: 866: 862: 861: 851: 847: 846: 844: 843: 831: 823:is governed by: 822: 820: 819: 814: 742: 740: 739: 734: 724: 718: 717: 715: 707: 699: 695: 689: 683: 682: 678: 673: 668: 647: 645: 644: 639: 634: 632: 621: 617: 616: 609: 603: 602: 600: 589: 585: 584: 577: 571: 570: 568: 557: 553: 552: 545: 539: 524: 522: 521: 516: 506: 500: 499: 486: 480: 479: 477: 469: 461: 457: 451: 437: 435: 434: 429: 416: 407: 401: 400: 380: 378: 377: 372: 367: 365: 364: 363: 350: 349: 340: 336: 330: 329: 327: 326: 325: 312: 311: 302: 298: 292: 291: 289: 288: 287: 274: 273: 264: 260: 254: 253: 252: 233:, is defined in 232: 230: 229: 224: 222: 221: 204:Laplace operator 142: 140: 139: 134: 126: 125: 114: 108: 102: 101: 99: 91: 83: 69:Fourier equation 1774: 1773: 1769: 1768: 1767: 1765: 1764: 1763: 1724:Heat conduction 1714: 1713: 1712: 1711: 1655: 1633: 1632: 1628: 1606: 1605: 1601: 1579: 1578: 1574: 1552: 1551: 1547: 1517: 1516: 1512: 1502: 1501: 1497: 1469:Physical Review 1465: 1464: 1460: 1446: 1445: 1441: 1431: 1430: 1426: 1404: 1403: 1399: 1386: 1382: 1372: 1371: 1367: 1307: 1306: 1302: 1288: 1287: 1280: 1238: 1237: 1233: 1229: 1179: 1174: 1147: 1142: 1141: 1138:relaxation time 1115: 1110: 1105: 1104: 1042: 1032: 1016: 1011: 1006: 1005: 935: 916: 908: 871: 867: 853: 852: 835: 825: 824: 805: 804: 781: 708: 700: 663: 652: 651: 625: 593: 561: 531: 530: 470: 462: 443: 442: 391: 390: 355: 351: 341: 317: 313: 303: 279: 275: 265: 244: 239: 238: 213: 208: 207: 117: 92: 84: 77: 76: 65: 24:heat conduction 17: 12: 11: 5: 1772: 1770: 1762: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1729:Thermodynamics 1726: 1716: 1715: 1710: 1709: 1702: 1695: 1687: 1684: 1683: 1671:thermodynamics 1666: 1654: 1653: 1626: 1599: 1572: 1567:10.2514/2.6204 1545: 1510: 1495: 1458: 1449:Comptes Rendus 1439: 1424: 1397: 1380: 1365: 1300: 1291:Comptes Rendus 1278: 1251:(2): 315–332. 1230: 1228: 1225: 1192: 1185: 1181: 1177: 1172: 1168: 1162: 1154: 1150: 1121: 1117: 1113: 1092: 1089: 1086: 1080: 1077: 1071: 1064: 1057: 1048: 1045: 1039: 1035: 1022: 1018: 1014: 977:quasiparticles 950: 947: 942: 938: 931: 922: 919: 914: 911: 900: 897: 889: 878: 874: 870: 865: 860: 856: 842: 838: 834: 812: 793:Carlo Cattaneo 780: 777: 773:speed of light 761:Green function 732: 729: 723: 714: 711: 706: 703: 694: 688: 681: 676: 672: 666: 662: 659: 637: 631: 628: 624: 615: 608: 599: 596: 592: 583: 576: 567: 564: 560: 551: 544: 538: 514: 511: 505: 498: 494: 491: 485: 476: 473: 468: 465: 456: 450: 427: 424: 421: 415: 412: 406: 399: 370: 362: 358: 354: 348: 344: 335: 324: 320: 316: 310: 306: 297: 286: 282: 278: 272: 268: 259: 251: 247: 220: 216: 132: 129: 124: 120: 113: 107: 98: 95: 90: 87: 64: 61: 15: 13: 10: 9: 6: 4: 3: 2: 1771: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1721: 1719: 1708: 1703: 1701: 1696: 1694: 1689: 1688: 1682: 1680: 1676: 1672: 1667: 1664: 1660: 1649: 1645: 1641: 1637: 1630: 1627: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1587: 1583: 1576: 1573: 1568: 1564: 1560: 1556: 1549: 1546: 1541: 1537: 1533: 1529: 1525: 1521: 1514: 1511: 1506: 1499: 1496: 1491: 1487: 1483: 1479: 1475: 1471: 1470: 1462: 1459: 1454: 1450: 1443: 1440: 1435: 1428: 1425: 1420: 1416: 1412: 1408: 1401: 1398: 1394: 1390: 1384: 1381: 1376: 1369: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1328: 1323: 1320:(1): 010606. 1319: 1315: 1311: 1304: 1301: 1296: 1292: 1285: 1283: 1279: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1232: 1226: 1224: 1222: 1218: 1214: 1210: 1206: 1190: 1183: 1180: 1175: 1170: 1166: 1160: 1152: 1148: 1139: 1119: 1116: 1111: 1090: 1087: 1078: 1075: 1069: 1055: 1046: 1020: 1017: 1012: 1003: 1002: 996: 994: 990: 986: 982: 978: 974: 970: 966: 961: 948: 945: 940: 929: 920: 912: 898: 895: 887: 876: 872: 863: 858: 840: 836: 832: 810: 802: 798: 794: 790: 786: 778: 776: 774: 770: 766: 762: 758: 754: 750: 746: 730: 727: 721: 712: 704: 692: 686: 679: 674: 664: 660: 648: 635: 629: 606: 597: 574: 565: 542: 528: 512: 509: 503: 492: 483: 474: 466: 454: 448: 441: 425: 422: 413: 410: 404: 388: 387: 381: 368: 360: 356: 346: 333: 322: 318: 308: 295: 284: 280: 270: 257: 249: 236: 218: 205: 201: 197: 193: 189: 185: 181: 177: 173: 170: 166: 162: 158: 154: 150: 146: 130: 127: 122: 111: 105: 96: 88: 75:of the kind: 74: 70: 62: 60: 58: 54: 50: 45: 44:heat equation 41: 37: 33: 29: 26:(and similar 25: 21: 1679:expanding it 1668: 1639: 1635: 1629: 1612: 1608: 1602: 1585: 1581: 1575: 1561:(1): 82–89. 1558: 1554: 1548: 1526:(1): 47–71. 1523: 1519: 1513: 1504: 1498: 1473: 1467: 1461: 1452: 1448: 1442: 1433: 1427: 1410: 1406: 1400: 1392: 1388: 1383: 1374: 1368: 1317: 1313: 1303: 1294: 1290: 1248: 1244: 1234: 1219:and thermal 1209:conservative 1140:, such that 1000: 999: 997: 969:second sound 964: 962: 782: 752: 747:is specific 744: 649: 385: 384: 382: 195: 187: 179: 171: 168: 164: 160: 152: 144: 66: 19: 18: 1455:(22): 3154. 1221:shock waves 1205:dissipative 973:excitations 765:heat kernel 149:temperature 71:, namely a 1718:Categories 1327:2105.14621 985:hyperbolic 801:hyperbolic 769:light-cone 525:where the 53:light-cone 1749:Diffusion 1360:235254457 1297:(4): 431. 1273:0031-8914 1217:resonance 1176:τ 1167:α 1112:τ 1088:θ 1085:∇ 1076:− 1044:∂ 1034:∂ 1013:τ 946:θ 937:∇ 918:∂ 913:θ 910:∂ 899:α 869:∂ 864:θ 855:∂ 811:θ 797:parabolic 728:σ 710:∂ 702:∂ 693:ρ 675:θ 661:⋅ 658:∇ 627:∂ 623:∂ 595:∂ 591:∂ 563:∂ 559:∂ 537:∇ 493:⋅ 490:∇ 472:∂ 467:θ 464:∂ 449:ρ 438:into the 423:θ 420:∇ 411:− 353:∂ 343:∂ 315:∂ 305:∂ 277:∂ 267:∂ 246:∇ 215:∇ 128:θ 119:∇ 112:α 94:∂ 89:θ 86:∂ 49:causality 28:diffusion 1352:35061457 1528:Bibcode 1478:Bibcode 1332:Bibcode 1253:Bibcode 1245:Physica 981:phonons 979:, like 749:entropy 202:. The 192:density 40:general 36:special 1393:φ 1358:  1350:  1271:  1211:term) 1164:  1158:  1103:where 1082:  1073:  1067:  1059:  1053:  1028:  933:  927:  904:  891:  885:  848:  753:σ 743:where 725:  719:  696:  690:  684:  618:  610:  604:  586:  578:  572:  554:  546:  540:  507:  501:  487:  481:  458:  452:  417:  408:  402:  337:  331:  299:  293:  261:  255:  194:, and 188:ρ 169:ρ 161:α 145:θ 143:where 115:  109:  103:  57:stable 34:. In 1669:This 1356:S2CID 1322:arXiv 1227:Notes 1136:is a 1004:, to 799:to a 789:field 174:) is 38:(and 1675:stub 1395:,... 1348:PMID 1269:ISSN 975:and 751:and 157:time 1644:doi 1617:doi 1590:doi 1563:doi 1536:doi 1486:doi 1474:131 1453:246 1415:doi 1340:doi 1318:128 1295:247 1261:doi 755:is 527:del 237:as 198:is 190:is 182:is 155:is 147:is 1720:: 1640:32 1638:. 1613:39 1611:. 1586:45 1584:. 1559:11 1557:. 1534:. 1524:61 1522:. 1484:. 1472:. 1451:. 1411:40 1409:. 1391:, 1354:. 1346:. 1338:. 1330:. 1316:. 1312:. 1293:. 1281:^ 1267:. 1259:. 1249:46 1247:. 1243:. 1223:. 206:, 186:, 178:, 167:/( 163:= 159:, 151:, 1706:e 1699:t 1692:v 1681:. 1650:. 1646:: 1623:. 1619:: 1596:. 1592:: 1569:. 1565:: 1542:. 1538:: 1530:: 1492:. 1488:: 1480:: 1421:. 1417:: 1389:T 1362:. 1342:: 1334:: 1324:: 1275:. 1263:: 1255:: 1191:. 1184:0 1171:/ 1161:= 1153:2 1149:C 1120:0 1091:, 1079:k 1070:= 1063:q 1056:+ 1047:t 1038:q 1021:0 1001:q 965:C 949:. 941:2 930:= 921:t 896:1 888:+ 877:2 873:t 859:2 841:2 837:C 833:1 745:s 731:, 722:= 713:t 705:s 687:+ 680:) 671:q 665:( 636:. 630:z 614:k 607:+ 598:y 582:j 575:+ 566:x 550:i 543:= 513:, 510:0 504:= 497:q 484:+ 475:t 455:c 426:, 414:k 405:= 398:q 386:q 369:. 361:2 357:z 347:2 334:+ 323:2 319:y 309:2 296:+ 285:2 281:x 271:2 258:= 250:2 219:2 196:c 180:k 172:c 165:k 153:t 131:, 123:2 106:= 97:t

Index

heat conduction
diffusion
special relativity
special
general
heat equation
causality
light-cone
stable
Fourier equation
parabolic partial differential equation
temperature
time
thermal diffusivity
thermal conductivity
density
specific heat capacity
Laplace operator
Cartesian coordinates
first law of thermodynamics
del
entropy
entropy production
Green function
heat kernel
light-cone
speed of light
Fick's law of diffusion
field
Carlo Cattaneo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑