Knowledge (XXG)

Stirling cycle

Source đź“ť

1912:", will exhibit more non-sinusoidal motion. To a lesser extent, the ideal cycle introduces complications, since it would require somewhat higher piston acceleration and higher viscous pumping losses of the working fluid. The material stresses and pumping losses in an optimized engine, however, would only be intolerable when approaching the "ideal cycle" and/or at high cycle rates. Other issues include the time required for heat transfer, particularly for the 42: 1612: 1778: 1831: 2060: 2153:
work from the compression piston have the same cycle energy. This is consistent with the zero-net heat transfer of the regenerator (solid green line). As would be expected, the heater and the expansion space both have positive energy flow. The black dotted line shows the net work output of the cycle. On this trace, the cycle ends higher than it started, indicating that the
1884: 2125:. When the gas temperature deviates above and below the heat exchanger temperature, it causes thermodynamic losses known as "heat transfer losses" or "hysteresis losses". However, the heat exchangers still work well enough to allow the real cycle to be effective, even if the actual thermal efficiency of the overall system is only about half of the 1958: 2139: 1761:
The Stirling cycle is a highly advanced subject that has defied analysis by many experts for over 190 years. Highly advanced thermodynamics is required to describe the cycle. Professor Israel Urieli writes: "...the various 'ideal' cycles (such as the Schmidt cycle) are neither physically realizable
1895:
textbooks describe a highly simplified form of Stirling cycle consisting of four processes. This is known as an "ideal Stirling cycle", because it is an "idealized" model, and not necessarily an optimized cycle. Theoretically, the "ideal cycle" does have high net work output, but it is rarely used
2044:
which indicate how gas flows through a real Stirling engine. The vertical colored lines delineate the volumes of the engine. From left to right, they are: the volume swept by the expansion (power) piston, the clearance volume (which prevents the piston from contacting the hot heat exchanger), the
2152:
the compression piston, as reflected by the upward movement of the trace. At the end of the cycle, this value is negative, indicating that compression piston requires a net input of work. The blue solid line shows the heat flowing out of the cooler heat exchanger. The heat from the cooler and the
1948:
This type of plot is used to characterize almost all thermodynamic cycles. The result of sinusoidal volume variations is the quasi-elliptical shaped cycle shown in Figure 1. Compared to the idealized cycle, this cycle is a more realistic representation of most real Stirling engines. The four
1896:
in practical applications, in part because other cycles are simpler or reduce peak stresses on bearings and other components. For convenience, the designer may elect to use piston motions dictated by system dynamics, such as mechanical linkage mechanisms. At any rate, the efficiency and cycle
2120:
Figure 5 illustrates the adiabatic properties of a real heat exchanger. The straight lines represent the temperatures of the solid portion of the heat exchanger, and the curves are the gas temperatures of the respective spaces. The gas temperature fluctuations are caused by the effects of
1714:
operating within the same limits of temperature. Another cycle that features isothermal heat-addition and heat-rejection processes is the Stirling cycle, which is an altered version of the Carnot cycle in which the two isentropic processes featured in the Carnot cycle are replaced by two
2053: 1900:
are nearly as good as an actual implementation of the idealized case. A typical piston crank or linkage in a so named "kinematic" design often results in a near-sinusoidal piston motion. Some designs will cause the piston to "dwell" at either extreme of travel.
1935:
the same as the phase angle of the volume variations. However, in the alpha Stirling, they are the same. The rest of the article assumes sinusoidal volume variations, as in an alpha Stirling with co-linear pistons, so named an "opposed piston" alpha device.
2076:
Also referred to as "pumping losses", the pressure drops shown in Figure 3 are caused by viscous flow through the heat exchangers. The red line represents the heater, green is the regenerator, and blue is the cooler. To properly design the heat exchangers,
2081:
is required to obtain sufficient heat transfer with acceptable flow losses. The flow losses shown here are relatively low, and they are barely visible in the following image, which will show the overall pressure variations in the cycle.
1939:
caveat: Among the many inaccuracies in this article, a co-linear alpha configuration is referenced, above. Such a configuration would be beta. Alternatively, it would be an alpha, that has an unacceptably inefficient linkage system.
1331: 1757:
The cycle is the same as most other heat cycles in that there are four main processes: compression, heat addition, expansion, and heat removal. However, these processes are not discrete, but rather the transitions overlap.
2097:
Figure 4 shows results from an "adiabatic simulation" with non-ideal heat exchangers. Note that the pressure drop across the regenerator is very low compared to the overall pressure variation in the cycle.
2032:, none of the gas particles actually flow through the complete cycle. So this approach is not amenable to further analysis of the cycle. However, it provides an overview and indicates the cycle work. 2087: 2115: 2103: 1957: 1166: 1111: 1056: 863: 816: 731: 684: 596: 549: 1641: 767: 635: 2148:
of the compression space. As the trace dips down, work is done on the gas as it is compressed. During the expansion process of the cycle, some work is actually done
1001: 2337: 1342: 500: 1230: 839: 792: 707: 660: 572: 525: 2144:
Figure 6 shows a graph of the alpha-type Stirling engine data, where 'Q' denotes heat energy, and 'W' denotes work energy. The blue dotted line shows the
1769:(the central heat exchanger in the Stirling cycle) is judged by Jakob to rank "among the most difficult and involved that are encountered in engineering". 464: 1320: 2499: 1353: 2086: 923: 2138: 1634: 1221: 457: 335: 890: 1666: 273: 2330: 2114: 1405: 1379: 900: 354: 1702:
cycles are not totally reversible because they involve heat transfer through a finite temperature difference during the irreversible
2565: 2210: 1870: 306: 2024:) heat addition. The compressed air flows back through the regenerator and picks up heat on the way to the heated expansion space. 1710:
heat-addition and heat-rejection processes. The irreversibility renders the thermal efficiency of these cycles less than that of a
1458: 2284: 929: 328: 2603: 2181: 2102: 1848: 1627: 2045:
heater, the regenerator, the cooler, the cooler clearance volume, and the compression volume swept by the compression piston.
1916:. In an engine with a cycle approaching the "ideal cycle", the cycle rate might have to be reduced to address these issues. 1852: 1558: 90: 1453: 2639: 2323: 2176: 1533: 1306: 283: 2550: 2126: 918: 121: 111: 2052: 1996: 1766: 1731: 126: 116: 2464: 2354: 1789:
Stirling cycle. In real applications of the Stirling cycles (e.g. Stirling engines) this cycle is quasi-elliptical.
1743: 1448: 1410: 1374: 86: 1841: 2644: 2618: 2078: 1203: 951: 397: 210: 200: 2573: 2121:
compression and expansion in the engine, together with non-ideal heat exchangers which have a limited rate of
2598: 2583: 2529: 1798: 1782: 1615: 1443: 1240: 943: 882: 418: 407: 73: 1920: 1548: 1468: 1265: 349: 103: 78: 2444: 2404: 2166: 2029: 1483: 1060: 373: 219: 68: 2588: 1739: 1563: 1488: 1478: 278: 152: 140: 1973:
Stirling cycle; however, the four thermodynamic processes are slightly different (see graph above):
2593: 2494: 2346: 2282:
Israel Urieli (Dr. Iz), Associate Professor Mechanical Engineering: Stirling Cycle Machine Analysis
1676: 1508: 1503: 1270: 292: 258: 253: 166: 2450: 1913: 1751: 1711: 1597: 1260: 1208: 1121: 1066: 1011: 440: 424: 311: 263: 248: 238: 47: 41: 1255: 845: 798: 713: 666: 578: 531: 1905: 2613: 2435: 2206: 2021: 2017: 1992: 1988: 1981: 1931:
In beta and gamma engines, generally the phase angle difference between the piston motions is
1718:
The cycle is reversible, meaning that if supplied with mechanical power, it can function as a
1703: 1592: 1553: 1543: 1115: 913: 749: 741: 614: 243: 233: 175: 1984:. The expansion space is heated externally, and the gas undergoes near-isothermal expansion. 2555: 1707: 1513: 1498: 1438: 1433: 1250: 1245: 971: 895: 363: 228: 1999:, thus cooling the gas, and transferring heat to the regenerator for use in the next cycle. 2578: 2288: 2171: 2006: 1738:
working fluid. "Closed cycle" means the working fluid is permanently contained within the
1684: 1680: 1659: 1463: 1311: 965: 606: 429: 190: 157: 482: 2545: 2504: 2489: 2474: 2409: 2394: 2369: 2281: 2059: 1950: 1892: 1518: 1288: 824: 777: 692: 645: 557: 510: 388: 268: 205: 195: 63: 33: 2304: 2633: 2608: 2524: 2479: 2440: 2414: 2384: 2379: 2310: 2122: 1909: 1723: 1587: 905: 474: 435: 147: 1883: 2514: 2509: 2484: 2430: 2389: 1699: 1538: 1523: 1473: 956: 2225:
Organ, "The Regenerator and the Stirling Engine", p. xxii, Foreword by Urieli
1679:
that describes the general class of Stirling devices. This includes the original
2154: 2145: 2010: 1830: 1777: 1493: 301: 1919:
In the most basic model of a free piston device, the kinematics will result in
1908:", will exhibit near-sinusoidal motion. However, other linkages, such as the " 2519: 2041: 2003: 1978: 1695: 1582: 1528: 17: 1965: 1727: 1719: 1655: 180: 1746:. "Regenerative" refers to the use of an internal heat exchanger called a 1688: 1296: 1213: 1005: 413: 185: 2315: 1855: in this section. Unsourced material may be challenged and removed. 402: 2257: 2058: 1882: 378: 2319: 1824: 1735: 2234:
Organ, "The Regenerator and the Stirling Engine", p. 7
27:
Thermodynamic cycle that includes the basic Stirling engine
2247:
John Wiley, New York, USA and Chapman and Hall, London, UK
2258:
Alternative thermodynamic cycle for the Stirling machine
2203:
Hot air caloric and stirling engines. Vol.1, A history
1658:
Stirling cycle. For the idealized Stirling cycle, see
1683:
that was invented, developed and patented in 1816 by
1124: 1069: 1014: 974: 848: 827: 801: 780: 752: 716: 695: 669: 648: 617: 581: 560: 534: 513: 485: 1801:
acting on the working fluid (See diagram to right):
2564: 2538: 2463: 2423: 2364: 2353: 2013:, so the gas undergoes near-isothermal compression. 1160: 1105: 1050: 995: 857: 833: 810: 786: 761: 725: 701: 678: 654: 629: 590: 566: 543: 519: 494: 1904:Many kinematic linkages, such as the well known " 2272:Organ, "The Regenerator and the Stirling Engine" 1949:points in the graph indicate the crank angle in 1742:. This also categorizes the engine device as an 1995:) heat removal. The gas is passed through the 1815:4→1 Isochoric heat addition (constant volume). 2331: 2205:(1st Edition (Revised) ed.). L.A. Mair. 1809:2→3 Isochoric heat removal (constant volume). 1635: 8: 2260:, American Journal of Physics 85, 926 (2017) 1762:nor representative of the Stirling cycle". 1730:cooling. The cycle is defined as a closed 2361: 2338: 2324: 2316: 1987:270° to 0°, near-constant-volume (or near- 1812:3→4 Isothermal heat removal (compression). 1642: 1628: 1191: 343: 162: 40: 29: 1871:Learn how and when to remove this message 1806:1→2 Isothermal heat addition (expansion). 1123: 1068: 1013: 973: 847: 826: 800: 779: 751: 715: 694: 668: 647: 616: 580: 559: 533: 512: 484: 2309:Polytropic cycle inside Stirling engine 2016:90° to 180°, near-constant-volume (near- 1776: 1715:constant-volume regeneration processes. 2500:Homogeneous charge compression ignition 2268: 2266: 2193: 1773:Idealized Stirling cycle thermodynamics 1388: 1365: 1319: 1279: 1229: 1194: 387: 362: 291: 218: 165: 32: 2063:Alpha type Stirling. Animated version. 1887:A model of a four-phase Stirling cycle 2157:converts energy from heat into work. 7: 1853:adding citations to reliable sources 1667:Applications of the Stirling engine 849: 802: 717: 670: 582: 535: 355:Intensive and extensive properties 25: 2028:With the exception of a Stirling 1969:Stirling cycle is similar to the 2137: 2113: 2101: 2085: 2051: 1956: 1829: 1797:Stirling cycle consists of four 1747: 1611: 1610: 930:Table of thermodynamic equations 2305:Stirling Cycle Machine Analysis 2182:Stirling radioisotope generator 2133:Cumulative heat and work energy 2047: 1840:needs additional citations for 1687:with help from his brother, an 1406:Maxwell's thermodynamic surface 2109:Temperature versus crank angle 1765:The analytical problem of the 1140: 1128: 1085: 1073: 1030: 1018: 990: 978: 1: 2177:Solar-powered Stirling engine 1750:which increases the device's 1660:Stirling engine § Theory 1307:Mechanical equivalent of heat 2072:Heat-exchanger pressure drop 2009:. The compression space is 1944:Pressure-versus-volume graph 919:Onsager reciprocal relations 2405:Stirling (pseudo/adiabatic) 2093:Pressure versus crank angle 1411:Entropy as energy dispersal 1222:"Perpetual motion" machines 1161:{\displaystyle G(T,p)=H-TS} 1106:{\displaystyle A(T,V)=U-TS} 1051:{\displaystyle H(S,p)=U+pV} 2661: 2057: 2050: 1664: 1654:This article is about the 1653: 858:{\displaystyle \partial T} 811:{\displaystyle \partial V} 726:{\displaystyle \partial p} 679:{\displaystyle \partial V} 591:{\displaystyle \partial T} 544:{\displaystyle \partial S} 2079:multivariate optimization 1332:An Inquiry Concerning the 1821:Piston motion variations 1345:Heterogeneous Substances 762:{\displaystyle \alpha =} 630:{\displaystyle \beta =-} 1799:thermodynamic processes 2064: 1921:simple harmonic motion 1888: 1790: 1162: 1107: 1052: 997: 996:{\displaystyle U(S,V)} 859: 835: 812: 788: 763: 727: 703: 680: 656: 631: 592: 568: 545: 521: 496: 475:Specific heat capacity 79:Quantum thermodynamics 2311:Stirling engine cycle 2167:Pseudo Stirling cycle 2062: 2030:thermoacoustic engine 1977:180° to 270°, pseudo- 1886: 1783:pressure/volume graph 1780: 1343:On the Equilibrium of 1163: 1108: 1061:Helmholtz free energy 1053: 998: 860: 836: 813: 789: 764: 728: 704: 681: 657: 632: 593: 569: 546: 522: 497: 2640:Thermodynamic cycles 2589:Regenerative cooling 2467:combustion / thermal 2366:Without phase change 2357:combustion / thermal 2347:Thermodynamic cycles 2201:Robert Sier (1999). 2036:Particle/mass motion 1914:isothermal processes 1849:improve this article 1744:external heat engine 1740:thermodynamic system 1356:Motive Power of Fire 1122: 1067: 1012: 972: 924:Bridgman's equations 901:Fundamental relation 846: 825: 799: 778: 750: 714: 693: 667: 646: 615: 579: 558: 532: 511: 483: 2040:Figure 2 shows the 1677:thermodynamic cycle 1334:Source ... Friction 1266:Loschmidt's paradox 458:Material properties 336:Conjugate variables 2287:2010-06-30 at the 2065: 2002:0° to 90°, pseudo- 1889: 1791: 1752:thermal efficiency 1598:Order and disorder 1354:Reflections on the 1261:Heat death paradox 1158: 1103: 1048: 993: 855: 831: 808: 784: 759: 723: 699: 676: 652: 627: 588: 564: 541: 517: 495:{\displaystyle c=} 492: 465:Property databases 441:Reduced properties 425:Chemical potential 389:Functions of state 312:Thermal efficiency 48:Carnot heat engine 2627: 2626: 2604:Vapor-compression 2530:Staged combustion 2459: 2458: 2424:With phase change 2243:Jakob, M. (1957) 2127:theoretical limit 2069: 2068: 1927:Volume variations 1881: 1880: 1873: 1652: 1651: 1593:Self-organization 1418: 1417: 1116:Gibbs free energy 914:Maxwell relations 872: 871: 868: 867: 834:{\displaystyle V} 787:{\displaystyle 1} 742:Thermal expansion 736: 735: 702:{\displaystyle V} 655:{\displaystyle 1} 601: 600: 567:{\displaystyle N} 520:{\displaystyle T} 448: 447: 364:Process functions 350:Property diagrams 329:System properties 319: 318: 284:Endoreversibility 176:Equation of state 16:(Redirected from 2652: 2645:Stirling engines 2599:Vapor absorption 2362: 2340: 2333: 2326: 2317: 2291: 2279: 2273: 2270: 2261: 2254: 2248: 2245:Heat Transfer II 2241: 2235: 2232: 2226: 2223: 2217: 2216: 2198: 2141: 2117: 2105: 2089: 2055: 2048: 1960: 1876: 1869: 1865: 1862: 1856: 1833: 1825: 1644: 1637: 1630: 1614: 1613: 1321:Key publications 1302: 1301:("living force") 1251:Brownian ratchet 1246:Entropy and life 1241:Entropy and time 1192: 1167: 1165: 1164: 1159: 1112: 1110: 1109: 1104: 1057: 1055: 1054: 1049: 1002: 1000: 999: 994: 896:Clausius theorem 891:Carnot's theorem 864: 862: 861: 856: 840: 838: 837: 832: 817: 815: 814: 809: 793: 791: 790: 785: 772: 771: 768: 766: 765: 760: 732: 730: 729: 724: 708: 706: 705: 700: 685: 683: 682: 677: 661: 659: 658: 653: 640: 639: 636: 634: 633: 628: 597: 595: 594: 589: 573: 571: 570: 565: 550: 548: 547: 542: 526: 524: 523: 518: 505: 504: 501: 499: 498: 493: 471: 470: 344: 163: 44: 30: 21: 2660: 2659: 2655: 2654: 2653: 2651: 2650: 2649: 2630: 2629: 2628: 2623: 2560: 2534: 2466: 2455: 2445:Organic Rankine 2419: 2373: 2370:hot air engines 2367: 2356: 2349: 2344: 2300: 2295: 2294: 2289:Wayback Machine 2280: 2276: 2271: 2264: 2255: 2251: 2242: 2238: 2233: 2229: 2224: 2220: 2213: 2200: 2199: 2195: 2190: 2172:Stirling engine 2163: 2135: 2111: 2095: 2074: 2038: 1946: 1929: 1877: 1866: 1860: 1857: 1846: 1834: 1823: 1818: 1775: 1726:, and even for 1722:for heating or 1685:Robert Stirling 1681:Stirling engine 1669: 1663: 1648: 1603: 1602: 1578: 1570: 1569: 1568: 1428: 1420: 1419: 1398: 1384: 1359: 1355: 1348: 1344: 1337: 1333: 1300: 1293: 1275: 1256:Maxwell's demon 1218: 1189: 1188: 1172: 1171: 1170: 1120: 1119: 1118: 1065: 1064: 1063: 1010: 1009: 1008: 970: 969: 968: 966:Internal energy 961: 946: 936: 935: 910: 885: 875: 874: 873: 844: 843: 823: 822: 797: 796: 776: 775: 748: 747: 712: 711: 691: 690: 665: 664: 644: 643: 613: 612: 607:Compressibility 577: 576: 556: 555: 530: 529: 509: 508: 481: 480: 460: 450: 449: 430:Particle number 383: 342: 331: 321: 320: 279:Irreversibility 191:State of matter 158:Isolated system 143: 133: 132: 131: 106: 96: 95: 91:Non-equilibrium 83: 58: 50: 28: 23: 22: 15: 12: 11: 5: 2658: 2656: 2648: 2647: 2642: 2632: 2631: 2625: 2624: 2622: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2570: 2568: 2562: 2561: 2559: 2558: 2553: 2548: 2542: 2540: 2536: 2535: 2533: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2471: 2469: 2461: 2460: 2457: 2456: 2454: 2453: 2448: 2438: 2433: 2427: 2425: 2421: 2420: 2418: 2417: 2412: 2407: 2402: 2397: 2392: 2387: 2382: 2376: 2374: 2365: 2359: 2351: 2350: 2345: 2343: 2342: 2335: 2328: 2320: 2314: 2313: 2307: 2299: 2298:External links 2296: 2293: 2292: 2274: 2262: 2249: 2236: 2227: 2218: 2211: 2192: 2191: 2189: 2186: 2185: 2184: 2179: 2174: 2169: 2162: 2159: 2134: 2131: 2110: 2107: 2094: 2091: 2073: 2070: 2067: 2066: 2056: 2037: 2034: 2026: 2025: 2014: 2000: 1985: 1945: 1942: 1928: 1925: 1893:thermodynamics 1879: 1878: 1837: 1835: 1828: 1822: 1819: 1817: 1816: 1813: 1810: 1807: 1803: 1774: 1771: 1673:Stirling cycle 1650: 1649: 1647: 1646: 1639: 1632: 1624: 1621: 1620: 1619: 1618: 1605: 1604: 1601: 1600: 1595: 1590: 1585: 1579: 1576: 1575: 1572: 1571: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1496: 1491: 1486: 1481: 1476: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1430: 1429: 1426: 1425: 1422: 1421: 1416: 1415: 1414: 1413: 1408: 1400: 1399: 1397: 1396: 1393: 1389: 1386: 1385: 1383: 1382: 1377: 1375:Thermodynamics 1371: 1368: 1367: 1363: 1362: 1361: 1360: 1351: 1349: 1340: 1338: 1329: 1324: 1323: 1317: 1316: 1315: 1314: 1309: 1304: 1292: 1291: 1289:Caloric theory 1285: 1282: 1281: 1277: 1276: 1274: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1237: 1234: 1233: 1227: 1226: 1225: 1224: 1217: 1216: 1211: 1206: 1200: 1197: 1196: 1190: 1187: 1186: 1183: 1179: 1178: 1177: 1174: 1173: 1169: 1168: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1113: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1058: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1003: 992: 989: 986: 983: 980: 977: 962: 960: 959: 954: 948: 947: 942: 941: 938: 937: 934: 933: 926: 921: 916: 909: 908: 903: 898: 893: 887: 886: 881: 880: 877: 876: 870: 869: 866: 865: 854: 851: 841: 830: 819: 818: 807: 804: 794: 783: 769: 758: 755: 745: 738: 737: 734: 733: 722: 719: 709: 698: 687: 686: 675: 672: 662: 651: 637: 626: 623: 620: 610: 603: 602: 599: 598: 587: 584: 574: 563: 552: 551: 540: 537: 527: 516: 502: 491: 488: 478: 469: 468: 467: 461: 456: 455: 452: 451: 446: 445: 444: 443: 438: 433: 422: 411: 392: 391: 385: 384: 382: 381: 376: 370: 367: 366: 360: 359: 358: 357: 352: 333: 332: 327: 326: 323: 322: 317: 316: 315: 314: 309: 304: 296: 295: 289: 288: 287: 286: 281: 276: 271: 269:Free expansion 266: 261: 256: 251: 246: 241: 236: 231: 223: 222: 216: 215: 214: 213: 208: 206:Control volume 203: 198: 196:Phase (matter) 193: 188: 183: 178: 170: 169: 161: 160: 155: 150: 144: 139: 138: 135: 134: 130: 129: 124: 119: 114: 108: 107: 102: 101: 98: 97: 94: 93: 82: 81: 76: 71: 66: 60: 59: 56: 55: 52: 51: 46:The classical 45: 37: 36: 34:Thermodynamics 26: 24: 18:Stirling-cycle 14: 13: 10: 9: 6: 4: 3: 2: 2657: 2646: 2643: 2641: 2638: 2637: 2635: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2594:Transcritical 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2574:Hampson–Linde 2572: 2571: 2569: 2567: 2566:Refrigeration 2563: 2557: 2554: 2552: 2549: 2547: 2544: 2543: 2541: 2537: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2495:Gas-generator 2493: 2491: 2488: 2486: 2483: 2481: 2480:Brayton/Joule 2478: 2476: 2473: 2472: 2470: 2468: 2462: 2452: 2449: 2446: 2442: 2439: 2437: 2434: 2432: 2429: 2428: 2426: 2422: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2385:Brayton/Joule 2383: 2381: 2378: 2377: 2375: 2371: 2363: 2360: 2358: 2352: 2348: 2341: 2336: 2334: 2329: 2327: 2322: 2321: 2318: 2312: 2308: 2306: 2302: 2301: 2297: 2290: 2286: 2283: 2278: 2275: 2269: 2267: 2263: 2259: 2256:A. Romanelli 2253: 2250: 2246: 2240: 2237: 2231: 2228: 2222: 2219: 2214: 2212:0-9526417-0-4 2208: 2204: 2197: 2194: 2187: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2164: 2160: 2158: 2156: 2151: 2147: 2142: 2140: 2132: 2130: 2128: 2124: 2123:heat transfer 2118: 2116: 2108: 2106: 2104: 2099: 2092: 2090: 2088: 2083: 2080: 2071: 2061: 2054: 2049: 2046: 2043: 2035: 2033: 2031: 2023: 2019: 2015: 2012: 2008: 2005: 2001: 1998: 1994: 1990: 1986: 1983: 1980: 1976: 1975: 1974: 1972: 1968: 1967: 1961: 1959: 1954: 1952: 1943: 1941: 1937: 1934: 1926: 1924: 1922: 1917: 1915: 1911: 1910:rhombic drive 1907: 1902: 1899: 1894: 1885: 1875: 1872: 1864: 1854: 1850: 1844: 1843: 1838:This section 1836: 1832: 1827: 1826: 1820: 1814: 1811: 1808: 1805: 1804: 1802: 1800: 1796: 1788: 1784: 1779: 1772: 1770: 1768: 1763: 1759: 1755: 1753: 1749: 1745: 1741: 1737: 1734:cycle with a 1733: 1729: 1725: 1721: 1716: 1713: 1712:Carnot engine 1709: 1705: 1701: 1697: 1692: 1690: 1686: 1682: 1678: 1674: 1668: 1661: 1657: 1645: 1640: 1638: 1633: 1631: 1626: 1625: 1623: 1622: 1617: 1609: 1608: 1607: 1606: 1599: 1596: 1594: 1591: 1589: 1588:Self-assembly 1586: 1584: 1581: 1580: 1574: 1573: 1565: 1562: 1560: 1559:van der Waals 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1484:von Helmholtz 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1431: 1424: 1423: 1412: 1409: 1407: 1404: 1403: 1402: 1401: 1394: 1391: 1390: 1387: 1381: 1378: 1376: 1373: 1372: 1370: 1369: 1364: 1358: 1357: 1350: 1347: 1346: 1339: 1336: 1335: 1328: 1327: 1326: 1325: 1322: 1318: 1313: 1310: 1308: 1305: 1303: 1299: 1295: 1294: 1290: 1287: 1286: 1284: 1283: 1278: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1235: 1232: 1228: 1223: 1220: 1219: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1198: 1193: 1184: 1181: 1180: 1176: 1175: 1155: 1152: 1149: 1146: 1143: 1137: 1134: 1131: 1125: 1117: 1114: 1100: 1097: 1094: 1091: 1088: 1082: 1079: 1076: 1070: 1062: 1059: 1045: 1042: 1039: 1036: 1033: 1027: 1024: 1021: 1015: 1007: 1004: 987: 984: 981: 975: 967: 964: 963: 958: 955: 953: 950: 949: 945: 940: 939: 932: 931: 927: 925: 922: 920: 917: 915: 912: 911: 907: 906:Ideal gas law 904: 902: 899: 897: 894: 892: 889: 888: 884: 879: 878: 852: 842: 828: 821: 820: 805: 795: 781: 774: 773: 770: 756: 753: 746: 743: 740: 739: 720: 710: 696: 689: 688: 673: 663: 649: 642: 641: 638: 624: 621: 618: 611: 608: 605: 604: 585: 575: 561: 554: 553: 538: 528: 514: 507: 506: 503: 489: 486: 479: 476: 473: 472: 466: 463: 462: 459: 454: 453: 442: 439: 437: 436:Vapor quality 434: 432: 431: 426: 423: 421: 420: 415: 412: 409: 405: 404: 399: 396: 395: 394: 393: 390: 386: 380: 377: 375: 372: 371: 369: 368: 365: 361: 356: 353: 351: 348: 347: 346: 345: 341: 337: 330: 325: 324: 313: 310: 308: 305: 303: 300: 299: 298: 297: 294: 290: 285: 282: 280: 277: 275: 274:Reversibility 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 225: 224: 221: 217: 212: 209: 207: 204: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 173: 172: 171: 168: 164: 159: 156: 154: 151: 149: 148:Closed system 146: 145: 142: 137: 136: 128: 125: 123: 120: 118: 115: 113: 110: 109: 105: 100: 99: 92: 88: 85: 84: 80: 77: 75: 72: 70: 67: 65: 62: 61: 54: 53: 49: 43: 39: 38: 35: 31: 19: 2451:Regenerative 2399: 2380:Bell Coleman 2277: 2252: 2244: 2239: 2230: 2221: 2202: 2196: 2149: 2143: 2136: 2119: 2112: 2100: 2096: 2084: 2075: 2039: 2027: 1970: 1964: 1962: 1955: 1947: 1938: 1932: 1930: 1918: 1903: 1897: 1890: 1867: 1858: 1847:Please help 1842:verification 1839: 1794: 1792: 1786: 1764: 1760: 1756: 1732:regenerative 1717: 1693: 1672: 1670: 1449:CarathĂ©odory 1380:Heat engines 1352: 1341: 1330: 1312:Motive power 1297: 957:Free entropy 928: 428: 427: / 417: 416: / 408:introduction 401: 400: / 339: 302:Heat engines 89: / 2619:Ionocaloric 2614:Vuilleumier 2436:Hygroscopic 2155:heat engine 2146:work output 2042:streaklines 2011:intercooled 2007:compression 1997:regenerator 1767:regenerator 1748:regenerator 1271:Synergetics 952:Free energy 398:Temperature 259:Quasistatic 254:Isenthalpic 211:Instruments 201:Equilibrium 153:Open system 87:Equilibrium 69:Statistical 2634:Categories 2584:Pulse tube 2556:Mixed/dual 2303:I. Urieli 2188:References 2004:isothermal 1979:isothermal 1694:The ideal 1665:See also: 1583:Nucleation 1427:Scientists 1231:Philosophy 944:Potentials 307:Heat pumps 264:Polytropic 249:Isentropic 239:Isothermal 2579:Kleemenko 2465:Internal 2022:isochoric 2018:isometric 1993:isochoric 1989:isometric 1982:expansion 1971:idealized 1966:adiabatic 1906:Ross yoke 1861:June 2020 1795:idealized 1787:idealized 1728:cryogenic 1720:heat pump 1704:isochoric 1656:adiabatic 1564:Waterston 1514:von Mayer 1469:de Donder 1459:Clapeyron 1439:Boltzmann 1434:Bernoulli 1395:Education 1366:Timelines 1150:− 1095:− 883:Equations 850:∂ 803:∂ 754:α 718:∂ 671:∂ 625:− 619:β 583:∂ 536:∂ 244:Adiabatic 234:Isochoric 220:Processes 181:Ideal gas 64:Classical 2546:Combined 2505:Humphrey 2490:Expander 2475:Atkinson 2410:Stoddard 2400:Stirling 2395:Ericsson 2355:External 2285:Archived 2161:See also 1708:isobaric 1689:engineer 1616:Category 1554:Thompson 1464:Clausius 1444:Bridgman 1298:Vis viva 1280:Theories 1214:Gas laws 1006:Enthalpy 414:Pressure 229:Isobaric 186:Real gas 74:Chemical 57:Branches 2609:Siemens 2525:Scuderi 2441:Rankine 1951:degrees 1785:of the 1736:gaseous 1724:cooling 1539:Smeaton 1534:Rankine 1524:Onsager 1509:Maxwell 1504:Massieu 1209:Entropy 1204:General 1195:History 1185:Culture 1182:History 406: ( 403:Entropy 340:italics 141:Systems 2515:Miller 2510:Lenoir 2485:Diesel 2431:Kalina 2415:Manson 2390:Carnot 2209:  1700:Diesel 1529:Planck 1519:Nernst 1494:Kelvin 1454:Carnot 744:  609:  477:  419:Volume 334:Note: 293:Cycles 122:Second 112:Zeroth 2539:Mixed 1898:power 1891:Most 1675:is a 1577:Other 1544:Stahl 1499:Lewis 1489:Joule 1479:Gibbs 1474:Duhem 167:State 127:Third 117:First 2551:HEHC 2520:Otto 2207:ISBN 1963:The 1793:The 1698:and 1696:Otto 1671:The 1549:Tait 379:Heat 374:Work 104:Laws 2020:or 1991:or 1933:not 1851:by 1392:Art 338:in 2636:: 2265:^ 2150:on 2129:. 1953:. 1923:. 1781:A 1754:. 1691:. 2447:) 2443:( 2372:) 2368:( 2339:e 2332:t 2325:v 2215:. 1874:) 1868:( 1863:) 1859:( 1845:. 1706:/ 1662:. 1643:e 1636:t 1629:v 1156:S 1153:T 1147:H 1144:= 1141:) 1138:p 1135:, 1132:T 1129:( 1126:G 1101:S 1098:T 1092:U 1089:= 1086:) 1083:V 1080:, 1077:T 1074:( 1071:A 1046:V 1043:p 1040:+ 1037:U 1034:= 1031:) 1028:p 1025:, 1022:S 1019:( 1016:H 991:) 988:V 985:, 982:S 979:( 976:U 853:T 829:V 806:V 782:1 757:= 721:p 697:V 674:V 650:1 622:= 586:T 562:N 539:S 515:T 490:= 487:c 410:) 20:)

Index

Stirling-cycle
Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑