Knowledge (XXG)

Förster resonance energy transfer

Source 📝

2605:
single-molecule FRET is able to resolve the FRET signal of each individual molecule. The variation of the smFRET signal is useful to reveal kinetic information that an ensemble measurement cannot provide, especially when the system is under equilibrium. Heterogeneity among different molecules can also be observed. This method has been applied in many measurements of biomolecular dynamics such as DNA/RNA/protein folding/unfolding and other conformational changes, and intermolecular dynamics such as reaction, binding, adsorption, and desorption that are particularly useful in chemical sensing, bioassays, and biosensing.
2717:
then essential to understand how isolated nano-emitters behave when they are stacked in a dense layer. Nanoplatelets are especially promising candidates for strong homo-FRET exciton diffusion because of their strong in-plane dipole coupling and low Stokes shift. Fluorescence microscopy study of such single chains demonstrated that energy transfer by FRET between neighbor platelets causes energy to diffuse over a typical 500-nm length (about 80 nano emitters), and the transfer time between platelets is on the order of 1 ps.
2802: 142:. In order to avoid an erroneous interpretation of the phenomenon that is always a nonradiative transfer of energy (even when occurring between two fluorescent chromophores), the name "Förster resonance energy transfer" is preferred to "fluorescence resonance energy transfer"; however, the latter enjoys common usage in scientific literature. FRET is not restricted to fluorescence and occurs in connection with phosphorescence as well. 31: 2574:
measurements, and because photobleaching decay rates do not generally depend on donor concentration (unless acceptor saturation is an issue), the careful control of concentrations needed for intensity measurements is not needed. It is, however, important to keep the illumination the same for the with- and without-acceptor measurements, as photobleaching increases markedly with more intense incident light.
951: 127: 2614: 767: 1206: 2324:
FRET from the donor to the acceptor. For monitoring protein conformational changes, the target protein is labeled with a donor and an acceptor at two loci. When a twist or bend of the protein brings the change in the distance or relative orientation of the donor and acceptor, FRET change is observed.
2310:
interactions, and protein conformational changes. For monitoring the complex formation between two molecules, one of them is labeled with a donor and the other with an acceptor. The FRET efficiency is measured and used to identify interactions between the labeled complexes. There are several ways of
2716:
In the field of nano-photonics, FRET can be detrimental if it funnels excitonic energy to defect sites, but it is also essential to charge collection in organic and quantum-dot-sensitized solar cells, and various FRET-enabled strategies have been proposed for different opto-electronic devices. It is
2273:
and Yguerabide also experimentally demonstrated the theoretical dependence of Förster resonance energy transfer on the overlap integral by using a fused indolosteroid as a donor and a ketone as an acceptor. Calculations on FRET distances of some example dye-pairs can be found here. However, a lot of
2693:
has developed a patented substrate for NanoLuc called furimazine, though other valuables coelenterazine substrates for NanoLuc have also been published. A split-protein version of NanoLuc developed by Promega has also been used as a BRET donor in experiments measuring protein-protein interactions.
2445:
is the photobleaching decay time constant and depends on whether the acceptor is present or not. Since photobleaching consists in the permanent inactivation of excited fluorophores, resonance energy transfer from an excited donor to an acceptor fluorophore prevents the photobleaching of that donor
2341:
rates of the donor in the presence and absence of an acceptor. This method can be performed on most fluorescence microscopes; one simply shines the excitation light (of a frequency that will excite the donor but not the acceptor significantly) on specimens with and without the acceptor fluorophore
2858:
Proteins, DNAs, RNAs, and other polymer folding dynamics have been measured using FRET. Usually, these systems are under equilibrium whose kinetics is hidden. However, they can be measured by measuring single-molecule FRET with proper placement of the acceptor and donor dyes on the molecules. See
2702:
In general, "FRET" refers to situations where the donor and acceptor proteins (or "fluorophores") are of two different types. In many biological situations, however, researchers might need to examine the interactions between two, or more, proteins of the same type—or indeed the same protein with
2809:
FRET-based probes can detect the presence of various molecules: the probe's structure is affected by small molecule binding or activity, which can turn the FRET system on or off. This is often used to detect anions, cations, small uncharged molecules, and some larger biomacromolecules as well.
2712:
Obviously, spectral differences will not be the tool used to detect and measure FRET, as both the acceptor and donor protein emit light with the same wavelengths. Yet researchers can detect differences in the polarisation between the light which excites the fluorophores and the light which is
2573:
This technique was introduced by Jovin in 1989. Its use of an entire curve of points to extract the time constants can give it accuracy advantages over the other methods. Also, the fact that time measurements are over seconds rather than nanoseconds makes it easier than fluorescence lifetime
2604:
smFRET is a group of methods using various microscopic techniques to measure a pair of donor and acceptor fluorophores that are excited and detected at the single molecule level. In contrast to "ensemble FRET" or "bulk FRET" which provides the FRET signal of a high number of molecules,
2319:
One method of measuring FRET efficiency is to measure the variation in acceptor emission intensity. When the donor and acceptor are in proximity (1–10 nm) due to the interaction of the two molecules, the acceptor emission will increase because of the
4499:
Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T (July 2013). "C6-Deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase".
623: 946:{\displaystyle J={\frac {\int f_{\text{D}}(\lambda )\epsilon _{\text{A}}(\lambda )\lambda ^{4}\,d\lambda }{\int f_{\text{D}}(\lambda )\,d\lambda }}=\int {\overline {f_{\text{D}}}}(\lambda )\epsilon _{\text{A}}(\lambda )\lambda ^{4}\,d\lambda ,} 4920:
Liu, Jiawen; Guillemeney, Lilian; Choux, Arnaud; Maître, Agnès; Abécassis, Benjamin; Coolen, Laurent (21 October 2020). "Fourier-Imaging of Single Self-Assembled CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution".
2871:
In addition to common uses previously mentioned, FRET and BRET are also effective in the study of biochemical reaction kinetics. FRET is increasingly used for monitoring pH dependent assembly and disassembly and is valuable in the analysis of
2413: 1058: 2713:
emitted, in a technique called FRET anisotropy imaging; the level of quantified anisotropy (difference in polarisation between the excitation and emission beams) then becomes an indicative guide to how many FRET events have happened.
2655:
A limitation of FRET performed with fluorophore donors is the requirement for external illumination to initiate the fluorescence transfer, which can lead to background noise in the results from direct excitation of the acceptor or to
2617:
If the linker is intact, excitation at the absorbance wavelength of CFP (414 nm) causes emission by YFP (525 nm) due to FRET. If the linker is cleaved by a protease, FRET is abolished and emission is at the CFP wavelength
1495:
The units of the data are usually not in SI units. Using the original units to calculate the Förster distance is often more convenient. For example, the wavelength is often in unit nm and the extinction coefficient is often in unit
2785:, movement and dispersal of membrane proteins, membrane lipid-protein and protein-protein interactions, and successful mixing of different membranes. FRET is also used to study formation and properties of membrane domains and 1834: 1972: 1303:= 2/3 is often assumed. This value is obtained when both dyes are freely rotating and can be considered to be isotropically oriented during the excited-state lifetime. If either dye is fixed or not free to rotate, then 258: 1465:, and thus determinations of changes in relative distance for a particular system are still valid. Fluorescent proteins do not reorient on a timescale that is faster than their fluorescence lifetime. In this case 0 ≤ 347:
The FRET efficiency depends on many physical parameters that can be grouped as: 1) the distance between the donor and the acceptor (typically in the range of 1–10 nm), 2) the spectral overlap of the donor
2569:
are the photobleaching decay time constants of the donor in the presence and in the absence of the acceptor respectively. (Notice that the fraction is the reciprocal of that used for lifetime measurements).
5924:
Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL (October 2014). "FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier".
4535: 2507: 2068: 6150:
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y (March 2019). "Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines".
102:
that is instantly absorbed by a receiving chromophore. These virtual photons are undetectable, since their existence violates the conservation of energy and momentum, and hence FRET is known as a
2191: 80:. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance. 5785:
Wu Y, Xing D, Luo S, Tang Y, Chen Q (April 2006). "Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis".
2639:(GFP). Labeling with organic fluorescent dyes requires purification, chemical modification, and intracellular injection of a host protein. GFP variants can be attached to a host protein by 472: 1015: 5159:
Shi Y, Stouten PF, Pillalamarri N, Barile L, Rosal RV, Teichberg S, et al. (March 2006). "Quantitative determination of the topological propensities of amyloidogenic peptides".
2540: 2274:
contradictions of special experiments with the theory was observed under complicated environment when the orientations and quantum yields of the molecules are difficult to estimate.
2101: 1042: 1673: 2737:
fields. FRET can be used as a spectroscopic ruler to measure distance and detect molecular interactions in a number of systems and has applications in biology and biochemistry.
2224: 2733:
The applications of fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple in many biological and
2567: 2443: 1245: 2128: 5701:
Lohse MJ, Nuber S, Hoffmann C (April 2012). "Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling".
504:
being the Förster distance of this pair of donor and acceptor, i.e. the distance at which the energy transfer efficiency is 50%. The Förster distance depends on the overlap
1891: 1540: 514: 315: 2251: 981: 735: 653: 2903:(BiFC), where two parts of a fluorescent protein are each fused to other proteins. When these two parts meet, they form a fluorophore on a timescale of minutes or hours. 1490: 1436: 1409: 1355: 1328: 1301: 684: 5744:
Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007-01-01). "In vivo measurement by FRET of pathway activity in bacterial chemotaxis". In Simon MI, Crane BR, Crane A (eds.).
1274: 2002: 1706: 5960:
Yang L, Cui C, Wang L, Lei J, Zhang J (July 2016). "Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way".
6293: 4011:
Szöllősi J, Alexander DR (2007). "The Application of Fluorescence Resonance Energy Transfer to the Investigation of Phosphatases". In Klumpp S, Krieglstein J (eds.).
2352: 138:. When both chromophores are fluorescent, the term "fluorescence resonance energy transfer" is often used instead, although the energy is not actually transferred by 1201:{\displaystyle \kappa ={\hat {\mu }}_{\text{A}}\cdot {\hat {\mu }}_{\text{D}}-3({\hat {\mu }}_{\text{D}}\cdot {\hat {R}})({\hat {\mu }}_{\text{A}}\cdot {\hat {R}}),} 1733: 1594: 1463: 1382: 508:
of the donor emission spectrum with the acceptor absorption spectrum and their mutual molecular orientation as expressed by the following equation all in SI units:
502: 342: 288: 4539: 1860: 2749:
in a single protein by tagging different regions of the protein with fluorophores and measuring emission to determine distance. This provides information about
1614: 1560: 759: 704: 400: 380: 168: 5315:"Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein" 4053: 5278:
Truong K, Ikura M (October 2001). "The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo".
2927: 1741: 2703:
itself, for example if the protein folds or forms part of a polymer chain of proteins or for other questions of quantification in biological cells or
4205:
Pfleger KD, Eidne KA (March 2006). "Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET)".
2900: 2587: 1899: 5065:
Szabó, Ágnes; Szendi-Szatmári, Tímea; Szöllősi, János; Nagy, Peter (2020-07-07). "Quo vadis FRET? Förster's method in the era of superresolution".
3833:
Majoul I, Jia Y, Duden R (2006). "Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells". In Pawley JB (ed.).
1330:= 2/3 will not be a valid assumption. In most cases, however, even modest reorientation of the dyes results in enough orientational averaging that 4967: 180: 6313: 5761: 5657: 4181: 4028: 3954: 3918: 3858: 3660: 3609: 3497:
C. King; B. Barbiellini; D. Moser & V. Renugopalakrishnan (2012). "Exactly soluble model of resonant energy transfer between molecules".
3422: 3323: 3113: 3025: 2996: 2967: 4250:"Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform" 2586:
of the donor. The lifetime of the donor will decrease in the presence of the acceptor. Lifetime measurements of the FRET-donor are used in
5356:"A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin" 76:). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative 2838:
activation and consequent signaling mechanisms. Other examples include the use of FRET to analyze such diverse processes as bacterial
2287: 87:
are within a certain distance of each other. Such measurements are used as a research tool in fields including biology and chemistry.
3372: 4561: 3752:"Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots (supporting information)" 5194:
Matsumoto S, Hammes GG (January 1975). "Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase".
3341: 2745:
FRET is often used to detect and track interactions between proteins. Additionally, FRET can be used to measure distances between
2346:) over time. The timescale is that of photobleaching, which is seconds to minutes, with fluorescence in each curve being given by 6298: 6195:"Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation" 5331: 5314: 5997:"Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration" 2452: 2613: 6308: 4814:
Heckmeier, Philipp J.; Agam, Ganesh; Teese, Mark G.; Hoyer, Maria; Stehle, Ralf; Lamb, Don C.; Langosch, Dieter (July 2020).
2013: 6273: 3985: 1045: 2765:
activity. Applied in vivo, FRET has been used to detect the location and interactions of cellular structures including
174:
of the energy-transfer transition, i.e. the probability of energy-transfer event occurring per donor excitation event:
5497:"Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes" 2754: 1357:= 2/3 does not result in a large error in the estimated energy-transfer distance due to the sixth-power dependence of 4168:. Methods of Biochemical Analysis. Vol. 47 (2nd ed.). Hoboken, NJ: John Wiley & Sons. pp. 361–90. 3041:
Schneckenburger, Herbert (2019-11-27). "Förster resonance energy transfer–what can we learn and how can we use it?".
2136: 77: 408: 6288: 6242: 2835: 2761:. This extends to tracking functional changes in protein structure, such as conformational changes associated with 2632: 4117:
Nguyen AW, Daugherty PS (March 2005). "Evolutionary optimization of fluorescent proteins for intracellular FRET".
5544:
Fung BK, Stryer L (November 1978). "Surface density determination in membranes by fluorescence energy transfer".
4100: 2636: 2261:
The inverse sixth-power distance dependence of Förster resonance energy transfer was experimentally confirmed by
2007:
The FRET efficiency relates to the quantum yield and the fluorescence lifetime of the donor molecule as follows:
2810:
Similarly, FRET systems have been designed to detect changes in the cellular environment due to such factors as
986: 6318: 2912: 2893: 2628: 4562:"Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a Chemical Library of Coelenterazine Analogues" 2311:
measuring the FRET efficiency by monitoring changes in the fluorescence emitted by the donor or the acceptor.
3556: 2922: 2801: 357: 107: 5822:"Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination" 1020: 1619: 6303: 6283: 6268: 2681:
BRET has also been implemented using a different luciferase enzyme, engineered from the deep-sea shrimp
2515: 2545: 2421: 2076: 1214: 4612:"NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells" 4297:
Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T, et al. (December 2015).
3596:. Laboratory Techniques in Biochemistry and Molecular Biology. Vol. 33. Elsevier. pp. 1–57. 2106: 618:{\displaystyle {R_{0}}^{6}={\frac {2.07}{128\,\pi ^{5}\,N_{A}}}\,{\frac {\kappa ^{2}\,Q_{D}}{n^{4}}}J} 6045:
Sanchez-Gaytan BL, Fay F, Hak S, Alaarg A, Fayad ZA, Pérez-Medina C, Mulder WJ, Zhao Y (March 2017).
5878: 5637: 5397:"Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations" 5074: 4982: 4886: 4827: 4816:"Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy" 4770: 4713: 4449:"Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate" 4310: 4068: 3689: 3516: 3451: 3275: 3234: 3153: 2860: 2599: 4403:
Machleidt T, Woodroofe CC, Schwinn MK, Méndez J, Robers MB, Zimmerman K, et al. (August 2015).
2130:
are the donor fluorescence lifetimes in the presence and absence of an acceptor respectively, or as
6278: 2917: 2831: 2640: 2199: 1869: 1499: 353: 293: 4354:
Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB, Machleidt T, et al. (July 2015).
3440:"Single-molecule three-color FRET with both negligible spectral overlap and long observation time" 2229: 959: 713: 631: 6175: 6027: 5726: 5675: 5526: 5231:"Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway" 5106: 5006: 4948: 4930: 4702:"Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins" 4592: 4230: 4142: 4092: 3874:
Edelhoch H, Brand L, Wilchek M (February 1967). "Fluorescence studies with tryptophyl peptides".
3532: 3506: 3203: 3074: 2819: 2674: 2643:
which can be more convenient. Additionally, a fusion of CFP and YFP ("tandem-dimer") linked by a
2446:
fluorophore, and thus high FRET efficiency leads to a longer photobleaching decay time constant:
1468: 1414: 1387: 1333: 1306: 1279: 662: 111: 91: 2408:{\displaystyle {\text{background}}+{\text{constant}}\cdot e^{-{\text{time}}/\tau _{\text{pb}}},} 1250: 135: 4759:"Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution" 4653:"Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis" 3946: 3842: 2329:
binding, this FRET technique is applicable to fluorescent indicators for the ligand detection.
1980: 1678: 6216: 6167: 6132: 6094: 6076: 6019: 5996: 5977: 5942: 5906: 5847: 5802: 5767: 5757: 5718: 5663: 5653: 5610: 5561: 5518: 5477: 5426: 5377: 5336: 5295: 5260: 5211: 5176: 5141: 5098: 5090: 5047: 4998: 4902: 4855: 4796: 4739: 4682: 4633: 4584: 4517: 4478: 4426: 4385: 4336: 4279: 4222: 4187: 4177: 4161: 4134: 4084: 4034: 4024: 3950: 3914: 3891: 3854: 3815: 3771: 3715: 3707: 3656: 3605: 3479: 3418: 3319: 3180: 3119: 3109: 3066: 3058: 3021: 3013: 2992: 2984: 2963: 2947: 2815: 2782: 2750: 2685:. This luciferase is smaller (19 kD) and brighter than the more commonly used luciferase from 2291: 738: 349: 34: 5629: 3640: 3402: 3338: 3093: 344:
the rates of any other de-excitation pathways excluding energy transfers to other acceptors.
6263: 6206: 6159: 6122: 6114: 6098: 6066: 6058: 6011: 5969: 5934: 5896: 5886: 5837: 5829: 5794: 5749: 5710: 5645: 5600: 5592: 5553: 5508: 5467: 5457: 5416: 5408: 5367: 5326: 5313:
Chan FK, Siegel RM, Zacharias D, Swofford R, Holmes KL, Tsien RY, Lenardo MJ (August 2001).
5287: 5250: 5242: 5203: 5168: 5133: 5082: 5037: 4990: 4940: 4894: 4845: 4835: 4786: 4778: 4729: 4721: 4672: 4664: 4623: 4610:
Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. (February 2016).
4576: 4560:
Coutant EP, Gagnot G, Hervin V, Baatallah R, Goyard S, Jacob Y, et al. (January 2020).
4509: 4468: 4460: 4416: 4375: 4367: 4326: 4318: 4269: 4261: 4214: 4169: 4126: 4076: 4016: 3938: 3883: 3846: 3834: 3805: 3763: 3697: 3648: 3597: 3589: 3524: 3469: 3459: 3410: 3311: 3283: 3242: 3195: 3161: 3101: 3050: 2955: 2770: 2342:
and monitors the donor fluorescence (typically separated from acceptor fluorescence using a
707: 38: 4447:
Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. (November 2012).
3561:
Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals
1711: 1565: 1441: 1360: 480: 320: 266: 6247: 5687: 5581:"Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents" 4700:
Gautier I, Tramier M, Durieux C, Coppey J, Pansu RB, Nicolas JC, et al. (June 2001).
3376: 2876:
encapsulation. This technique can be used to determine factors affecting various types of
2758: 2661: 2343: 1839: 3181:"Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach" 17: 6103:"FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes" 5882: 5641: 5078: 4986: 4890: 4831: 4774: 4717: 4314: 4072: 3693: 3520: 3455: 3279: 3238: 3157: 6127: 6102: 6071: 6046: 5901: 5866: 5842: 5821: 5605: 5472: 5445: 5421: 5396: 5255: 5230: 4850: 4815: 4791: 4758: 4734: 4701: 4677: 4652: 4473: 4448: 4380: 4355: 4331: 4298: 4274: 4249: 3474: 3439: 2790: 2746: 2657: 2338: 2321: 1599: 1545: 744: 689: 385: 365: 153: 99: 30: 6211: 6194: 5753: 5372: 5355: 5291: 5137: 4725: 4020: 3601: 6257: 6179: 6031: 5110: 5010: 4968:"Long Range Energy Transfer in Self-Assembled Stacks of Semiconducting Nanoplatelets" 4952: 4596: 4299:"Target engagement and drug residence time can be observed in living cells with BRET" 3939: 3835: 3414: 3345: 3207: 3199: 3165: 3078: 2270: 2266: 656: 171: 6015: 5530: 4146: 4096: 3536: 5730: 4234: 3970:
Vekshin NL (1997). "Energy Transfer in Macromolecules, SPIE". In Vekshin NL (ed.).
2881: 2877: 2873: 2834:. For example, FRET and BRET have been used in various experiments to characterize 2583: 2299: 2262: 1829:{\displaystyle {R_{0}}^{6}=8.785\times 10^{-5}{\frac {\kappa ^{2}\,Q_{D}}{n^{4}}}J} 1247:
denotes the normalized transition dipole moment of the respective fluorophore, and
139: 72:) is a mechanism describing energy transfer between two light-sensitive molecules ( 6154:. Unraveling the In Vivo Fate and Cellular Pharmacokinetics of Drug Nanocarriers. 4405:"NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions" 3590:"Förster resonance energy transfer—FRET: what is it, why do it, and how it's done" 2253:
are the donor fluorescence intensities with and without an acceptor respectively.
5798: 5579:
Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP, et al. (August 2020).
4994: 4944: 4757:
Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC (November 2009).
3850: 3464: 3094:"Spectroscopy-based quantitative fluorescence resonance energy transfer analysis" 3652: 2959: 84: 73: 6163: 5086: 4628: 4611: 4513: 4421: 4404: 3702: 3677: 3528: 3138: 3105: 3054: 6236: 5513: 5496: 5172: 4840: 4782: 4015:. Methods in Enzymology. Vol. 366. Amsterdam: Elsevier. pp. 203–24. 3989: 3315: 2839: 2786: 2734: 2669: 2325:
If a molecular interaction or a protein conformational change is dependent on
2295: 2283: 1967:{\displaystyle k_{\text{ET}}=({\frac {R_{0}}{r}})^{6}\,{\frac {1}{\tau _{D}}}} 126: 5462: 5094: 3751: 3711: 3288: 3263: 3100:. Methods in Molecular Biology. Vol. 337. Humana Press. pp. 65–77. 3062: 2678:) rather than CFP to produce an initial photon emission compatible with YFP. 37:
of FRET with typical timescales indicated. The black dashed line indicates a
4173: 3247: 3222: 2847: 2766: 253:{\displaystyle E={\frac {k_{\text{ET}}}{k_{f}+k_{\text{ET}}+\sum {k_{i}}}},} 115: 98:
of light emitted. In the near-field region, the excited chromophore emits a
6220: 6171: 6136: 6080: 6062: 6023: 5981: 5973: 5946: 5910: 5851: 5806: 5771: 5722: 5667: 5614: 5522: 5481: 5430: 5381: 5340: 5299: 5264: 5180: 5145: 5124:
Pollok BA, Heim R (February 1999). "Using GFP in FRET-based applications".
5102: 5042: 5025: 5002: 4906: 4859: 4800: 4743: 4686: 4637: 4588: 4580: 4521: 4482: 4430: 4389: 4340: 4283: 4226: 4191: 4138: 4088: 4038: 3810: 3793: 3775: 3719: 3483: 3223:"Resonance energy transfer: From fundamental theory to recent applications" 3139:"A unified theory of radiative and radiationless molecular energy transfer" 3123: 3070: 2582:
FRET efficiency can also be determined from the change in the fluorescence
402:
with an inverse 6th-power law due to the dipole–dipole coupling mechanism:
130:
Cartoon diagram of the concept of Förster resonance energy transfer (FRET).
5714: 5412: 5215: 5051: 4265: 3895: 3819: 94:
communication, in that the radius of interaction is much smaller than the
5865:
Sapkota K, Kaur A, Megalathan A, Donkoh-Moore C, Dhakal S (August 2019).
5748:. Methods in Enzymology. Vol. 423. Academic Press. pp. 365–91. 5565: 5246: 2705: 2644: 1438:
is quite different from 2/3, the error can be associated with a shift in
505: 5557: 5332:
10.1002/1097-0320(20010801)44:4<361::AID-CYTO1128>3.0.CO;2-3
5207: 4322: 4248:
Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, et al. (June 2016).
3887: 1048:, normally obtained from an absorption spectrum. The orientation factor 5649: 5596: 5580: 4371: 2843: 2690: 2303: 110:
calculations have been used to determine that radiationless (FRET) and
6118: 5938: 5891: 4464: 4080: 3767: 134:
Förster resonance energy transfer is named after the German scientist
4898: 4668: 4218: 2762: 2326: 2004:
is the donor's fluorescence lifetime in the absence of the acceptor.
4130: 3624: 2899:
An alternative method to detecting protein–protein proximity is the
4935: 4874: 3563:. Vol. 3. New York and London: Academic Press. pp. 93–137 4651:
Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RA (August 2019).
4054:"Fluorescence resonance energy transfer microscopy: a mini review" 3511: 3306:
Valeur B, Berberan-Santos M (2012). "Excitation Energy Transfer".
2800: 1866:
For time-dependent analyses of FRET, the rate of energy transfer (
125: 95: 29: 5833: 5354:
Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA (September 2000).
4166:
Green Fluorescent Protein: Properties, Applications and Protocols
3945:(2nd ed.). New York, NY: Kluwer Acad./Plenum Publ. pp.  3020:(8th ed.). New York: W. H. Freeman and Co. pp. 419–44. 6047:"Real-Time Monitoring of Nanoparticle Formation by FRET Imaging" 3750:
Chan YH, Chen J, Wark SE, Skiles SL, Son DH, Batteas JD (2009).
3396: 3394: 83:
Measurements of FRET efficiency can be used to determine if two
3736: 1017:
is the donor emission spectrum normalized to an area of 1, and
4875:"Fluorescence anisotropy: from single molecules to live cells" 2307: 4873:
Gradinaru CC, Marushchak DO, Samim M, Krull UJ (March 2010).
3266:[Intermolecular energy migration and fluorescence]. 3308:
Molecular Fluorescence: Principles and Applications, 2nd ed
2811: 2668:) has been developed. This technique uses a bioluminescent 2954:(3rd ed.). New York, NY: Springer. pp. 162–206. 2805:
FRET-based probe that activates upon interaction with Cd2+
2294:, FRET is a useful tool to quantify molecular dynamics in 2502:{\displaystyle E=1-\tau _{\text{pb}}/\tau _{\text{pb}}',} 4356:"Application of BRET to monitor ligand binding to GPCRs" 3787: 3785: 356:, and 3) the relative orientation of the donor emission 2063:{\displaystyle E=1-\tau '_{\text{D}}/\tau _{\text{D}},} 1276:
denotes the normalized inter-fluorophore displacement.
5229:
Martin SF, Tatham MH, Hay RT, Samuel ID (April 2008).
5026:"Resonance energy transfer: methods and applications" 3794:"Resonance Energy Transfer: Methods and Applications" 3550: 3548: 3546: 3373:"Fluorescence Resonance Energy Transfer spectroscopy" 3264:"Zwischenmolekulare Energiewanderung und Fluoreszenz" 2830:
Another use for FRET is in the study of metabolic or
2627:
One common pair fluorophores for biological use is a
2548: 2518: 2455: 2424: 2355: 2232: 2202: 2139: 2109: 2079: 2016: 1983: 1902: 1872: 1842: 1744: 1714: 1681: 1622: 1602: 1568: 1548: 1502: 1471: 1444: 1417: 1390: 1363: 1336: 1309: 1282: 1253: 1217: 1061: 1023: 989: 962: 770: 747: 716: 692: 665: 634: 517: 483: 411: 388: 382:
depends on the donor-to-acceptor separation distance
368: 323: 296: 269: 183: 156: 5995:
Heitz M, Zamolo S, Javor S, Reymond JL (June 2020).
5867:"Single-Step FRET-Based Detection of Femtomoles DNA" 4502:
Biochemical and Biophysical Research Communications
3409:. Oxford: Oxford University Press. pp. 72–94. 3407:
Molecular Imaging: FRET Microscopy and Spectroscopy
2880:formation as well as the mechanisms and effects of 2647:cleavage sequence can be used as a cleavage assay. 6051:Angewandte Chemie International Edition in English 2561: 2534: 2501: 2437: 2407: 2245: 2218: 2185: 2122: 2095: 2062: 1996: 1966: 1885: 1854: 1828: 1727: 1700: 1667: 1608: 1588: 1554: 1534: 1484: 1457: 1430: 1403: 1376: 1349: 1322: 1295: 1268: 1239: 1200: 1036: 1009: 975: 945: 753: 729: 698: 678: 647: 617: 496: 466: 394: 374: 336: 309: 282: 252: 162: 4442: 4440: 3986:"Fluorescence Resonance Energy Transfer Protocol" 3841:(3rd ed.). New York, NY: Springer. pp.  3583: 3581: 3579: 3577: 3634: 3632: 3557:"Delocalized Excitation and Excitation Transfer" 2337:FRET efficiencies can also be inferred from the 2265:, Edelhoch and Brand using tryptophyl peptides. 4494: 4492: 2793:and to determine surface density in membranes. 2725:Various compounds beside fluorescent proteins. 2186:{\displaystyle E=1-F_{\text{D}}'/F_{\text{D}},} 761:is the spectral overlap integral calculated as 3678:"Kappaphobia is the elephant in the fret room" 2948:"The Contrast Formation in Optical Microscopy" 467:{\displaystyle E={\frac {1}{1+(r/R_{0})^{6}}}} 6193:Hu CD, Chinenov Y, Kerppola TK (April 2002). 5630:"Dynamic visualization of cellular signaling" 4162:"Pharmaceutical Applications of GFP and RCFP" 659:of the donor in the absence of the acceptor, 8: 3301: 3299: 2257:Experimental confirmation of the FRET theory 5636:. Vol. 119. Springer. pp. 79–97. 3932: 3930: 3403:"FRET Imaging in the Wide-Field Microscope" 360:and the acceptor absorption dipole moment. 6097:, Love KT, Sahay G, Stutzman T, Young WT, 5446:"FRET in Membrane Biophysics: An Overview" 3837:Handbook of Biological Confocal Microscopy 2952:Handbook of Biological Confocal Microscopy 2928:Time-resolved fluorescence energy transfer 1010:{\displaystyle {\overline {f_{\text{D}}}}} 6250:(Tutorial of Becker & Hickl, website) 6210: 6126: 6070: 5900: 5890: 5841: 5604: 5512: 5471: 5461: 5420: 5371: 5330: 5254: 5041: 4934: 4849: 4839: 4790: 4733: 4676: 4627: 4472: 4420: 4379: 4330: 4273: 3809: 3731: 3729: 3701: 3510: 3473: 3463: 3360:(3rd ed.). IUPAC. 2007. p. 340. 3310:. Weinheim: Wiley-VCH. pp. 213–261. 3287: 3246: 2854:Proteins and nucleotides folding kinetics 2689:, and has been named NanoLuc or NanoKAZ. 2553: 2547: 2523: 2517: 2487: 2478: 2472: 2454: 2429: 2423: 2394: 2385: 2380: 2376: 2364: 2356: 2354: 2237: 2231: 2207: 2201: 2174: 2165: 2156: 2138: 2114: 2108: 2084: 2078: 2051: 2042: 2033: 2015: 1988: 1982: 1956: 1947: 1946: 1940: 1925: 1919: 1907: 1901: 1877: 1871: 1846: 1841: 1815: 1804: 1799: 1793: 1786: 1777: 1758: 1751: 1746: 1743: 1719: 1713: 1686: 1680: 1659: 1643: 1627: 1621: 1616:obtained from these units will have unit 1601: 1578: 1567: 1547: 1523: 1507: 1501: 1476: 1470: 1449: 1443: 1422: 1416: 1395: 1389: 1368: 1362: 1341: 1335: 1314: 1308: 1287: 1281: 1255: 1254: 1252: 1231: 1220: 1219: 1216: 1181: 1180: 1171: 1160: 1159: 1141: 1140: 1131: 1120: 1119: 1103: 1092: 1091: 1081: 1070: 1069: 1060: 1028: 1022: 996: 990: 988: 967: 961: 933: 927: 908: 884: 878: 862: 847: 831: 825: 806: 787: 777: 769: 746: 721: 715: 691: 670: 664: 639: 633: 604: 593: 588: 582: 575: 574: 565: 560: 554: 549: 540: 531: 524: 519: 516: 488: 482: 455: 445: 436: 418: 410: 387: 367: 328: 322: 301: 295: 274: 268: 237: 232: 220: 207: 196: 190: 182: 155: 5067:Methods and Applications in Fluorescence 4657:Pharmacology Research & Perspectives 3682:Methods and Applications in Fluorescence 3647:. Dordrecht: Springer. pp. 65–118. 3358:Glossary of Terms Used in Photochemistry 3043:Methods and Applications in Fluorescence 2989:Principles of Computational Cell Biology 2985:"Fluorescence Resonance Energy Transfer" 2901:bimolecular fluorescence complementation 2612: 2588:fluorescence-lifetime imaging microscopy 5746:Two-Component Signaling Systems, Part B 3941:Principles of fluorescence spectroscopy 3913:. New York: Plenum Press. p. 172. 3401:Schaufele F, Demarco I, Day RN (2005). 2938: 2892:A different, but related, mechanism is 2635:(YFP) pair. Both are color variants of 290:the radiative decay rate of the donor, 27:Photochemical energy transfer mechanism 5962:ACS Applied Materials & Interfaces 5927:ACS Applied Materials & Interfaces 5683: 5673: 54:fluorescence resonance energy transfer 5280:Current Opinion in Structural Biology 3438:Lee S, Lee J, Hohng S (August 2010). 3339:FRET microscopy tutorial from Olympus 3096:. In Stockand JD, Shapiro MS (eds.). 7: 5395:Sekar RB, Periasamy A (March 2003). 3645:Introduction to Fluorescence Sensing 2991:. Weinheim: Wiley-VCH. p. 202. 1037:{\displaystyle \epsilon _{\text{A}}} 317:is the rate of energy transfer, and 3641:"Fluorescence Detection Techniques" 3014:"Applications of Spectrophotometry" 1668:{\displaystyle M^{-1}cm^{-1}nm^{4}} 6294:Protein–protein interaction assays 2535:{\displaystyle \tau _{\text{pb}}'} 2288:confocal laser scanning microscopy 2278:Methods to measure FRET efficiency 686:is the dipole orientation factor, 25: 5826:Journal of Visualized Experiments 5444:Loura LM, Prieto M (2011-11-15). 4254:Journal of Molecular Cell Biology 3625:http://spie.org/samples/PM194.pdf 2863:for a more detailed description. 2562:{\displaystyle \tau _{\text{pb}}} 2438:{\displaystyle \tau _{\text{pb}}} 2096:{\displaystyle \tau _{\text{D}}'} 1240:{\displaystyle {\hat {\mu }}_{i}} 46:Förster resonance energy transfer 5632:. In Endo I, Nagamune T (eds.). 4164:. In Chalfie M, Kain SR (eds.). 3988:. Wellcome Trust. Archived from 3415:10.1016/B978-019517720-6.50013-4 3405:. In Periasamy A, Day R (eds.). 3179:Andrews DL, Bradshaw DS (2004). 2123:{\displaystyle \tau _{\text{D}}} 1893:) can be used directly instead: 983:is the donor emission spectrum, 6016:10.1021/acs.bioconjchem.0c00231 5820:Liu Y, Liao J (February 2013). 2672:(typically the luciferase from 2306:-protein interactions, protein– 1735:, the equation is adjusted to 118:of a single unified mechanism. 6152:Advanced Drug Delivery Reviews 4966:Liu, Jiawen (April 21, 2020). 3221:Jones GA, Bradshaw DS (2019). 3018:Quantitative Chemical Analysis 2664:resonance energy transfer (or 1937: 1916: 1260: 1225: 1192: 1186: 1165: 1155: 1152: 1146: 1125: 1115: 1097: 1075: 920: 914: 901: 895: 859: 853: 818: 812: 799: 793: 452: 430: 114:are the short- and long-range 1: 6212:10.1016/S1097-2765(02)00496-3 5754:10.1016/S0076-6879(07)23017-4 5373:10.1016/S0092-8674(00)00090-8 5292:10.1016/S0959-440X(00)00249-9 5138:10.1016/S0962-8924(98)01434-2 4726:10.1016/S0006-3495(01)76265-0 4569:Chemistry: A European Journal 4021:10.1016/S0076-6879(03)66017-9 3602:10.1016/S0075-7535(08)00001-6 2594:Single-molecule FRET (smFRET) 2219:{\displaystyle F_{\text{D}}'} 1886:{\displaystyle k_{\text{ET}}} 1535:{\displaystyle M^{-1}cm^{-1}} 310:{\displaystyle k_{\text{ET}}} 6314:Molecular biology techniques 5799:10.1016/j.canlet.2005.04.036 5495:Silvius JR, Nabi IR (2006). 5024:Wu P, Brand L (April 1994). 4995:10.1021/acs.nanolett.0c00376 4945:10.1021/acsphotonics.0c01066 4061:Journal of Biomedical Optics 3851:10.1007/978-0-387-45524-2_45 3676:VanDerMeer, B. Wieb (2020). 3465:10.1371/journal.pone.0012270 3166:10.1016/0301-0104(89)87019-3 2781:FRET can be used to observe 2246:{\displaystyle F_{\text{D}}} 1046:molar extinction coefficient 1002: 976:{\displaystyle f_{\text{D}}} 890: 730:{\displaystyle N_{\text{A}}} 648:{\displaystyle Q_{\text{D}}} 6101:, Anderson DG (July 2012). 5401:The Journal of Cell Biology 3653:10.1007/978-1-4020-9003-5_3 3188:European Journal of Physics 2960:10.1007/978-0-387-45524-2_8 1485:{\displaystyle \kappa ^{2}} 1431:{\displaystyle \kappa ^{2}} 1404:{\displaystyle \kappa ^{2}} 1350:{\displaystyle \kappa ^{2}} 1323:{\displaystyle \kappa ^{2}} 1296:{\displaystyle \kappa ^{2}} 679:{\displaystyle \kappa ^{2}} 6335: 6238:FRET effect in a thin film 6164:10.1016/j.addr.2019.04.009 5501:Molecular Membrane Biology 4629:10.1021/acschembio.5b00753 4514:10.1016/j.bbrc.2013.06.026 4422:10.1021/acschembio.5b00143 3529:10.1103/PhysRevB.85.125106 3200:10.1088/0143-0807/25/6/017 2836:G-protein coupled receptor 2660:. To avoid this drawback, 2633:yellow fluorescent protein 2609:Fluorophores used for FRET 2597: 1269:{\displaystyle {\hat {R}}} 66:electronic energy transfer 5514:10.1080/09687860500473002 5173:10.1016/j.bpc.2005.09.015 4841:10.1016/j.bpj.2020.05.025 4783:10.1016/j.bpj.2009.07.059 4052:Periasamy A (July 2001). 3909:Lakowicz JR, ed. (1991). 3316:10.1002/9783527650002.ch8 2683:Oplophorus gracilirostris 2637:green fluorescent protein 1997:{\displaystyle \tau _{D}} 1701:{\displaystyle 10^{-10}m} 112:radiative energy transfer 58:resonance energy transfer 18:Resonance energy transfer 5634:Nano/Micro Biotechnology 5585:Chemical Society Reviews 5463:10.3389/fphys.2011.00082 5087:10.1088/2050-6120/ab9b72 4160:Bevan N, Rees S (2006). 3972:Photonics of Biopolymers 3737:"FPbase FRET Calculator" 3703:10.1088/2050-6120/ab8f87 3594:FRET and FLIM Techniques 3559:. In Sinanoglu O (ed.). 3289:10.1002/andp.19484370105 3106:10.1385/1-59745-095-2:65 3055:10.1088/2050-6120/ab56e1 2913:Dexter electron transfer 2894:Dexter electron transfer 2629:cyan fluorescent protein 108:Quantum electrodynamical 6299:Fluorescence techniques 5703:Pharmacological Reviews 5450:Frontiers in Physiology 5030:Analytical Biochemistry 4174:10.1002/0471739499.ch16 3798:Analytical Biochemistry 3792:Wu PG, Brand L (1994). 3592:. In Gadella TW (ed.). 3248:10.3389/fphy.2019.00100 2923:Surface energy transfer 6063:10.1002/anie.201611288 6004:Bioconjugate Chemistry 5974:10.1021/acsami.6b05872 5628:Ni Q, Zhang J (2010). 5126:Trends in Cell Biology 5043:10.1006/abio.1994.1134 4581:10.1002/chem.201904844 4536:"NanoLuc product page" 3811:10.1006/abio.1994.1134 2950:. In Pawley JB (ed.). 2806: 2619: 2563: 2536: 2503: 2439: 2409: 2247: 2220: 2187: 2124: 2097: 2064: 1998: 1968: 1887: 1856: 1830: 1729: 1702: 1669: 1610: 1590: 1556: 1536: 1486: 1459: 1432: 1405: 1378: 1351: 1324: 1297: 1270: 1241: 1202: 1038: 1011: 977: 947: 755: 731: 700: 680: 649: 619: 498: 468: 396: 376: 338: 311: 284: 254: 164: 131: 78:dipole–dipole coupling 42: 6309:Laboratory techniques 5715:10.1124/pr.110.004309 5413:10.1083/jcb.200210140 5161:Biophysical Chemistry 4303:Nature Communications 3639:Demchenko AP (2008). 2804: 2616: 2578:Lifetime measurements 2564: 2537: 2504: 2440: 2410: 2248: 2221: 2188: 2125: 2098: 2065: 1999: 1969: 1888: 1857: 1831: 1730: 1728:{\displaystyle R_{0}} 1703: 1670: 1611: 1591: 1589:{\displaystyle mol/L} 1557: 1537: 1487: 1460: 1458:{\displaystyle R_{0}} 1433: 1406: 1379: 1377:{\displaystyle R_{0}} 1352: 1325: 1298: 1271: 1242: 1203: 1039: 1012: 978: 948: 756: 732: 701: 681: 650: 620: 499: 497:{\displaystyle R_{0}} 469: 397: 377: 339: 337:{\displaystyle k_{i}} 312: 285: 283:{\displaystyle k_{f}} 255: 165: 150:The FRET efficiency ( 129: 90:FRET is analogous to 33: 6274:Biochemistry methods 5247:10.1110/ps.073369608 4616:ACS Chemical Biology 4453:ACS Chemical Biology 4409:ACS Chemical Biology 4119:Nature Biotechnology 4013:Protein Phosphatases 3937:Lakowicz JR (1999). 3227:Frontiers in Physics 2861:single-molecule FRET 2755:secondary structures 2751:protein conformation 2600:Single-molecule FRET 2546: 2516: 2453: 2422: 2353: 2230: 2200: 2137: 2107: 2077: 2014: 1981: 1900: 1870: 1855:{\displaystyle ^{6}} 1840: 1742: 1712: 1679: 1620: 1600: 1566: 1546: 1500: 1469: 1442: 1415: 1388: 1361: 1334: 1307: 1280: 1251: 1215: 1059: 1021: 987: 960: 768: 745: 714: 690: 663: 655:is the fluorescence 632: 515: 481: 409: 386: 366: 321: 294: 267: 181: 154: 5883:2019Senso..19.3495S 5642:2010nmb..book...79N 5558:10.1021/bi00617a025 5208:10.1021/bi00673a004 5079:2020MApFl...8c2003S 4987:2020NanoL..20.3465L 4891:2010Ana...135..452G 4832:2020BpJ...119...99H 4820:Biophysical Journal 4775:2009BpJ....97.2613B 4763:Biophysical Journal 4718:2001BpJ....80.3000G 4706:Biophysical Journal 4323:10.1038/ncomms10091 4315:2015NatCo...610091R 4266:10.1093/jmcb/mjv064 4073:2001JBO.....6..287P 3888:10.1021/bi00854a024 3694:2020MApFl...8c0401V 3521:2012PhRvB..85l5106K 3456:2010PLoSO...512270L 3280:1948AnP...437...55F 3239:2019FrP.....7..100J 3158:1989CP....135..195A 3137:Andrews DL (1989). 2818:, or mitochondrial 2641:genetic engineering 2531: 2495: 2333:Photobleaching FRET 2315:Sensitized emission 2215: 2164: 2092: 2041: 354:absorption spectrum 5650:10.1007/10_2008_48 5597:10.1039/C9CS00318E 4372:10.1038/nmeth.3398 3555:Förster T (1965). 3268:Annalen der Physik 3262:Förster T (1948). 3012:Harris DC (2010). 2867:Other applications 2832:signaling pathways 2826:Signaling pathways 2820:membrane potential 2807: 2687:Renilla reniformis 2675:Renilla reniformis 2620: 2559: 2532: 2519: 2499: 2483: 2435: 2405: 2243: 2216: 2203: 2183: 2152: 2120: 2093: 2080: 2060: 2029: 1994: 1964: 1883: 1852: 1826: 1725: 1698: 1665: 1606: 1586: 1552: 1532: 1482: 1455: 1428: 1401: 1374: 1347: 1320: 1293: 1266: 1237: 1198: 1034: 1007: 973: 943: 751: 727: 696: 676: 645: 615: 494: 464: 392: 372: 334: 307: 280: 250: 160: 132: 43: 6289:Optical phenomena 6119:10.1021/nn3013838 6057:(11): 2923–2926. 5939:10.1021/am505441p 5892:10.3390/s19163495 5763:978-0-12-373852-3 5659:978-3-642-14946-7 5591:(15): 5110–5139. 4929:(10): 2825–2833. 4465:10.1021/cb3002478 4183:978-0-471-73682-0 4081:10.1117/1.1383063 4030:978-0-12-182269-9 3956:978-0-306-46093-7 3920:978-0-306-43875-2 3860:978-0-387-25921-5 3768:10.1021/nn900317n 3662:978-1-4020-9002-8 3611:978-0-08-054958-3 3499:Physical Review B 3424:978-0-19-517720-6 3325:978-3-527-32837-6 3115:978-1-59745-095-9 3027:978-1-4292-1815-3 2998:978-3-527-31555-0 2969:978-0-387-25921-5 2946:Cheng PC (2006). 2783:membrane fluidity 2771:membrane proteins 2556: 2526: 2490: 2475: 2432: 2397: 2383: 2367: 2359: 2292:molecular biology 2240: 2210: 2177: 2159: 2117: 2087: 2054: 2036: 1962: 1934: 1910: 1880: 1821: 1675:. To use unit Å ( 1609:{\displaystyle J} 1562:is concentration 1555:{\displaystyle M} 1263: 1228: 1189: 1174: 1168: 1149: 1134: 1128: 1106: 1100: 1084: 1078: 1031: 1005: 999: 970: 911: 893: 887: 870: 850: 809: 790: 754:{\displaystyle J} 739:Avogadro constant 724: 699:{\displaystyle n} 642: 610: 572: 462: 395:{\displaystyle r} 375:{\displaystyle E} 352:and the acceptor 350:emission spectrum 304: 245: 223: 199: 163:{\displaystyle E} 146:Theoretical basis 35:Jablonski diagram 16:(Redirected from 6326: 6239: 6225: 6224: 6214: 6190: 6184: 6183: 6147: 6141: 6140: 6130: 6091: 6085: 6084: 6074: 6042: 6036: 6035: 6010:(6): 1671–1684. 6001: 5992: 5986: 5985: 5968:(29): 19084–91. 5957: 5951: 5950: 5933:(20): 18275–89. 5921: 5915: 5914: 5904: 5894: 5862: 5856: 5855: 5845: 5817: 5811: 5810: 5782: 5776: 5775: 5741: 5735: 5734: 5698: 5692: 5691: 5685: 5681: 5679: 5671: 5625: 5619: 5618: 5608: 5576: 5570: 5569: 5541: 5535: 5534: 5516: 5492: 5486: 5485: 5475: 5465: 5441: 5435: 5434: 5424: 5392: 5386: 5385: 5375: 5351: 5345: 5344: 5334: 5310: 5304: 5303: 5275: 5269: 5268: 5258: 5226: 5220: 5219: 5191: 5185: 5184: 5156: 5150: 5149: 5121: 5115: 5114: 5062: 5056: 5055: 5045: 5021: 5015: 5014: 4981:(5): 3465–3470. 4972: 4963: 4957: 4956: 4938: 4917: 4911: 4910: 4899:10.1039/b920242k 4870: 4864: 4863: 4853: 4843: 4811: 4805: 4804: 4794: 4754: 4748: 4747: 4737: 4697: 4691: 4690: 4680: 4669:10.1002/prp2.513 4648: 4642: 4641: 4631: 4607: 4601: 4600: 4566: 4557: 4551: 4550: 4548: 4547: 4538:. Archived from 4532: 4526: 4525: 4496: 4487: 4486: 4476: 4444: 4435: 4434: 4424: 4400: 4394: 4393: 4383: 4351: 4345: 4344: 4334: 4294: 4288: 4287: 4277: 4245: 4239: 4238: 4219:10.1038/nmeth841 4202: 4196: 4195: 4157: 4151: 4150: 4114: 4108: 4107: 4105: 4099:. Archived from 4058: 4049: 4043: 4042: 4008: 4002: 4001: 3999: 3997: 3992:on July 17, 2013 3982: 3976: 3975: 3967: 3961: 3960: 3944: 3934: 3925: 3924: 3906: 3900: 3899: 3871: 3865: 3864: 3840: 3830: 3824: 3823: 3813: 3789: 3780: 3779: 3762:(7): 1735–1744. 3747: 3741: 3740: 3733: 3724: 3723: 3705: 3673: 3667: 3666: 3636: 3627: 3622: 3616: 3615: 3588:Clegg R (2009). 3585: 3572: 3571: 3569: 3568: 3552: 3541: 3540: 3514: 3494: 3488: 3487: 3477: 3467: 3435: 3429: 3428: 3398: 3389: 3388: 3386: 3384: 3379:on July 26, 2016 3375:. Archived from 3368: 3362: 3361: 3354: 3348: 3336: 3330: 3329: 3303: 3294: 3293: 3291: 3259: 3253: 3252: 3250: 3218: 3212: 3211: 3185: 3176: 3170: 3169: 3146:Chemical Physics 3143: 3134: 3128: 3127: 3092:Zheng J (2006). 3089: 3083: 3082: 3038: 3032: 3031: 3009: 3003: 3002: 2983:Helms V (2008). 2980: 2974: 2973: 2943: 2918:Förster coupling 2568: 2566: 2565: 2560: 2558: 2557: 2554: 2541: 2539: 2538: 2533: 2527: 2524: 2508: 2506: 2505: 2500: 2491: 2488: 2482: 2477: 2476: 2473: 2444: 2442: 2441: 2436: 2434: 2433: 2430: 2414: 2412: 2411: 2406: 2401: 2400: 2399: 2398: 2395: 2389: 2384: 2381: 2368: 2365: 2360: 2357: 2290:, as well as in 2282:In fluorescence 2252: 2250: 2249: 2244: 2242: 2241: 2238: 2225: 2223: 2222: 2217: 2211: 2208: 2192: 2190: 2189: 2184: 2179: 2178: 2175: 2169: 2160: 2157: 2129: 2127: 2126: 2121: 2119: 2118: 2115: 2102: 2100: 2099: 2094: 2088: 2085: 2069: 2067: 2066: 2061: 2056: 2055: 2052: 2046: 2037: 2034: 2003: 2001: 2000: 1995: 1993: 1992: 1973: 1971: 1970: 1965: 1963: 1961: 1960: 1948: 1945: 1944: 1935: 1930: 1929: 1920: 1912: 1911: 1908: 1892: 1890: 1889: 1884: 1882: 1881: 1878: 1861: 1859: 1858: 1853: 1851: 1850: 1835: 1833: 1832: 1827: 1822: 1820: 1819: 1810: 1809: 1808: 1798: 1797: 1787: 1785: 1784: 1763: 1762: 1757: 1756: 1755: 1734: 1732: 1731: 1726: 1724: 1723: 1707: 1705: 1704: 1699: 1694: 1693: 1674: 1672: 1671: 1666: 1664: 1663: 1651: 1650: 1635: 1634: 1615: 1613: 1612: 1607: 1595: 1593: 1592: 1587: 1582: 1561: 1559: 1558: 1553: 1541: 1539: 1538: 1533: 1531: 1530: 1515: 1514: 1491: 1489: 1488: 1483: 1481: 1480: 1464: 1462: 1461: 1456: 1454: 1453: 1437: 1435: 1434: 1429: 1427: 1426: 1410: 1408: 1407: 1402: 1400: 1399: 1383: 1381: 1380: 1375: 1373: 1372: 1356: 1354: 1353: 1348: 1346: 1345: 1329: 1327: 1326: 1321: 1319: 1318: 1302: 1300: 1299: 1294: 1292: 1291: 1275: 1273: 1272: 1267: 1265: 1264: 1256: 1246: 1244: 1243: 1238: 1236: 1235: 1230: 1229: 1221: 1207: 1205: 1204: 1199: 1191: 1190: 1182: 1176: 1175: 1172: 1170: 1169: 1161: 1151: 1150: 1142: 1136: 1135: 1132: 1130: 1129: 1121: 1108: 1107: 1104: 1102: 1101: 1093: 1086: 1085: 1082: 1080: 1079: 1071: 1051: 1044:is the acceptor 1043: 1041: 1040: 1035: 1033: 1032: 1029: 1016: 1014: 1013: 1008: 1006: 1001: 1000: 997: 991: 982: 980: 979: 974: 972: 971: 968: 952: 950: 949: 944: 932: 931: 913: 912: 909: 894: 889: 888: 885: 879: 871: 869: 852: 851: 848: 838: 830: 829: 811: 810: 807: 792: 791: 788: 778: 760: 758: 757: 752: 736: 734: 733: 728: 726: 725: 722: 708:refractive index 705: 703: 702: 697: 685: 683: 682: 677: 675: 674: 654: 652: 651: 646: 644: 643: 640: 624: 622: 621: 616: 611: 609: 608: 599: 598: 597: 587: 586: 576: 573: 571: 570: 569: 559: 558: 541: 536: 535: 530: 529: 528: 503: 501: 500: 495: 493: 492: 473: 471: 470: 465: 463: 461: 460: 459: 450: 449: 440: 419: 401: 399: 398: 393: 381: 379: 378: 373: 343: 341: 340: 335: 333: 332: 316: 314: 313: 308: 306: 305: 302: 289: 287: 286: 281: 279: 278: 259: 257: 256: 251: 246: 244: 243: 242: 241: 225: 224: 221: 212: 211: 201: 200: 197: 191: 169: 167: 166: 161: 21: 6334: 6333: 6329: 6328: 6327: 6325: 6324: 6323: 6319:Energy transfer 6254: 6253: 6237: 6233: 6228: 6192: 6191: 6187: 6149: 6148: 6144: 6093: 6092: 6088: 6044: 6043: 6039: 5999: 5994: 5993: 5989: 5959: 5958: 5954: 5923: 5922: 5918: 5864: 5863: 5859: 5819: 5818: 5814: 5784: 5783: 5779: 5764: 5743: 5742: 5738: 5700: 5699: 5695: 5682: 5672: 5660: 5627: 5626: 5622: 5578: 5577: 5573: 5543: 5542: 5538: 5494: 5493: 5489: 5443: 5442: 5438: 5394: 5393: 5389: 5353: 5352: 5348: 5312: 5311: 5307: 5277: 5276: 5272: 5235:Protein Science 5228: 5227: 5223: 5193: 5192: 5188: 5158: 5157: 5153: 5123: 5122: 5118: 5064: 5063: 5059: 5023: 5022: 5018: 4970: 4965: 4964: 4960: 4919: 4918: 4914: 4872: 4871: 4867: 4813: 4812: 4808: 4756: 4755: 4751: 4699: 4698: 4694: 4650: 4649: 4645: 4609: 4608: 4604: 4564: 4559: 4558: 4554: 4545: 4543: 4534: 4533: 4529: 4498: 4497: 4490: 4459:(11): 1848–57. 4446: 4445: 4438: 4415:(8): 1797–804. 4402: 4401: 4397: 4353: 4352: 4348: 4296: 4295: 4291: 4247: 4246: 4242: 4204: 4203: 4199: 4184: 4159: 4158: 4154: 4131:10.1038/nbt1066 4116: 4115: 4111: 4103: 4056: 4051: 4050: 4046: 4031: 4010: 4009: 4005: 3995: 3993: 3984: 3983: 3979: 3969: 3968: 3964: 3957: 3936: 3935: 3928: 3921: 3908: 3907: 3903: 3873: 3872: 3868: 3861: 3832: 3831: 3827: 3791: 3790: 3783: 3749: 3748: 3744: 3735: 3734: 3727: 3675: 3674: 3670: 3663: 3638: 3637: 3630: 3623: 3619: 3612: 3587: 3586: 3575: 3566: 3564: 3554: 3553: 3544: 3496: 3495: 3491: 3437: 3436: 3432: 3425: 3400: 3399: 3392: 3382: 3380: 3370: 3369: 3365: 3356: 3355: 3351: 3337: 3333: 3326: 3305: 3304: 3297: 3261: 3260: 3256: 3220: 3219: 3215: 3183: 3178: 3177: 3173: 3141: 3136: 3135: 3131: 3116: 3091: 3090: 3086: 3040: 3039: 3035: 3028: 3011: 3010: 3006: 2999: 2982: 2981: 2977: 2970: 2945: 2944: 2940: 2936: 2909: 2890: 2869: 2856: 2828: 2799: 2779: 2759:protein folding 2743: 2731: 2723: 2700: 2662:bioluminescence 2653: 2625: 2611: 2602: 2596: 2580: 2549: 2544: 2543: 2514: 2513: 2468: 2451: 2450: 2425: 2420: 2419: 2390: 2372: 2351: 2350: 2344:bandpass filter 2335: 2317: 2286:, fluorescence 2280: 2259: 2233: 2228: 2227: 2198: 2197: 2170: 2135: 2134: 2110: 2105: 2104: 2075: 2074: 2047: 2012: 2011: 1984: 1979: 1978: 1952: 1936: 1921: 1903: 1898: 1897: 1873: 1868: 1867: 1843: 1838: 1837: 1811: 1800: 1789: 1788: 1773: 1747: 1745: 1740: 1739: 1715: 1710: 1709: 1682: 1677: 1676: 1655: 1639: 1623: 1618: 1617: 1598: 1597: 1564: 1563: 1544: 1543: 1519: 1503: 1498: 1497: 1472: 1467: 1466: 1445: 1440: 1439: 1418: 1413: 1412: 1391: 1386: 1385: 1364: 1359: 1358: 1337: 1332: 1331: 1310: 1305: 1304: 1283: 1278: 1277: 1249: 1248: 1218: 1213: 1212: 1158: 1118: 1090: 1068: 1057: 1056: 1049: 1024: 1019: 1018: 992: 985: 984: 963: 958: 957: 923: 904: 880: 843: 839: 821: 802: 783: 779: 766: 765: 743: 742: 717: 712: 711: 710:of the medium, 688: 687: 666: 661: 660: 635: 630: 629: 600: 589: 578: 577: 561: 550: 545: 520: 518: 513: 512: 484: 479: 478: 451: 441: 423: 407: 406: 384: 383: 364: 363: 324: 319: 318: 297: 292: 291: 270: 265: 264: 233: 216: 203: 202: 192: 179: 178: 152: 151: 148: 136:Theodor Förster 124: 28: 23: 22: 15: 12: 11: 5: 6332: 6330: 6322: 6321: 6316: 6311: 6306: 6301: 6296: 6291: 6286: 6281: 6276: 6271: 6266: 6256: 6255: 6252: 6251: 6245: 6232: 6231:External links 6229: 6227: 6226: 6199:Molecular Cell 6185: 6142: 6113:(7): 6133–41. 6086: 6037: 5987: 5952: 5916: 5857: 5812: 5787:Cancer Letters 5777: 5762: 5736: 5709:(2): 299–336. 5693: 5684:|journal= 5658: 5620: 5571: 5552:(24): 5241–8. 5536: 5487: 5436: 5387: 5346: 5305: 5270: 5221: 5186: 5151: 5116: 5057: 5016: 4958: 4912: 4865: 4806: 4769:(9): 2613–22. 4749: 4692: 4643: 4602: 4575:(4): 948–958. 4552: 4527: 4488: 4436: 4395: 4366:(7): 661–663. 4360:Nature Methods 4346: 4289: 4240: 4207:Nature Methods 4197: 4182: 4152: 4109: 4106:on 2020-02-10. 4044: 4029: 4003: 3977: 3962: 3955: 3926: 3919: 3901: 3866: 3859: 3825: 3781: 3742: 3725: 3668: 3661: 3628: 3617: 3610: 3573: 3542: 3505:(12): 125106. 3489: 3430: 3423: 3390: 3363: 3349: 3344:2012-06-29 at 3331: 3324: 3295: 3274:(1–2): 55–75. 3254: 3213: 3194:(6): 845–858. 3171: 3152:(2): 195–201. 3129: 3114: 3084: 3033: 3026: 3004: 2997: 2975: 2968: 2937: 2935: 2932: 2931: 2930: 2925: 2920: 2915: 2908: 2905: 2889: 2886: 2868: 2865: 2855: 2852: 2827: 2824: 2798: 2795: 2791:cell membranes 2778: 2775: 2742: 2739: 2730: 2727: 2722: 2719: 2709:experiments. 2699: 2696: 2658:photobleaching 2652: 2649: 2624: 2621: 2618:(475 nm). 2610: 2607: 2598:Main article: 2595: 2592: 2579: 2576: 2552: 2530: 2522: 2510: 2509: 2498: 2494: 2486: 2481: 2471: 2467: 2464: 2461: 2458: 2428: 2416: 2415: 2404: 2393: 2388: 2379: 2375: 2371: 2363: 2339:photobleaching 2334: 2331: 2322:intermolecular 2316: 2313: 2279: 2276: 2258: 2255: 2236: 2214: 2206: 2194: 2193: 2182: 2173: 2168: 2163: 2155: 2151: 2148: 2145: 2142: 2113: 2091: 2083: 2071: 2070: 2059: 2050: 2045: 2040: 2032: 2028: 2025: 2022: 2019: 1991: 1987: 1975: 1974: 1959: 1955: 1951: 1943: 1939: 1933: 1928: 1924: 1918: 1915: 1906: 1876: 1864: 1863: 1849: 1845: 1825: 1818: 1814: 1807: 1803: 1796: 1792: 1783: 1780: 1776: 1772: 1769: 1766: 1761: 1754: 1750: 1722: 1718: 1697: 1692: 1689: 1685: 1662: 1658: 1654: 1649: 1646: 1642: 1638: 1633: 1630: 1626: 1605: 1585: 1581: 1577: 1574: 1571: 1551: 1529: 1526: 1522: 1518: 1513: 1510: 1506: 1479: 1475: 1452: 1448: 1425: 1421: 1398: 1394: 1371: 1367: 1344: 1340: 1317: 1313: 1290: 1286: 1262: 1259: 1234: 1227: 1224: 1209: 1208: 1197: 1194: 1188: 1185: 1179: 1167: 1164: 1157: 1154: 1148: 1145: 1139: 1127: 1124: 1117: 1114: 1111: 1099: 1096: 1089: 1077: 1074: 1067: 1064: 1027: 1004: 995: 966: 954: 953: 942: 939: 936: 930: 926: 922: 919: 916: 907: 903: 900: 897: 892: 883: 877: 874: 868: 865: 861: 858: 855: 846: 842: 837: 834: 828: 824: 820: 817: 814: 805: 801: 798: 795: 786: 782: 776: 773: 750: 720: 695: 673: 669: 638: 626: 625: 614: 607: 603: 596: 592: 585: 581: 568: 564: 557: 553: 548: 544: 539: 534: 527: 523: 491: 487: 475: 474: 458: 454: 448: 444: 439: 435: 432: 429: 426: 422: 417: 414: 391: 371: 331: 327: 300: 277: 273: 261: 260: 249: 240: 236: 231: 228: 219: 215: 210: 206: 195: 189: 186: 159: 147: 144: 123: 120: 100:virtual photon 39:virtual photon 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6331: 6320: 6317: 6315: 6312: 6310: 6307: 6305: 6302: 6300: 6297: 6295: 6292: 6290: 6287: 6285: 6282: 6280: 6277: 6275: 6272: 6270: 6267: 6265: 6262: 6261: 6259: 6249: 6246: 6244: 6240: 6235: 6234: 6230: 6222: 6218: 6213: 6208: 6205:(4): 789–98. 6204: 6200: 6196: 6189: 6186: 6181: 6177: 6173: 6169: 6165: 6161: 6157: 6153: 6146: 6143: 6138: 6134: 6129: 6124: 6120: 6116: 6112: 6108: 6104: 6100: 6096: 6090: 6087: 6082: 6078: 6073: 6068: 6064: 6060: 6056: 6052: 6048: 6041: 6038: 6033: 6029: 6025: 6021: 6017: 6013: 6009: 6005: 5998: 5991: 5988: 5983: 5979: 5975: 5971: 5967: 5963: 5956: 5953: 5948: 5944: 5940: 5936: 5932: 5928: 5920: 5917: 5912: 5908: 5903: 5898: 5893: 5888: 5884: 5880: 5876: 5872: 5868: 5861: 5858: 5853: 5849: 5844: 5839: 5835: 5831: 5828:(72): e4430. 5827: 5823: 5816: 5813: 5808: 5804: 5800: 5796: 5793:(2): 239–47. 5792: 5788: 5781: 5778: 5773: 5769: 5765: 5759: 5755: 5751: 5747: 5740: 5737: 5732: 5728: 5724: 5720: 5716: 5712: 5708: 5704: 5697: 5694: 5689: 5677: 5669: 5665: 5661: 5655: 5651: 5647: 5643: 5639: 5635: 5631: 5624: 5621: 5616: 5612: 5607: 5602: 5598: 5594: 5590: 5586: 5582: 5575: 5572: 5567: 5563: 5559: 5555: 5551: 5547: 5540: 5537: 5532: 5528: 5524: 5520: 5515: 5510: 5506: 5502: 5498: 5491: 5488: 5483: 5479: 5474: 5469: 5464: 5459: 5455: 5451: 5447: 5440: 5437: 5432: 5428: 5423: 5418: 5414: 5410: 5407:(5): 629–33. 5406: 5402: 5398: 5391: 5388: 5383: 5379: 5374: 5369: 5366:(5): 683–94. 5365: 5361: 5357: 5350: 5347: 5342: 5338: 5333: 5328: 5324: 5320: 5316: 5309: 5306: 5301: 5297: 5293: 5289: 5285: 5281: 5274: 5271: 5266: 5262: 5257: 5252: 5248: 5244: 5241:(4): 777–84. 5240: 5236: 5232: 5225: 5222: 5217: 5213: 5209: 5205: 5202:(2): 214–24. 5201: 5197: 5190: 5187: 5182: 5178: 5174: 5170: 5166: 5162: 5155: 5152: 5147: 5143: 5139: 5135: 5131: 5127: 5120: 5117: 5112: 5108: 5104: 5100: 5096: 5092: 5088: 5084: 5080: 5076: 5073:(3): 032003. 5072: 5068: 5061: 5058: 5053: 5049: 5044: 5039: 5035: 5031: 5027: 5020: 5017: 5012: 5008: 5004: 5000: 4996: 4992: 4988: 4984: 4980: 4976: 4969: 4962: 4959: 4954: 4950: 4946: 4942: 4937: 4932: 4928: 4924: 4923:ACS Photonics 4916: 4913: 4908: 4904: 4900: 4896: 4892: 4888: 4884: 4880: 4876: 4869: 4866: 4861: 4857: 4852: 4847: 4842: 4837: 4833: 4829: 4826:(1): 99–114. 4825: 4821: 4817: 4810: 4807: 4802: 4798: 4793: 4788: 4784: 4780: 4776: 4772: 4768: 4764: 4760: 4753: 4750: 4745: 4741: 4736: 4731: 4727: 4723: 4719: 4715: 4712:(6): 3000–8. 4711: 4707: 4703: 4696: 4693: 4688: 4684: 4679: 4674: 4670: 4666: 4663:(4): e00513. 4662: 4658: 4654: 4647: 4644: 4639: 4635: 4630: 4625: 4621: 4617: 4613: 4606: 4603: 4598: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4563: 4556: 4553: 4542:on 2016-12-25 4541: 4537: 4531: 4528: 4523: 4519: 4515: 4511: 4507: 4503: 4495: 4493: 4489: 4484: 4480: 4475: 4470: 4466: 4462: 4458: 4454: 4450: 4443: 4441: 4437: 4432: 4428: 4423: 4418: 4414: 4410: 4406: 4399: 4396: 4391: 4387: 4382: 4377: 4373: 4369: 4365: 4361: 4357: 4350: 4347: 4342: 4338: 4333: 4328: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4293: 4290: 4285: 4281: 4276: 4271: 4267: 4263: 4260:(3): 271–81. 4259: 4255: 4251: 4244: 4241: 4236: 4232: 4228: 4224: 4220: 4216: 4213:(3): 165–74. 4212: 4208: 4201: 4198: 4193: 4189: 4185: 4179: 4175: 4171: 4167: 4163: 4156: 4153: 4148: 4144: 4140: 4136: 4132: 4128: 4125:(3): 355–60. 4124: 4120: 4113: 4110: 4102: 4098: 4094: 4090: 4086: 4082: 4078: 4074: 4070: 4067:(3): 287–91. 4066: 4062: 4055: 4048: 4045: 4040: 4036: 4032: 4026: 4022: 4018: 4014: 4007: 4004: 3991: 3987: 3981: 3978: 3973: 3966: 3963: 3958: 3952: 3948: 3943: 3942: 3933: 3931: 3927: 3922: 3916: 3912: 3905: 3902: 3897: 3893: 3889: 3885: 3882:(2): 547–59. 3881: 3877: 3870: 3867: 3862: 3856: 3852: 3848: 3844: 3839: 3838: 3829: 3826: 3821: 3817: 3812: 3807: 3803: 3799: 3795: 3788: 3786: 3782: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3746: 3743: 3738: 3732: 3730: 3726: 3721: 3717: 3713: 3709: 3704: 3699: 3695: 3691: 3688:(3): 030401. 3687: 3683: 3679: 3672: 3669: 3664: 3658: 3654: 3650: 3646: 3642: 3635: 3633: 3629: 3626: 3621: 3618: 3613: 3607: 3603: 3599: 3595: 3591: 3584: 3582: 3580: 3578: 3574: 3562: 3558: 3551: 3549: 3547: 3543: 3538: 3534: 3530: 3526: 3522: 3518: 3513: 3508: 3504: 3500: 3493: 3490: 3485: 3481: 3476: 3471: 3466: 3461: 3457: 3453: 3450:(8): e12270. 3449: 3445: 3441: 3434: 3431: 3426: 3420: 3416: 3412: 3408: 3404: 3397: 3395: 3391: 3378: 3374: 3367: 3364: 3359: 3353: 3350: 3347: 3346:archive.today 3343: 3340: 3335: 3332: 3327: 3321: 3317: 3313: 3309: 3302: 3300: 3296: 3290: 3285: 3281: 3277: 3273: 3270:(in German). 3269: 3265: 3258: 3255: 3249: 3244: 3240: 3236: 3232: 3228: 3224: 3217: 3214: 3209: 3205: 3201: 3197: 3193: 3189: 3182: 3175: 3172: 3167: 3163: 3159: 3155: 3151: 3147: 3140: 3133: 3130: 3125: 3121: 3117: 3111: 3107: 3103: 3099: 3095: 3088: 3085: 3080: 3076: 3072: 3068: 3064: 3060: 3056: 3052: 3049:(1): 013001. 3048: 3044: 3037: 3034: 3029: 3023: 3019: 3015: 3008: 3005: 3000: 2994: 2990: 2986: 2979: 2976: 2971: 2965: 2961: 2957: 2953: 2949: 2942: 2939: 2933: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2910: 2906: 2904: 2902: 2897: 2895: 2888:Other methods 2887: 2885: 2883: 2882:nanomedicines 2879: 2875: 2874:nucleic acids 2866: 2864: 2862: 2853: 2851: 2849: 2845: 2841: 2837: 2833: 2825: 2823: 2821: 2817: 2813: 2803: 2796: 2794: 2792: 2788: 2784: 2776: 2774: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2740: 2738: 2736: 2728: 2726: 2720: 2718: 2714: 2710: 2708: 2707: 2697: 2695: 2692: 2688: 2684: 2679: 2677: 2676: 2671: 2667: 2663: 2659: 2650: 2648: 2646: 2642: 2638: 2634: 2630: 2623:CFP-YFP pairs 2622: 2615: 2608: 2606: 2601: 2593: 2591: 2589: 2585: 2577: 2575: 2571: 2550: 2528: 2520: 2496: 2492: 2484: 2479: 2469: 2465: 2462: 2459: 2456: 2449: 2448: 2447: 2426: 2402: 2391: 2386: 2377: 2373: 2369: 2361: 2349: 2348: 2347: 2345: 2340: 2332: 2330: 2328: 2323: 2314: 2312: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2277: 2275: 2272: 2268: 2264: 2256: 2254: 2234: 2212: 2204: 2180: 2171: 2166: 2161: 2153: 2149: 2146: 2143: 2140: 2133: 2132: 2131: 2111: 2089: 2081: 2057: 2048: 2043: 2038: 2030: 2026: 2023: 2020: 2017: 2010: 2009: 2008: 2005: 1989: 1985: 1957: 1953: 1949: 1941: 1931: 1926: 1922: 1913: 1904: 1896: 1895: 1894: 1874: 1847: 1844: 1823: 1816: 1812: 1805: 1801: 1794: 1790: 1781: 1778: 1774: 1770: 1767: 1764: 1759: 1752: 1748: 1738: 1737: 1736: 1720: 1716: 1695: 1690: 1687: 1683: 1660: 1656: 1652: 1647: 1644: 1640: 1636: 1631: 1628: 1624: 1603: 1583: 1579: 1575: 1572: 1569: 1549: 1527: 1524: 1520: 1516: 1511: 1508: 1504: 1493: 1477: 1473: 1450: 1446: 1423: 1419: 1396: 1392: 1369: 1365: 1342: 1338: 1315: 1311: 1288: 1284: 1257: 1232: 1222: 1195: 1183: 1177: 1162: 1143: 1137: 1122: 1112: 1109: 1094: 1087: 1072: 1065: 1062: 1055: 1054: 1053: 1047: 1025: 993: 964: 940: 937: 934: 928: 924: 917: 905: 898: 881: 875: 872: 866: 863: 856: 844: 840: 835: 832: 826: 822: 815: 803: 796: 784: 780: 774: 771: 764: 763: 762: 748: 740: 718: 709: 693: 671: 667: 658: 657:quantum yield 636: 612: 605: 601: 594: 590: 583: 579: 566: 562: 555: 551: 546: 542: 537: 532: 525: 521: 511: 510: 509: 507: 489: 485: 456: 446: 442: 437: 433: 427: 424: 420: 415: 412: 405: 404: 403: 389: 369: 361: 359: 358:dipole moment 355: 351: 345: 329: 325: 298: 275: 271: 247: 238: 234: 229: 226: 217: 213: 208: 204: 193: 187: 184: 177: 176: 175: 173: 172:quantum yield 157: 145: 143: 141: 137: 128: 121: 119: 117: 113: 109: 105: 104:radiationless 101: 97: 93: 88: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 40: 36: 32: 19: 6304:Cell biology 6284:Cell imaging 6269:Fluorescence 6248:FRET Imaging 6202: 6198: 6188: 6155: 6151: 6145: 6110: 6106: 6089: 6054: 6050: 6040: 6007: 6003: 5990: 5965: 5961: 5955: 5930: 5926: 5919: 5877:(16): 3495. 5874: 5870: 5860: 5834:10.3791/4430 5825: 5815: 5790: 5786: 5780: 5745: 5739: 5706: 5702: 5696: 5633: 5623: 5588: 5584: 5574: 5549: 5546:Biochemistry 5545: 5539: 5504: 5500: 5490: 5453: 5449: 5439: 5404: 5400: 5390: 5363: 5359: 5349: 5325:(4): 361–8. 5322: 5318: 5308: 5286:(5): 573–8. 5283: 5279: 5273: 5238: 5234: 5224: 5199: 5196:Biochemistry 5195: 5189: 5167:(1): 55–61. 5164: 5160: 5154: 5132:(2): 57–60. 5129: 5125: 5119: 5070: 5066: 5060: 5033: 5029: 5019: 4978: 4975:Nano Letters 4974: 4961: 4926: 4922: 4915: 4885:(3): 452–9. 4882: 4878: 4868: 4823: 4819: 4809: 4766: 4762: 4752: 4709: 4705: 4695: 4660: 4656: 4646: 4622:(2): 400–8. 4619: 4615: 4605: 4572: 4568: 4555: 4544:. Retrieved 4540:the original 4530: 4505: 4501: 4456: 4452: 4412: 4408: 4398: 4363: 4359: 4349: 4306: 4302: 4292: 4257: 4253: 4243: 4210: 4206: 4200: 4165: 4155: 4122: 4118: 4112: 4101:the original 4064: 4060: 4047: 4012: 4006: 3994:. Retrieved 3990:the original 3980: 3971: 3965: 3940: 3910: 3904: 3879: 3876:Biochemistry 3875: 3869: 3836: 3828: 3801: 3797: 3759: 3755: 3745: 3685: 3681: 3671: 3644: 3620: 3593: 3565:. Retrieved 3560: 3502: 3498: 3492: 3447: 3443: 3433: 3406: 3381:. Retrieved 3377:the original 3366: 3357: 3352: 3334: 3307: 3271: 3267: 3257: 3230: 3226: 3216: 3191: 3187: 3174: 3149: 3145: 3132: 3098:Ion Channels 3097: 3087: 3046: 3042: 3036: 3017: 3007: 2988: 2978: 2951: 2941: 2898: 2891: 2878:nanoparticle 2870: 2857: 2846:activity in 2829: 2808: 2780: 2753:, including 2744: 2732: 2729:Applications 2724: 2715: 2711: 2704: 2701: 2686: 2682: 2680: 2673: 2665: 2654: 2626: 2603: 2581: 2572: 2511: 2417: 2336: 2318: 2300:biochemistry 2281: 2260: 2195: 2072: 2006: 1976: 1865: 1494: 1411:. Even when 1210: 1052:is given by 955: 627: 476: 362: 346: 262: 149: 140:fluorescence 133: 103: 89: 85:fluorophores 82: 74:chromophores 69: 65: 61: 57: 53: 49: 45: 44: 6158:: 177–205. 5507:(1): 5–16. 5036:(1): 1–13. 4879:The Analyst 4508:(1): 23–8. 3974:. Springer. 3804:(1): 1–13. 2797:Chemosensor 2787:lipid rafts 2735:biophysical 122:Terminology 106:mechanism. 6279:Biophysics 6258:Categories 4936:2008.07610 4546:2016-10-25 3911:Principles 3567:2011-06-22 2934:References 2840:chemotaxis 2670:luciferase 2358:background 2302:, such as 2296:biophysics 2284:microscopy 1708:) for the 116:asymptotes 96:wavelength 92:near-field 6180:189898459 6032:218689921 5686:ignored ( 5676:cite book 5319:Cytometry 5111:219588720 5095:2050-6120 5011:216075288 4953:221150436 4597:208276133 4309:: 10091. 3712:2050-6120 3512:1108.0935 3371:Moens P. 3208:250845175 3079:207965475 3063:2050-6120 2848:apoptosis 2777:Membranes 2767:integrins 2698:Homo-FRET 2551:τ 2521:τ 2485:τ 2470:τ 2466:− 2427:τ 2392:τ 2378:− 2370:⋅ 2150:− 2112:τ 2082:τ 2049:τ 2031:τ 2027:− 1986:τ 1954:τ 1791:κ 1779:− 1771:× 1688:− 1645:− 1629:− 1525:− 1509:− 1474:κ 1420:κ 1393:κ 1339:κ 1312:κ 1285:κ 1261:^ 1226:^ 1223:μ 1187:^ 1178:⋅ 1166:^ 1163:μ 1147:^ 1138:⋅ 1126:^ 1123:μ 1110:− 1098:^ 1095:μ 1088:⋅ 1076:^ 1073:μ 1063:κ 1026:ϵ 1003:¯ 938:λ 925:λ 918:λ 906:ϵ 899:λ 891:¯ 876:∫ 867:λ 857:λ 841:∫ 836:λ 823:λ 816:λ 804:ϵ 797:λ 781:∫ 668:κ 580:κ 552:π 230:∑ 170:) is the 6221:11983170 6172:31201837 6137:22693946 6107:ACS Nano 6099:Langer R 6095:Alabi CA 6081:28112478 6024:32421327 5982:27377369 5947:25260022 5911:31405068 5852:23463095 5807:15958279 5772:17609141 5723:22407612 5668:19499207 5615:32697225 5531:34651742 5523:16611577 5482:22110442 5431:12615908 5382:11007486 5341:11500853 5300:11785758 5265:18359863 5181:16288953 5146:10087619 5103:32521530 5003:32315197 4907:20174695 4860:32553128 4801:19883605 4744:11371472 4687:31384473 4638:26569370 4589:31765054 4522:23792095 4483:22894855 4431:26006698 4390:26030448 4341:26631872 4284:26578655 4227:16489332 4192:16335721 4147:24202205 4139:15696158 4097:39759478 4089:11516318 4039:14674251 3776:19499906 3756:ACS Nano 3720:32362590 3537:16938353 3484:20808851 3444:PLOS ONE 3383:July 14, 3342:Archived 3124:16929939 3071:31715588 2907:See also 2741:Proteins 2706:in vitro 2645:protease 2631:(CFP) – 2590:(FLIM). 2584:lifetime 2529:′ 2493:′ 2366:constant 2271:Haugland 2213:′ 2162:′ 2090:′ 2039:′ 1542:, where 506:integral 6264:Imaging 6243:YouTube 6128:3404193 6072:5589959 5902:6719117 5879:Bibcode 5871:Sensors 5843:3605757 5731:2042851 5638:Bibcode 5606:7408345 5473:3216123 5422:2173363 5256:2271167 5216:1091284 5075:Bibcode 5052:8053542 4983:Bibcode 4887:Bibcode 4851:7335908 4828:Bibcode 4792:2770629 4771:Bibcode 4735:1301483 4714:Bibcode 4678:6667744 4474:3501149 4381:4488387 4332:4686764 4311:Bibcode 4275:4937889 4235:9759741 4069:Bibcode 3996:24 June 3896:6047638 3820:8053542 3690:Bibcode 3517:Bibcode 3475:2924373 3452:Bibcode 3276:Bibcode 3235:Bibcode 3233:: 100. 3154:Bibcode 2844:caspase 2816:hypoxia 2747:domains 2691:Promega 2304:protein 2263:Wilchek 737:is the 706:is the 6219:  6178:  6170:  6135:  6125:  6079:  6069:  6030:  6022:  5980:  5945:  5909:  5899:  5850:  5840:  5805:  5770:  5760:  5729:  5721:  5666:  5656:  5613:  5603:  5566:728398 5564:  5529:  5521:  5480:  5470:  5456:: 82. 5429:  5419:  5380:  5339:  5298:  5263:  5253:  5214:  5179:  5144:  5109:  5101:  5093:  5050:  5009:  5001:  4951:  4905:  4858:  4848:  4799:  4789:  4742:  4732:  4685:  4675:  4636:  4595:  4587:  4520:  4481:  4471:  4429:  4388:  4378:  4339:  4329:  4282:  4272:  4233:  4225:  4190:  4180:  4145:  4137:  4095:  4087:  4037:  4027:  3953:  3949:–443. 3917:  3894:  3857:  3845:–808. 3818:  3774:  3718:  3710:  3659:  3608:  3535:  3482:  3472:  3421:  3322:  3206:  3122:  3112:  3077:  3069:  3061:  3024:  2995:  2966:  2763:myosin 2721:Others 2512:where 2418:where 2327:ligand 2267:Stryer 2196:where 2073:where 1977:where 1211:where 956:where 741:, and 628:where 263:where 6176:S2CID 6028:S2CID 6000:(PDF) 5727:S2CID 5527:S2CID 5107:S2CID 5007:S2CID 4971:(PDF) 4949:S2CID 4931:arXiv 4593:S2CID 4565:(PDF) 4231:S2CID 4143:S2CID 4104:(PDF) 4093:S2CID 4057:(PDF) 3533:S2CID 3507:arXiv 3204:S2CID 3184:(PDF) 3142:(PDF) 3075:S2CID 1768:8.785 1492:≤ 4. 477:with 64:) or 6217:PMID 6168:PMID 6133:PMID 6077:PMID 6020:PMID 5978:PMID 5943:PMID 5907:PMID 5848:PMID 5803:PMID 5768:PMID 5758:ISBN 5719:PMID 5688:help 5664:PMID 5654:ISBN 5611:PMID 5562:PMID 5519:PMID 5478:PMID 5427:PMID 5378:PMID 5360:Cell 5337:PMID 5296:PMID 5261:PMID 5212:PMID 5177:PMID 5142:PMID 5099:PMID 5091:ISSN 5048:PMID 4999:PMID 4903:PMID 4856:PMID 4797:PMID 4740:PMID 4683:PMID 4634:PMID 4585:PMID 4518:PMID 4479:PMID 4427:PMID 4386:PMID 4337:PMID 4280:PMID 4223:PMID 4188:PMID 4178:ISBN 4135:PMID 4085:PMID 4035:PMID 4025:ISBN 3998:2012 3951:ISBN 3915:ISBN 3892:PMID 3855:ISBN 3816:PMID 3772:PMID 3716:PMID 3708:ISSN 3657:ISBN 3606:ISBN 3480:PMID 3419:ISBN 3385:2012 3320:ISBN 3120:PMID 3110:ISBN 3067:PMID 3059:ISSN 3022:ISBN 2993:ISBN 2964:ISBN 2842:and 2769:and 2757:and 2666:BRET 2651:BRET 2542:and 2382:time 2298:and 2226:and 2103:and 543:2.07 50:FRET 6241:on 6207:doi 6160:doi 6156:143 6123:PMC 6115:doi 6067:PMC 6059:doi 6012:doi 5970:doi 5935:doi 5897:PMC 5887:doi 5838:PMC 5830:doi 5795:doi 5791:235 5750:doi 5711:doi 5646:doi 5601:PMC 5593:doi 5554:doi 5509:doi 5468:PMC 5458:doi 5417:PMC 5409:doi 5405:160 5368:doi 5364:102 5327:doi 5288:doi 5251:PMC 5243:doi 5204:doi 5169:doi 5165:120 5134:doi 5083:doi 5038:doi 5034:218 4991:doi 4941:doi 4895:doi 4883:135 4846:PMC 4836:doi 4824:119 4787:PMC 4779:doi 4730:PMC 4722:doi 4673:PMC 4665:doi 4624:doi 4577:doi 4510:doi 4506:437 4469:PMC 4461:doi 4417:doi 4376:PMC 4368:doi 4327:PMC 4319:doi 4270:PMC 4262:doi 4215:doi 4170:doi 4127:doi 4077:doi 4017:doi 3947:374 3884:doi 3847:doi 3843:788 3806:doi 3802:218 3764:doi 3698:doi 3649:doi 3598:doi 3525:doi 3470:PMC 3460:doi 3411:doi 3312:doi 3284:doi 3272:437 3243:doi 3196:doi 3162:doi 3150:135 3102:doi 3051:doi 2956:doi 2789:in 2308:DNA 1384:on 547:128 70:EET 62:RET 52:), 6260:: 6215:. 6201:. 6197:. 6174:. 6166:. 6131:. 6121:. 6109:. 6105:. 6075:. 6065:. 6055:56 6053:. 6049:. 6026:. 6018:. 6008:31 6006:. 6002:. 5976:. 5964:. 5941:. 5929:. 5905:. 5895:. 5885:. 5875:19 5873:. 5869:. 5846:. 5836:. 5824:. 5801:. 5789:. 5766:. 5756:. 5725:. 5717:. 5707:64 5705:. 5680:: 5678:}} 5674:{{ 5662:. 5652:. 5644:. 5609:. 5599:. 5589:49 5587:. 5583:. 5560:. 5550:17 5548:. 5525:. 5517:. 5505:23 5503:. 5499:. 5476:. 5466:. 5452:. 5448:. 5425:. 5415:. 5403:. 5399:. 5376:. 5362:. 5358:. 5335:. 5323:44 5321:. 5317:. 5294:. 5284:11 5282:. 5259:. 5249:. 5239:17 5237:. 5233:. 5210:. 5200:14 5198:. 5175:. 5163:. 5140:. 5128:. 5105:. 5097:. 5089:. 5081:. 5069:. 5046:. 5032:. 5028:. 5005:. 4997:. 4989:. 4979:20 4977:. 4973:. 4947:. 4939:. 4925:. 4901:. 4893:. 4881:. 4877:. 4854:. 4844:. 4834:. 4822:. 4818:. 4795:. 4785:. 4777:. 4767:97 4765:. 4761:. 4738:. 4728:. 4720:. 4710:80 4708:. 4704:. 4681:. 4671:. 4659:. 4655:. 4632:. 4620:11 4618:. 4614:. 4591:. 4583:. 4573:26 4571:. 4567:. 4516:. 4504:. 4491:^ 4477:. 4467:. 4455:. 4451:. 4439:^ 4425:. 4413:10 4411:. 4407:. 4384:. 4374:. 4364:12 4362:. 4358:. 4335:. 4325:. 4317:. 4305:. 4301:. 4278:. 4268:. 4256:. 4252:. 4229:. 4221:. 4209:. 4186:. 4176:. 4141:. 4133:. 4123:23 4121:. 4091:. 4083:. 4075:. 4063:. 4059:. 4033:. 4023:. 3929:^ 3890:. 3878:. 3853:. 3814:. 3800:. 3796:. 3784:^ 3770:. 3758:. 3754:. 3728:^ 3714:. 3706:. 3696:. 3684:. 3680:. 3655:. 3643:. 3631:^ 3604:. 3576:^ 3545:^ 3531:. 3523:. 3515:. 3503:85 3501:. 3478:. 3468:. 3458:. 3446:. 3442:. 3417:. 3393:^ 3318:. 3298:^ 3282:. 3241:. 3229:. 3225:. 3202:. 3192:25 3190:. 3186:. 3160:. 3148:. 3144:. 3118:. 3108:. 3073:. 3065:. 3057:. 3045:. 3016:. 2987:. 2962:. 2896:. 2884:. 2850:. 2822:. 2814:, 2812:pH 2773:. 2555:pb 2525:pb 2489:pb 2474:pb 2431:pb 2396:pb 2269:, 1909:ET 1879:ET 1836:(Å 1775:10 1691:10 1684:10 1596:. 303:ET 222:ET 198:ET 56:, 6223:. 6209:: 6203:9 6182:. 6162:: 6139:. 6117:: 6111:6 6083:. 6061:: 6034:. 6014:: 5984:. 5972:: 5966:8 5949:. 5937:: 5931:6 5913:. 5889:: 5881:: 5854:. 5832:: 5809:. 5797:: 5774:. 5752:: 5733:. 5713:: 5690:) 5670:. 5648:: 5640:: 5617:. 5595:: 5568:. 5556:: 5533:. 5511:: 5484:. 5460:: 5454:2 5433:. 5411:: 5384:. 5370:: 5343:. 5329:: 5302:. 5290:: 5267:. 5245:: 5218:. 5206:: 5183:. 5171:: 5148:. 5136:: 5130:9 5113:. 5085:: 5077:: 5071:8 5054:. 5040:: 5013:. 4993:: 4985:: 4955:. 4943:: 4933:: 4927:7 4909:. 4897:: 4889:: 4862:. 4838:: 4830:: 4803:. 4781:: 4773:: 4746:. 4724:: 4716:: 4689:. 4667:: 4661:7 4640:. 4626:: 4599:. 4579:: 4549:. 4524:. 4512:: 4485:. 4463:: 4457:7 4433:. 4419:: 4392:. 4370:: 4343:. 4321:: 4313:: 4307:6 4286:. 4264:: 4258:8 4237:. 4217:: 4211:3 4194:. 4172:: 4149:. 4129:: 4079:: 4071:: 4065:6 4041:. 4019:: 4000:. 3959:. 3923:. 3898:. 3886:: 3880:6 3863:. 3849:: 3822:. 3808:: 3778:. 3766:: 3760:3 3739:. 3722:. 3700:: 3692:: 3686:8 3665:. 3651:: 3614:. 3600:: 3570:. 3539:. 3527:: 3519:: 3509:: 3486:. 3462:: 3454:: 3448:5 3427:. 3413:: 3387:. 3328:. 3314:: 3292:. 3286:: 3278:: 3251:. 3245:: 3237:: 3231:7 3210:. 3198:: 3168:. 3164:: 3156:: 3126:. 3104:: 3081:. 3053:: 3047:8 3030:. 3001:. 2972:. 2958:: 2497:, 2480:/ 2463:1 2460:= 2457:E 2403:, 2387:/ 2374:e 2362:+ 2239:D 2235:F 2209:D 2205:F 2181:, 2176:D 2172:F 2167:/ 2158:D 2154:F 2147:1 2144:= 2141:E 2116:D 2086:D 2058:, 2053:D 2044:/ 2035:D 2024:1 2021:= 2018:E 1990:D 1958:D 1950:1 1942:6 1938:) 1932:r 1927:0 1923:R 1917:( 1914:= 1905:k 1875:k 1862:) 1848:6 1824:J 1817:4 1813:n 1806:D 1802:Q 1795:2 1782:5 1765:= 1760:6 1753:0 1749:R 1721:0 1717:R 1696:m 1661:4 1657:m 1653:n 1648:1 1641:m 1637:c 1632:1 1625:M 1604:J 1584:L 1580:/ 1576:l 1573:o 1570:m 1550:M 1528:1 1521:m 1517:c 1512:1 1505:M 1478:2 1451:0 1447:R 1424:2 1397:2 1370:0 1366:R 1343:2 1316:2 1289:2 1258:R 1233:i 1196:, 1193:) 1184:R 1173:A 1156:( 1153:) 1144:R 1133:D 1116:( 1113:3 1105:D 1083:A 1066:= 1050:κ 1030:A 998:D 994:f 969:D 965:f 941:, 935:d 929:4 921:) 915:( 910:A 902:) 896:( 886:D 882:f 873:= 864:d 860:) 854:( 849:D 845:f 833:d 827:4 819:) 813:( 808:A 800:) 794:( 789:D 785:f 775:= 772:J 749:J 723:A 719:N 694:n 672:2 641:D 637:Q 613:J 606:4 602:n 595:D 591:Q 584:2 567:A 563:N 556:5 538:= 533:6 526:0 522:R 490:0 486:R 457:6 453:) 447:0 443:R 438:/ 434:r 431:( 428:+ 425:1 421:1 416:= 413:E 390:r 370:E 330:i 326:k 299:k 276:f 272:k 248:, 239:i 235:k 227:+ 218:k 214:+ 209:f 205:k 194:k 188:= 185:E 158:E 68:( 60:( 48:( 41:. 20:)

Index

Resonance energy transfer

Jablonski diagram
virtual photon
chromophores
dipole–dipole coupling
fluorophores
near-field
wavelength
virtual photon
Quantum electrodynamical
radiative energy transfer
asymptotes

Theodor Förster
fluorescence
quantum yield
emission spectrum
absorption spectrum
dipole moment
integral
quantum yield
refractive index
Avogadro constant
molar extinction coefficient
Wilchek
Stryer
Haugland
microscopy
confocal laser scanning microscopy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.