Knowledge (XXG)

Stoma

Source 📝

317: 328:, after the family Crassulaceae, which includes the species in which the CAM process was first discovered) open their stomata at night (when water evaporates more slowly from leaves for a given degree of stomatal opening), use PEPcase to fix carbon dioxide and store the products in large vacuoles. The following day, they close their stomata and release the carbon dioxide fixed the previous night into the presence of RuBisCO. This saturates RuBisCO with carbon dioxide, allowing minimal photorespiration. This approach, however, is severely limited by the capacity to store fixed carbon in the vacuoles, so it is preferable only when water is severely limited. 233: 914:(SPeecCHless) gene prevents stomatal development all together.  Inhibition of stomatal production can occur by the activation of EPF1, which activates TMM/ERL, which together activate YODA. YODA inhibits SPCH, causing SPCH activity to decrease, preventing asymmetrical cell division that initiates stomata formation. Stomatal development is also coordinated by the cellular peptide signal called stomagen, which signals the activation of the SPCH, resulting in increased number of stomata. 343: 45: 69: 61: 4401: 308:(PEPcase). Retrieving the products of carbon fixation from PEPCase is an energy-intensive process, however. As a result, the PEPCase alternative is preferable only where water is limiting but light is plentiful, or where high temperatures increase the solubility of oxygen relative to that of carbon dioxide, magnifying RuBisCo's oxygenation problem. 1147:) stomata have two guard cells surrounded by two lens-shaped subsidiary cells. The guard cells are narrower in the middle and bulbous on each end. This middle section is strongly thickened. The axis of the subsidiary cells are parallel stoma opening. This type can be found in monocot families including 403:
of the cells and cause the concentration of free Ca to increase in the cytosol due to influx from outside the cell and release of Ca from internal stores such as the endoplasmic reticulum and vacuoles. This causes the chloride (Cl) and organic ions to exit the cells. Second, this stops the uptake of
207:
may have about the same number of stomata on both leaf surfaces. In plants with floating leaves, stomata may be found only on the upper epidermis and submerged leaves may lack stomata entirely. Most tree species have stomata only on the lower leaf surface. Leaves with stomata on both the upper and
882:
An asymmetrical cell division occurs in protodermal cells resulting in one large cell that is fated to become a pavement cell and a smaller cell called a meristemoid that will eventually differentiate into the guard cells that surround a stoma. This meristemoid then divides asymmetrically one to
350:
However, most plants do not have CAM and must therefore open and close their stomata during the daytime, in response to changing conditions, such as light intensity, humidity, and carbon dioxide concentration. When conditions are conducive to stomatal opening (e.g., high light intensity and high
1502:. Plant breeders and farmers are beginning to work together using evolutionary and participatory plant breeding to find the best suited species such as heat and drought resistant crop varieties that could naturally evolve to the change in the face of food security challenges. 1256:. Stomatal crypts can be an adaption to drought and dry climate conditions when the stomatal crypts are very pronounced. However, dry climates are not the only places where they can be found. The following plants are examples of species with stomatal crypts or antechambers: 443:) can therefore be calculated from the transpiration rate and humidity gradient. This allows scientists to investigate how stomata respond to changes in environmental conditions, such as light intensity and concentrations of gases such as water vapor, carbon dioxide, and 296:
cells exposed directly to the air spaces inside the leaf. This exacerbates the transpiration problem for two reasons: first, RuBisCo has a relatively low affinity for carbon dioxide, and second, it fixes oxygen to RuBP, wasting energy and carbon in a process called
1169:) stomata have six subsidiary cells around both guard cells, one at either end of the opening of the stoma, one adjoining each guard cell, and one between that last subsidiary cell and the standard epidermis cells. This type can be found in some monocot families. 921:
represses stomatal development by affecting their development at the receptor level like the ERL and TMM receptors. However, a low concentration of auxin allows for equal division of a guard mother cell and increases the chance of producing guard cells.
1377:
Drought inhibits stomatal opening, but research on soybeans suggests moderate drought does not have a significant effect on stomatal closure of its leaves. There are different mechanisms of stomatal closure. Low humidity stresses guard cells causing
883:
three times before differentiating into a guard mother cell. The guard mother cell then makes one symmetrical division, which forms a pair of guard cells. Cell division is inhibited in some cells so there is always at least one cell between stomata.
937:
have them on both surfaces. When leaves develop stomata on both leaf surfaces, the stomata on the lower surface tend to be larger and more numerous, but there can be a great degree of variation in size and frequency about species and genotypes.
1068:) stomata have guard cells surrounded by two subsidiary cells, that each encircle one end of the opening and contact each other opposite to the middle of the opening. This type of stomata can be found in more than ten dicot families such as 906:). Mutations in any one of the genes which encode these factors may alter the development of stomata in the epidermis. For example, a mutation in one gene causes more stomata that are clustered together, hence is called Too Many Mouths ( 1112:) stomata have one or more subsidiary cells parallel to the opening between the guard cells. These subsidiary cells may reach beyond the guard cells or not. This type of stomata can be found in more than hundred dicot families such as 966:
introduced in 1889, was further developed by Metcalfe and Chalk, and later complemented by other authors. It is based on the size, shape and arrangement of the subsidiary cells that surround the two guard cells. They distinguish for
1212:
stomata have two guard cells in one layer with only ordinary epidermis cells, but with two subsidiary cells on the outer surface of the epidermis, arranged parallel to the guard cells, with a pore between them, overlying the stoma
367:
ions (K) occurs. To maintain this internal negative voltage so that entry of potassium ions does not stop, negative ions balance the influx of potassium. In some cases, chloride ions enter, while in other plants the organic ion
1034:) stomata have guard cells that are surrounded by cells that have the same size, shape and arrangement as the rest of the epidermis cells. This type of stomata can be found in more than hundred dicot families such as 2507:
Jordan, Gregory J; Weston, Peter H; Carpenter, Raymond J; Dillon, Rebecca A.; Brodribb, Timothy J. (2008). "The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae".
773: 4231: 687: 515: 136:
The term is usually used collectively to refer to the entire stomatal complex, consisting of the paired guard cells and the pore itself, which is referred to as the stomatal aperture. Air, containing
851:
There is little evidence of the evolution of stomata in the fossil record, but they had appeared in land plants by the middle of the Silurian period. They may have evolved by the modification of
1337:. Multiple studies have found support that increasing potassium concentrations may increase stomatal opening in the mornings, before the photosynthesis process starts, but that later in the day 1183:) stomata have four subsidiary cells, one on either end of the opening, and one next to each guard cell. This type occurs in many monocot families, but also can be found in some dicots, such as 2269:
Sugano, Shigeo S.; Shimada, Tomoo; Imai, Yu; Okawa, Katsuya; Tamai, Atsushi; Mori, Masashi; Hara-Nishimura, Ikuko (2010-01-14). "Stomagen positively regulates stomatal density in Arabidopsis".
614: 4236: 1284:
Stomata are holes in the leaf by which pathogens can enter unchallenged. However, stomata can sense the presence of some, if not all, pathogens. However, pathogenic bacteria applied to
1345:
in guard cells acts as a blue light photoreceptor which mediates the stomatal opening. The effect of blue light on guard cells is reversed by green light, which isomerizes zeaxanthin.
388:
that prevent the width of the guard cells from swelling, and thus only allow the extra turgor pressure to elongate the guard cells, whose ends are held firmly in place by surrounding
917:
Environmental and hormonal factors can affect stomatal development. Light increases stomatal development in plants; while, plants grown in the dark have a lower amount of stomata.
1090:
stomata are bordered by just one subsidiary cell that differs from the surrounding epidermis cells, its length parallel to the stoma opening. This type occurs for instance in the
1004:) stomata have guard cells between two larger subsidiary cells and one distinctly smaller one. This type of stomata can be found in more than thirty dicot families, including 320:
C3 and C4 plants(1) stomata stay open all day and close at night. CAM plants(2) stomata open during the morning and close slightly at noon and then open again in the evening.
4369: 1832:
Eduardo Zeiger; Lawrence D. Talbott; Silvia Frechilla; Alaka Srivastava; Jianxin Zhu (March 2002). "The Guard Cell Chloroplast: A Perspective for the Twenty-First Century".
986:) stomata have guard cells that are surrounded by at least five radiating cells forming a star-like circle. This is a rare type that can for instance be found in the family 2917:
Ceccarelli, S; Grando, S; Maatougui, M; Michael, M; Slash, M; Haghparast, R; Rahmanian, M; Taheri, A; Al-Yassin, A; Benbelkacem, A; Labdi, M; Mimoun, H; Nachit, M (2010).
1950:
Waichi Agata; Yoshinobu Kawamitsu; Susumu Hakoyama; Yasuo Shima (January 1986). "A system for measuring leaf gas exchange based on regulating vapour pressure difference".
1252:
Stomatal crypts are sunken areas of the leaf epidermis which form a chamber-like structure that contains one or more stomata and sometimes trichomes or accumulations of
2154: 316: 844: 2885:
Rogiers, SY; Hardie, WJ; Smith, JP (2011). "Stomatal density of grapevine leaves (Vitis Vinifera L.) responds to soil temperature and atmospheric carbon dioxide".
800:. These scientific instruments measure the amount of water vapour leaving the leaf and the vapor pressure of the ambient air. Photosynthetic systems may calculate 2697:"The effect of subambient to elevated atmospheric CO2 concentration on vascular function in Helianthus annuus: implications for plant response to climate change" 4287: 1382:
loss, termed hydropassive closure. Hydroactive closure is contrasted as the whole leaf affected by drought stress, believed to be most likely triggered by
301:. For both of these reasons, RuBisCo needs high carbon dioxide concentrations, which means wide stomatal apertures and, as a consequence, high water loss. 1325:
in causing stomatal response. Research suggests this is because the light response of stomata to blue light is independent of other leaf components like
264:, is present in the atmosphere at a concentration of about 400 ppm. Most plants require the stomata to be open during daytime. The air spaces in the 4103: 2439: 78:) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments. 2001: 1243:
stomata have two guard cells that are largely encircled by one subsidiary cell, but also contact ordinary epidermis cells (like a U or horseshoe).
3018: 2822: 2778: 2745: 2080: 1631: 1596: 1535: 419:
Guard cells have more chloroplasts than the other epidermal cells from which guard cells are derived. Their function is controversial.
1560: 706: 4293: 1498:
Predicting how stomata perform during adaptation is useful for understanding the productivity of plant systems for both natural and
1452: 399:(ABA) is released. ABA binds to receptor proteins in the guard cells' plasma membrane and cytosol, which first raises the pH of the 1370:
response is the least understood mechanistically, this stomatal response has begun to plateau where it is soon expected to impact
3188: 1921: 629: 457: 3627: 305: 1233:
stomata have two guard cells that are entirely encircled by one subsidiary cell that has not merged its ends (like a sausage).
4108: 392:
cells, the two guard cells lengthen by bowing apart from one another, creating an open pore through which gas can diffuse.
3558: 304:
Narrower stomatal apertures can be used in conjunction with an intermediary molecule with a high carbon dioxide affinity,
4277: 3864: 3379: 325: 53: 4359: 4113: 556: 855:
from plants' alga-like ancestors. However, the evolution of stomata must have happened at the same time as the waxy
4093: 1467:
is one of the effects with simulations from experiments predicting a 5–20% increase in crop yields at 550 ppm of CO
867:
There are three major epidermal cell types which all ultimately derive from the outermost (L1) tissue layer of the
843: 3045:
Gray, J; Holroyd, G; van der Lee, F; Bahrami, A; Sijmons, P; Woodward, F; Schuch, W; Hetherington, A (2000). "The
4435: 4243: 363:
becomes increasingly negative. The negative potential opens potassium voltage-gated channels and so an uptake of
285: 4381: 4226: 3276: 1413:(high carbon dioxide) encodes a negative regulator for the development of stomata in plants. Research into the 1358:
Decreasing stomatal density is one way plants have responded to the increase in concentration of atmospheric CO
903: 404:
any further K into the cells and, subsequently, the loss of K. The loss of these solutes causes an increase in
125:
between the internal air spaces of the leaf and the atmosphere. The pore is bordered by a pair of specialized
2234:
Casson, Stuart A; Hetherington, Alistair M (2010-02-01). "Environmental regulation of stomatal development".
2099:
Bergmann, Dominique C.; Lukowitz, Wolfgang; Somerville, Chris R.; Lukowitz, W; Somerville, CR (4 July 2004).
4440: 31: 4425: 4211: 4135: 1223:
stomata have two guard cells that are entirely encircled by one continuous subsidiary cell (like a donut).
859:
was evolving â€“ these two traits together constituted a major advantage for early terrestrial plants.
439:
gradient between the leaf's internal air spaces and the outside air. Stomatal resistance (or its inverse,
4376: 2148: 2010: 1488: 868: 797: 232: 1314:) and gas exchange are regulated by stomatal function which is important in the functioning of plants. 1351:
and aperture (length of stomata) varies under a number of environmental factors such as atmospheric CO
926: 4430: 4098: 3950: 3622: 3181: 3120: 3062: 2388: 2278: 2112: 1880: 1499: 1460: 1419: 1285: 963: 801: 440: 360: 141: 74: 4268: 3813: 2641:
Schulze-Lefert, P; Robatzek, S (2006). "Plant pathogens trick guard cells into opening the gates".
962:
Different classifications of stoma types exist. One that is widely used is based on the types that
887: 427:
The degree of stomatal resistance can be determined by measuring leaf gas exchange of a leaf. The
4206: 4071: 3940: 3849: 3541: 3327: 3223: 3086: 3024: 2983: 2940: 2784: 2623: 2404: 2320: 2136: 1983: 1602: 1484: 1476: 1472: 939: 389: 118: 2073:
Evolutionary theory and processes : modern horizons : papers in honour of Eviatar Nevo
342: 4364: 3213: 3208: 3148: 3078: 3014: 2975: 2864: 2818: 2774: 2741: 2718: 2668: 2615: 2574: 2525: 2489: 2361: 2312: 2304: 2251: 2216: 2198: 2128: 2100: 2076: 2068: 1975: 1967: 1898: 1849: 1794: 1753: 1704: 1627: 1592: 1556: 1531: 44: 1621: 1527: 4150: 4056: 4051: 4005: 3898: 3883: 3844: 3769: 3610: 3534: 3431: 3373: 3138: 3128: 3070: 3006: 2967: 2930: 2894: 2854: 2810: 2766: 2708: 2658: 2650: 2605: 2564: 2556: 2517: 2479: 2448: 2396: 2351: 2294: 2286: 2243: 2206: 2190: 2120: 2047: 1959: 1888: 1841: 1784: 1743: 1735: 1694: 1686: 1584: 1428: 1348: 1318: 1253: 381: 298: 38: 2426:. Vol. 1: Leaves, Stem, and Wood in relation to Taxonomy, with notes on economic Uses. 1398:
will reach 500–1000 ppm by 2100. 96% of the past 400,000 years experienced below 280 ppm CO
276:. Therefore, plants cannot gain carbon dioxide without simultaneously losing water vapour. 4404: 4386: 4248: 4077: 4027: 4015: 3995: 3977: 3913: 3740: 3708: 3669: 3642: 3471: 3466: 3357: 3293: 3174: 2663: 1845: 1069: 405: 373: 176: 68: 1495:
that may have been an adaptive trait in the evolution of plant respiration and function.
3124: 3066: 2392: 2282: 2116: 1884: 4298: 4263: 4216: 4198: 4162: 3918: 3745: 3723: 3689: 3664: 3647: 3637: 3632: 3514: 3332: 3317: 3271: 3266: 3143: 3108: 2569: 2544: 2452: 2211: 2178: 2052: 2035: 1699: 1671: 1307: 1268: 1190: 1117: 1043: 876: 261: 257: 149: 145: 99: 2592:
Maeli Melotto; William Underwood; Jessica Koczan; Kinya Nomura; Sheng Yang He (2006).
1929: 1748: 1723: 60: 4419: 4334: 4082: 4000: 3972: 3935: 3903: 3839: 3759: 3659: 3461: 3444: 3367: 3347: 3288: 3283: 3231: 2898: 1606: 1520: 1459:
levels in the atmosphere enhances photosynthesis, reduce transpiration, and increase
1383: 1371: 1133: 1091: 1047: 856: 831:. These scientific instruments are commonly used by plant physiologists to measure CO 428: 396: 273: 192: 191:
usually have more stomata on the lower surface of the leaves than the upper surface.
161: 126: 3090: 2987: 2944: 2627: 2140: 1987: 1355:
concentration, light intensity, air temperature and photoperiod (daytime duration).
534:
are the partial pressures of water in the leaf and in the ambient air respectively,
4329: 4319: 4221: 3945: 3930: 3439: 3406: 3028: 3001:
Mengel, Konrad; Kirkby, Ernest A.; Kosegarten, Harald; Appel, Thomas, eds. (2001).
2788: 2761:
Mengel, Konrad; Kirkby, Ernest A.; Kosegarten, Harald; Appel, Thomas, eds. (2001).
2324: 1273: 1039: 1013: 1005: 951: 852: 385: 269: 157: 122: 2340:"Auxin represses stomatal development in dark-grown seedling via Aux/IAA proteins" 2545:"Stomatal crypts have small effects on transpiration: A numerical model analysis" 1789: 1772: 187:. In vascular plants the number, size and distribution of stomata varies widely. 4145: 4130: 4125: 4061: 3923: 3703: 3674: 3573: 3568: 3416: 3256: 3251: 3236: 1435:
levels in the atmosphere. These studies imply the plants response to changing CO
1330: 1326: 1073: 1035: 968: 947: 943: 413: 352: 188: 172: 17: 3113:
Proceedings of the National Academy of Sciences of the United States of America
2654: 2610: 2593: 376:
inside the cell, which results in the diffusion of water into the cell through
4174: 4167: 4157: 4140: 3823: 3818: 3754: 3546: 3393: 3352: 3246: 3010: 2935: 2918: 2814: 2770: 2247: 1588: 1342: 1291: 1152: 1009: 337: 221: 168: 130: 2308: 2202: 1971: 372:
is produced in guard cells. This increase in solute concentration lowers the
160:
diffuses through the stomata into the atmosphere as part of a process called
4282: 4179: 3908: 3713: 3694: 3605: 3529: 3401: 3342: 3322: 3261: 3133: 2124: 1334: 1113: 1095: 987: 796:
respectively. The rate of evaporation from a leaf can be determined using a
432: 364: 293: 220:. Size varies across species, with end-to-end lengths ranging from 10 to 80 184: 153: 3152: 3082: 2979: 2868: 2722: 2672: 2619: 2578: 2529: 2493: 2365: 2338:
Balcerowicz, M.; Ranjan, A.; Rupprecht, L.; Fiene, G.; Hoecker, U. (2014).
2316: 2255: 2220: 2132: 2036:"Stomata in early land plants: an anatomical and ecophysiological approach" 1979: 1902: 1853: 1798: 1757: 1708: 2560: 1812: 4324: 4314: 4258: 4253: 4020: 3893: 3869: 3786: 3456: 3241: 2003:
Portable Gas Exchange Fluorescence System GFS-3000. Handbook of Operation
1739: 1690: 1654: 1403: 1121: 872: 436: 237: 2521: 2290: 216:, and leaves with stomata only on the upper surface are epistomatous or 3509: 3504: 3421: 3411: 2408: 2356: 2339: 1963: 1464: 1338: 1148: 934: 930: 409: 400: 377: 289: 2859: 2842: 2713: 2696: 2484: 2467: 2299: 1724:"Sensitivity of Stomata to Abscisic Acid (An Effect of the Mesophyll)" 3962: 3854: 3808: 3774: 3728: 3718: 3679: 3617: 3598: 3593: 3588: 3583: 3578: 3197: 3074: 2971: 2843:"Modelling stomatal conductance in response to environmental factors" 2466:
Nunes, Tiago D. G.; Zhang, Dan; Raissig, Michael T. (February 2020).
2194: 1424: 1406:
of today’s plants have diverged from their pre-industrial relatives.
1379: 1257: 369: 356: 180: 137: 83: 49: 2400: 1893: 1868: 1333:
swell under blue light provided there is sufficient availability of
879:
and guard cells, all of which are arranged in a non-random fashion.
2695:
Rico, C; Pittermann, J; Polley, HW; Aspinwall, MJ; Fay, PA (2013).
1471:. Rates of leaf photosynthesis were shown to increase by 30–50% in 4186: 4120: 4042: 4010: 3967: 3801: 3796: 3791: 3779: 3764: 3733: 3654: 3312: 3303: 2437:
van Cotthem, W.R.F. (1970). "A Classification of Stomatal Types".
1311: 1185: 918: 842: 444: 408:, which results in the diffusion of water back out of the cell by 341: 315: 231: 204: 196: 67: 59: 43: 1660:. National Council for Science and the Environment, Washington DC 272:, which exits the leaf through the stomata in a process known as 4037: 4032: 3684: 3524: 3499: 3494: 3478: 3449: 3337: 1198: 265: 3170: 2958:
Serna, L; Fenoll, C (2000). "Coping with human CO2 emissions".
2101:"Stomatal Development and Pattern Controlled by a MAPKK Kinase" 946:
leaves had fewer stomata but larger in size. On the other hand
768:{\displaystyle A={\frac {(C_{\text{a}}-C_{\text{i}})g}{1.6P}},} 3957: 3519: 2805:
Kochhar, S. L.; Gujral, Sukhbir Kaur (2020). "Transpiration".
1773:"The role of ion channels in light-dependent stomatal opening" 1322: 200: 121:
of leaves, stems, and other organs, that controls the rate of
2594:"Plant Stomata in innate immunity against bacterial invasion" 1771:
Petra Dietrich; Dale Sanders; Rainer Hedrich (October 2001).
1672:"Structure and Development of Stomata on the Primary Root of 886:
Stomatal patterning is controlled by the interaction of many
1670:
N. S. CHRISTODOULAKIS; J. MENTI; B. GALATIS (January 2002).
792:
are the atmospheric and sub-stomatal partial pressures of CO
395:
When the roots begin to sense a water shortage in the soil,
2543:
Roth-Nebelsick, A.; Hassiotou, F.; Veneklaas, E. J (2009).
2809:(2 ed.). Cambridge University Press. pp. 75–99. 1423:
found no increase of stomatal development in the dominant
682:{\displaystyle g={\frac {EP}{e_{\text{i}}-e_{\text{a}}}}.} 510:{\displaystyle E={\frac {e_{\text{i}}-e_{\text{a}}}{Pr}},} 435:
resistance provided by the stomatal pores and also on the
212:
leaves; leaves with stomata only on the lower surface are
3166: 2379:
Pallardy, Stephen (1983). "Physiology of Woody Plants".
2069:"Macroevolutionary events and the origin of higher taxa" 1451:
fertiliser effect has been greatly overestimated during
324:
A group of mostly desert plants called "C.A.M." plants (
1922:"Calculating Important Parameters in Leaf Gas Exchange" 1431:
showed a large increase, both in response to rising CO
416:, which results in the closing of the stomatal pores. 37:
For natural and surgically created body openings, see
1136:, several different types of stomata occur such as: 709: 632: 559: 460: 359:(H) from the guard cells. This means that the cells' 27:
In plants, a variable pore between paired guard cells
1341:
plays a larger role in regulating stomatal opening.
4343: 4307: 4197: 4070: 3986: 3882: 3832: 3557: 3487: 3430: 3392: 3366: 3302: 3222: 2912: 2910: 2908: 2800: 2798: 2172: 2170: 2168: 2166: 2164: 2075:. Dordrecht: Kluwer Acad. Publ. pp. 265–289. 1519: 1455:(FACE) experiments where results show increased CO 767: 681: 608: 509: 2468:"Form, development and function of grass stomata" 3107:Tubiello, FN; Soussana, J-F; Howden, SM (2007). 3102: 3100: 2094: 2092: 609:{\displaystyle E=(e_{\text{i}}-e_{\text{a}})g/P} 133:that regulate the size of the stomatal opening. 2880: 2878: 2836: 2834: 1916: 1914: 1912: 1402:. From this figure, it is highly probable that 929:have stomata only on their lower leaf surface. 2177:Pillitteri, Lynn Jo; Dong, Juan (2013-06-06). 1722:C. L. Trejo; W. J. Davies; LdMP. Ruiz (1993). 1574: 1572: 3182: 3109:"Crop and pasture response to climate change" 2887:Australian Journal of Grape and Wine Research 1869:"Carbon sinks threatened by increasing ozone" 835:uptake and thus measure photosynthetic rate. 423:Inferring stomatal behavior from gas exchange 8: 4288:International Association for Plant Taxonomy 3040: 3038: 2690: 2688: 2686: 2684: 2682: 2153:: CS1 maint: multiple names: authors list ( 1653:Debbie Swarthout and C.Michael Hogan. 2010. 1303:Response of stomata to environmental factors 224:and width ranging from a few to 50 Îžm. 954:had small stomata that were more numerous. 847:Tomato stoma observed through immersion oil 3389: 3189: 3175: 3167: 1439:levels is largely controlled by genetics. 1201:, four different types are distinguished: 72:The underside of a leaf. In this species ( 3142: 3132: 2934: 2858: 2807:Plant Physiology: Theory and Applications 2712: 2662: 2609: 2568: 2483: 2355: 2298: 2210: 2051: 1892: 1788: 1747: 1698: 1272:which is a species of plant found in the 739: 726: 716: 708: 667: 654: 639: 631: 598: 586: 573: 558: 487: 474: 467: 459: 4232:International Code of Nomenclature (ICN) 2440:Botanical Journal of the Linnean Society 1390:Future adaptations during climate change 1374:and photosynthesis processes in plants. 550:), so the equation can be rearranged to 1510: 542:is stomatal resistance. The inverse of 380:. This increases the cell's volume and 284:Ordinarily, carbon dioxide is fixed to 2146: 2034:D. Edwards, H. Kerp; Hass, H. (1998). 1579:Willmer, Colin; Fricker, Mark (1996). 1551:Weyers, J. D. B.; Meidner, H. (1990). 1321:being almost 10 times as effective as 1294:, which induce the stomata to reopen. 1290:plant leaves can release the chemical 384:. Then, because of rings of cellulose 236:Electron micrograph of a stoma from a 3053:perception to stomatal development". 2179:"Stomatal Development in Arabidopsis" 1846:10.1046/j.0028-646X.2001.NPH328.doc.x 1840:(3 Special Issue: Stomata): 415–424. 1317:Stomata are responsive to light with 7: 2919:"Plant breeding and climate changes" 1626:. Springer Netherlands. p. 18. 152:, passes through stomata by gaseous 2923:The Journal of Agricultural Science 171:generation of the vast majority of 110: 91: 64:A stoma in horizontal cross section 2453:10.1111/j.1095-8339.1970.tb02321.x 2422:Metcalfe, C.R.; Chalk, L. (1950). 1453:Free-Air Carbon dioxide Enrichment 816:, intrinsic water use efficiency ( 25: 4237:ICN for Cultivated Plants (ICNCP) 1620:Fricker, M.; Willmer, C. (2012). 4400: 4399: 2899:10.1111/j.1755-0238.2011.00124.x 2236:Current Opinion in Plant Biology 2053:10.1093/jxb/49.Special_Issue.255 2009:, March 20, 2013, archived from 2071:. In Wasser, Solomon P. (ed.). 2067:Krassilov, Valentin A. (2004). 894:(Epidermal Patterning Factor), 546:is conductance to water vapor ( 306:phosphoenolpyruvate carboxylase 208:lower leaf surfaces are called 2841:Buckley, TN; Mott, KA (2013). 2664:11858/00-001M-0000-0012-394E-B 2040:Journal of Experimental Botany 1867:Hopkin, Michael (2007-07-26). 1777:Journal of Experimental Botany 1280:Stomata as pathogenic pathways 910:). Whereas, disruption of the 745: 719: 592: 566: 1: 3003:Principles of Plant Nutrition 2763:Principles of Plant Nutrition 2738:Photobiology of Higher Plants 2736:McDonald, Maurice S. (2003). 538:is atmospheric pressure, and 4278:History of plant systematics 3865:Thorns, spines, and prickles 1553:Methods in stomatal research 871:, called protodermal cells: 346:Opening and closing of stoma 326:crassulacean acid metabolism 54:scanning electron microscope 3049:signalling pathway links CO 2847:Plant, Cell and Environment 1813:"Guard Cell Photosynthesis" 1483:levels. The existence of a 167:Stomata are present in the 4457: 4094:Alternation of generations 2655:10.1016/j.cell.2006.08.020 2611:10.1016/j.cell.2006.06.054 2510:American Journal of Botany 2381:Journal of Applied Ecology 2046:(Special Issue): 255–278. 1790:10.1093/jexbot/52.363.1959 1526:. Wiley and Sons. p.  1298:Stomata and climate change 335: 117:), is a pore found in the 105:, "mouth"), also called a 36: 29: 4395: 4244:Cultivated plant taxonomy 4207:Biological classification 3204: 3011:10.1007/978-94-010-1009-2 3005:. Springer. p. 223. 2936:10.1017/s0021859610000651 2815:10.1017/9781108486392.006 2771:10.1007/978-94-010-1009-2 2765:. Springer. p. 205. 2248:10.1016/j.pbi.2009.08.005 1928:. Sinauer. Archived from 1589:10.1007/978-94-011-0579-8 1443:Agricultural implications 1427:, but in the ‘wild type’ 1310:, plant water transport ( 1124:. It is sometimes called 1076:. It is sometimes called 1050:. It is sometimes called 1016:. It is sometimes called 700:) can be calculated from 431:rate is dependent on the 286:ribulose 1,5-bisphosphate 52:leaf shown via colorized 4104:Evolutionary development 1583:. Springer. p. 16. 1555:. Longman Group UK Ltd. 904:MAP kinase kinase kinase 175:, with the exception of 30:Not to be confused with 3755:Hypanthium (Floral cup) 3134:10.1073/pnas.0701728104 2424:Anatomy of Dicotyledons 2125:10.1126/science.1096014 1952:Photosynthesis Research 1926:Plant Physiology Online 1658:. Encyclopedia of Earth 1366:). Although changes in 1141:gramineous or graminoid 451:) can be calculated as 4370:by author abbreviation 4294:Plant taxonomy systems 4212:Botanical nomenclature 2740:. Wiley. p. 293. 1522:Anatomy of Seed Plants 1475:plants, and 10–25% in 848: 769: 683: 610: 511: 412:. This makes the cell 347: 321: 280:Alternative approaches 245: 79: 65: 57: 4377:Botanical expeditions 2561:10.1104/pp.109.146969 1489:phenotypic plasticity 1078:caryophyllaceous type 869:shoot apical meristem 846: 798:photosynthesis system 770: 684: 611: 512: 345: 336:Further information: 319: 288:(RuBP) by the enzyme 235: 71: 63: 47: 4109:Evolutionary history 4099:Double fertilization 3951:Cellular respiration 2183:The Arabidopsis Book 2016:on December 15, 2017 1740:10.1104/pp.102.2.497 1500:agricultural systems 1461:water use efficiency 1420:Arabidopsis thaliana 1394:It is expected that 964:Julien Joseph Vesque 802:water use efficiency 707: 630: 557: 458: 441:stomatal conductance 361:electrical potential 260:, a key reactant in 75:Tradescantia zebrina 3328:Non-vascular plants 3125:2007PNAS..10419686T 3119:(50): 19686–19690. 3067:2000Natur.408..713G 2522:10.3732/ajb.2007333 2393:1983JApEc..20..352J 2291:10.1038/nature08682 2283:2010Natur.463..241S 2117:2004Sci...304.1494B 2111:(5676): 1494–1497. 1885:2007Natur.448..396H 1052:ranunculaceous type 890:components such as 888:signal transduction 332:Opening and closing 268:are saturated with 253:gain and water loss 148:, which is used in 140:, which is used in 3833:Surface structures 3628:Flower development 2357:10.1242/dev.109181 1964:10.1007/BF00029799 1783:(363): 1959–1967. 1691:10.1093/aob/mcf002 1485:feedback mechanism 898:(ERecta Like) and 849: 765: 679: 606: 507: 348: 322: 246: 242:Brassica chinensis 179:, as well as some 80: 66: 58: 4413: 4412: 4052:Herbaceous plants 3878: 3877: 3061:(6813): 713–716. 3020:978-94-010-1009-2 2966:(6813): 656–657. 2860:10.1111/pce.12140 2824:978-1-108-48639-2 2780:978-94-010-1009-2 2747:978-0-470-85523-2 2714:10.1111/nph.12339 2485:10.1111/tpj.14552 2472:The Plant Journal 2350:(16): 3165–3176. 2277:(7278): 241–244. 2082:978-1-4020-1693-6 1879:(7152): 396–397. 1674:Ceratonia siliqua 1633:978-94-011-0579-8 1598:978-94-010-4256-7 1537:978-0-471-24520-9 1518:Esau, K. (1977). 1463:(WUE). Increased 760: 742: 729: 692:Photosynthetic CO 674: 670: 657: 589: 576: 502: 490: 477: 16:(Redirected from 4448: 4436:Plant physiology 4403: 4402: 4382:Individual trees 4057:Secondary growth 4028:Succulent plants 4016:Prostrate shrubs 3899:Apical dominance 3884:Plant physiology 3845:Epicuticular wax 3390: 3383: 3374:Plant morphology 3191: 3184: 3177: 3168: 3157: 3156: 3146: 3136: 3104: 3095: 3094: 3075:10.1038/35047071 3042: 3033: 3032: 2998: 2992: 2991: 2972:10.1038/35047202 2955: 2949: 2948: 2938: 2914: 2903: 2902: 2882: 2873: 2872: 2862: 2853:(9): 1691–1699. 2838: 2829: 2828: 2802: 2793: 2792: 2758: 2752: 2751: 2733: 2727: 2726: 2716: 2692: 2677: 2676: 2666: 2638: 2632: 2631: 2613: 2589: 2583: 2582: 2572: 2555:(4): 2018–2027. 2549:Plant Physiology 2540: 2534: 2533: 2504: 2498: 2497: 2487: 2463: 2457: 2456: 2434: 2428: 2427: 2419: 2413: 2412: 2376: 2370: 2369: 2359: 2335: 2329: 2328: 2302: 2266: 2260: 2259: 2231: 2225: 2224: 2214: 2195:10.1199/tab.0162 2174: 2159: 2158: 2152: 2144: 2096: 2087: 2086: 2064: 2058: 2057: 2055: 2031: 2025: 2024: 2023: 2021: 2015: 2008: 1998: 1992: 1991: 1947: 1941: 1940: 1938: 1937: 1918: 1907: 1906: 1896: 1864: 1858: 1857: 1829: 1823: 1822: 1820: 1819: 1809: 1803: 1802: 1792: 1768: 1762: 1761: 1751: 1728:Plant Physiology 1719: 1713: 1712: 1702: 1679:Annals of Botany 1667: 1661: 1651: 1645: 1644: 1642: 1640: 1617: 1611: 1610: 1576: 1567: 1566: 1548: 1542: 1541: 1525: 1515: 1479:under doubled CO 1429:recessive allele 1349:Stomatal density 1241: 1240: 1231: 1230: 1221: 1220: 1210: 1209: 1177: 1176: 1163: 1162: 1106: 1105: 1088: 1087: 1062: 1061: 1032:irregular celled 1028: 1027: 1018:cruciferous type 998: 997: 980: 979: 927:angiosperm trees 774: 772: 771: 766: 761: 759: 751: 744: 743: 740: 731: 730: 727: 717: 688: 686: 685: 680: 675: 673: 672: 671: 668: 659: 658: 655: 648: 640: 615: 613: 612: 607: 602: 591: 590: 587: 578: 577: 574: 516: 514: 513: 508: 503: 501: 493: 492: 491: 488: 479: 478: 475: 468: 299:photorespiration 112: 93: 39:Stoma (medicine) 21: 18:Stomatal density 4456: 4455: 4451: 4450: 4449: 4447: 4446: 4445: 4416: 4415: 4414: 4409: 4391: 4360:Botanical terms 4353: 4339: 4303: 4249:Citrus taxonomy 4227:Author citation 4193: 4087: 4066: 3988: 3982: 3978:Turgor pressure 3886: 3874: 3828: 3643:Floral symmetry 3561: 3553: 3483: 3472:Vascular bundle 3467:Vascular tissue 3426: 3386: 3377: 3376: 3362: 3333:Vascular plants 3298: 3294:Plant pathology 3218: 3200: 3195: 3165: 3160: 3106: 3105: 3098: 3052: 3044: 3043: 3036: 3021: 3000: 2999: 2995: 2957: 2956: 2952: 2916: 2915: 2906: 2884: 2883: 2876: 2840: 2839: 2832: 2825: 2804: 2803: 2796: 2781: 2760: 2759: 2755: 2748: 2735: 2734: 2730: 2701:New Phytologist 2694: 2693: 2680: 2640: 2639: 2635: 2591: 2590: 2586: 2542: 2541: 2537: 2506: 2505: 2501: 2465: 2464: 2460: 2436: 2435: 2431: 2421: 2420: 2416: 2401:10.2307/2403413 2378: 2377: 2373: 2337: 2336: 2332: 2268: 2267: 2263: 2233: 2232: 2228: 2176: 2175: 2162: 2145: 2098: 2097: 2090: 2083: 2066: 2065: 2061: 2033: 2032: 2028: 2019: 2017: 2013: 2006: 2000: 1999: 1995: 1949: 1948: 1944: 1935: 1933: 1920: 1919: 1910: 1894:10.1038/448396b 1866: 1865: 1861: 1834:New Phytologist 1831: 1830: 1826: 1817: 1815: 1811: 1810: 1806: 1770: 1769: 1765: 1721: 1720: 1716: 1669: 1668: 1664: 1652: 1648: 1638: 1636: 1634: 1619: 1618: 1614: 1599: 1578: 1577: 1570: 1563: 1550: 1549: 1545: 1538: 1517: 1516: 1512: 1508: 1494: 1491:in response to 1482: 1470: 1458: 1450: 1445: 1438: 1434: 1401: 1397: 1392: 1369: 1365: 1361: 1354: 1305: 1300: 1282: 1259:Nerium oleander 1250: 1248:Stomatal crypts 1238: 1237: 1228: 1227: 1218: 1217: 1207: 1206: 1174: 1173: 1160: 1159: 1126:rubiaceous type 1110:parallel celled 1103: 1102: 1085: 1084: 1070:Caryophyllaceae 1059: 1058: 1025: 1024: 995: 994: 977: 976: 960: 865: 841: 834: 830: 795: 791: 784: 752: 735: 722: 718: 705: 704: 695: 663: 650: 649: 641: 628: 627: 619:and solved for 582: 569: 555: 554: 533: 526: 494: 483: 470: 469: 456: 455: 447:. Evaporation ( 425: 406:water potential 382:turgor pressure 374:water potential 340: 334: 314: 282: 255: 252: 230: 129:cells known as 42: 35: 28: 23: 22: 15: 12: 11: 5: 4454: 4452: 4444: 4443: 4441:Photosynthesis 4438: 4433: 4428: 4418: 4417: 4411: 4410: 4408: 4407: 4396: 4393: 4392: 4390: 4389: 4384: 4379: 4374: 4373: 4372: 4362: 4356: 4354: 4352: 4351: 4350:Related topics 4348: 4344: 4341: 4340: 4338: 4337: 4332: 4327: 4322: 4317: 4311: 4309: 4305: 4304: 4302: 4301: 4299:Taxonomic rank 4296: 4291: 4285: 4280: 4275: 4274: 4273: 4272: 4271: 4266: 4261: 4251: 4241: 4240: 4239: 4234: 4229: 4224: 4219: 4217:Botanical name 4209: 4203: 4201: 4199:Plant taxonomy 4195: 4194: 4192: 4191: 4190: 4189: 4184: 4183: 4182: 4175:Megasporangium 4172: 4171: 4170: 4163:Microsporangia 4155: 4154: 4153: 4148: 4143: 4138: 4128: 4123: 4118: 4117: 4116: 4106: 4101: 4096: 4090: 4088: 4086: 4085: 4080: 4074: 4068: 4067: 4065: 4064: 4059: 4054: 4049: 4048: 4047: 4046: 4045: 4035: 4030: 4025: 4024: 4023: 4018: 4008: 4003: 4001:Cushion plants 3992: 3990: 3984: 3983: 3981: 3980: 3975: 3970: 3965: 3960: 3955: 3954: 3953: 3948: 3938: 3936:Plant hormones 3933: 3928: 3927: 3926: 3919:Photosynthesis 3916: 3911: 3906: 3901: 3896: 3890: 3888: 3880: 3879: 3876: 3875: 3873: 3872: 3867: 3862: 3857: 3852: 3847: 3842: 3836: 3834: 3830: 3829: 3827: 3826: 3821: 3816: 3811: 3806: 3805: 3804: 3799: 3794: 3784: 3783: 3782: 3777: 3772: 3767: 3757: 3752: 3751: 3750: 3749: 3748: 3743: 3738: 3737: 3736: 3731: 3711: 3706: 3701: 3700: 3699: 3698: 3697: 3692: 3682: 3677: 3672: 3667: 3662: 3652: 3651: 3650: 3645: 3640: 3638:Floral formula 3635: 3633:Floral diagram 3630: 3625: 3615: 3614: 3613: 3608: 3603: 3602: 3601: 3596: 3586: 3576: 3571: 3565: 3563: 3562:(incl. Flower) 3555: 3554: 3552: 3551: 3550: 3549: 3544: 3539: 3538: 3537: 3532: 3522: 3512: 3507: 3502: 3497: 3491: 3489: 3485: 3484: 3482: 3481: 3476: 3475: 3474: 3464: 3462:Storage organs 3459: 3454: 3453: 3452: 3442: 3436: 3434: 3428: 3427: 3425: 3424: 3419: 3414: 3409: 3404: 3398: 3396: 3387: 3385: 3384: 3370: 3364: 3363: 3361: 3360: 3355: 3350: 3348:Spermatophytes 3345: 3340: 3335: 3330: 3325: 3320: 3318:Archaeplastida 3315: 3309: 3307: 3300: 3299: 3297: 3296: 3291: 3286: 3281: 3280: 3279: 3272:Phytogeography 3269: 3267:Phytochemistry 3264: 3259: 3254: 3249: 3244: 3239: 3234: 3228: 3226: 3224:Subdisciplines 3220: 3219: 3217: 3216: 3211: 3205: 3202: 3201: 3196: 3194: 3193: 3186: 3179: 3171: 3164: 3163:External links 3161: 3159: 3158: 3096: 3050: 3034: 3019: 2993: 2950: 2929:(6): 627–637. 2904: 2893:(2): 147–152. 2874: 2830: 2823: 2794: 2779: 2753: 2746: 2728: 2707:(4): 956–965. 2678: 2649:(5): 831–834. 2633: 2604:(5): 969–980. 2584: 2535: 2516:(5): 521–530. 2499: 2478:(4): 780–799. 2458: 2447:(3): 235–246. 2429: 2414: 2371: 2330: 2261: 2226: 2160: 2088: 2081: 2059: 2026: 1993: 1958:(3): 345–357. 1942: 1908: 1859: 1824: 1804: 1763: 1734:(2): 497–502. 1714: 1662: 1646: 1632: 1612: 1597: 1568: 1562:978-0582034839 1561: 1543: 1536: 1509: 1507: 1504: 1492: 1480: 1468: 1456: 1448: 1444: 1441: 1436: 1432: 1399: 1395: 1391: 1388: 1367: 1363: 1359: 1352: 1308:Photosynthesis 1304: 1301: 1299: 1296: 1281: 1278: 1269:Drimys winteri 1249: 1246: 1245: 1244: 1234: 1224: 1214: 1195: 1194: 1191:Asclepiadaceae 1170: 1156: 1130: 1129: 1118:Convolvulaceae 1099: 1081: 1055: 1044:Chenopodiaceae 1021: 1002:unequal celled 991: 959: 956: 877:pavement cells 864: 861: 840: 837: 832: 828: 793: 789: 782: 776: 775: 764: 758: 755: 750: 747: 738: 734: 725: 721: 715: 712: 696:assimilation ( 693: 690: 689: 678: 666: 662: 653: 647: 644: 638: 635: 617: 616: 605: 601: 597: 594: 585: 581: 572: 568: 565: 562: 531: 524: 518: 517: 506: 500: 497: 486: 482: 473: 466: 463: 424: 421: 333: 330: 313: 310: 281: 278: 262:photosynthesis 258:Carbon dioxide 254: 250: 247: 229: 226: 218:hyperstomatous 210:amphistomatous 193:Monocotyledons 150:photosynthesis 146:carbon dioxide 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4453: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4426:Plant anatomy 4424: 4423: 4421: 4406: 4398: 4397: 4394: 4388: 4385: 4383: 4380: 4378: 4375: 4371: 4368: 4367: 4366: 4363: 4361: 4358: 4357: 4355: 4349: 4346: 4345: 4342: 4336: 4335:Phytochemical 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4312: 4310: 4306: 4300: 4297: 4295: 4292: 4289: 4286: 4284: 4281: 4279: 4276: 4270: 4267: 4265: 4262: 4260: 4257: 4256: 4255: 4252: 4250: 4247: 4246: 4245: 4242: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4214: 4213: 4210: 4208: 4205: 4204: 4202: 4200: 4196: 4188: 4185: 4181: 4178: 4177: 4176: 4173: 4169: 4166: 4165: 4164: 4161: 4160: 4159: 4156: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4133: 4132: 4129: 4127: 4124: 4122: 4119: 4115: 4112: 4111: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4091: 4089: 4084: 4081: 4079: 4076: 4075: 4073: 4069: 4063: 4060: 4058: 4055: 4053: 4050: 4044: 4041: 4040: 4039: 4036: 4034: 4031: 4029: 4026: 4022: 4019: 4017: 4014: 4013: 4012: 4009: 4007: 4004: 4002: 3999: 3998: 3997: 3994: 3993: 3991: 3985: 3979: 3976: 3974: 3973:Transpiration 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3952: 3949: 3947: 3944: 3943: 3942: 3939: 3937: 3934: 3932: 3929: 3925: 3922: 3921: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3892: 3891: 3889: 3885: 3881: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3837: 3835: 3831: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3803: 3800: 3798: 3795: 3793: 3790: 3789: 3788: 3785: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3762: 3761: 3760:Inflorescence 3758: 3756: 3753: 3747: 3744: 3742: 3739: 3735: 3732: 3730: 3727: 3726: 3725: 3722: 3721: 3720: 3717: 3716: 3715: 3712: 3710: 3707: 3705: 3702: 3696: 3693: 3691: 3688: 3687: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3657: 3656: 3653: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3620: 3619: 3616: 3612: 3609: 3607: 3604: 3600: 3597: 3595: 3592: 3591: 3590: 3587: 3585: 3582: 3581: 3580: 3577: 3575: 3572: 3570: 3567: 3566: 3564: 3560: 3556: 3548: 3545: 3543: 3540: 3536: 3533: 3531: 3528: 3527: 3526: 3523: 3521: 3518: 3517: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3492: 3490: 3486: 3480: 3477: 3473: 3470: 3469: 3468: 3465: 3463: 3460: 3458: 3455: 3451: 3448: 3447: 3446: 3445:Ground tissue 3443: 3441: 3438: 3437: 3435: 3433: 3429: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3403: 3400: 3399: 3397: 3395: 3391: 3388: 3381: 3375: 3372: 3371: 3369: 3368:Plant anatomy 3365: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3310: 3308: 3305: 3301: 3295: 3292: 3290: 3289:Plant ecology 3287: 3285: 3284:Plant anatomy 3282: 3278: 3275: 3274: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3232:Archaeobotany 3230: 3229: 3227: 3225: 3221: 3215: 3212: 3210: 3207: 3206: 3203: 3199: 3192: 3187: 3185: 3180: 3178: 3173: 3172: 3169: 3162: 3154: 3150: 3145: 3140: 3135: 3130: 3126: 3122: 3118: 3114: 3110: 3103: 3101: 3097: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3064: 3060: 3056: 3048: 3041: 3039: 3035: 3030: 3026: 3022: 3016: 3012: 3008: 3004: 2997: 2994: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2954: 2951: 2946: 2942: 2937: 2932: 2928: 2924: 2920: 2913: 2911: 2909: 2905: 2900: 2896: 2892: 2888: 2881: 2879: 2875: 2870: 2866: 2861: 2856: 2852: 2848: 2844: 2837: 2835: 2831: 2826: 2820: 2816: 2812: 2808: 2801: 2799: 2795: 2790: 2786: 2782: 2776: 2772: 2768: 2764: 2757: 2754: 2749: 2743: 2739: 2732: 2729: 2724: 2720: 2715: 2710: 2706: 2702: 2698: 2691: 2689: 2687: 2685: 2683: 2679: 2674: 2670: 2665: 2660: 2656: 2652: 2648: 2644: 2637: 2634: 2629: 2625: 2621: 2617: 2612: 2607: 2603: 2599: 2595: 2588: 2585: 2580: 2576: 2571: 2566: 2562: 2558: 2554: 2550: 2546: 2539: 2536: 2531: 2527: 2523: 2519: 2515: 2511: 2503: 2500: 2495: 2491: 2486: 2481: 2477: 2473: 2469: 2462: 2459: 2454: 2450: 2446: 2442: 2441: 2433: 2430: 2425: 2418: 2415: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2375: 2372: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2334: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2301: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2227: 2222: 2218: 2213: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2173: 2171: 2169: 2167: 2165: 2161: 2156: 2150: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2102: 2095: 2093: 2089: 2084: 2078: 2074: 2070: 2063: 2060: 2054: 2049: 2045: 2041: 2037: 2030: 2027: 2012: 2005: 2004: 1997: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1943: 1932:on 2008-06-16 1931: 1927: 1923: 1917: 1915: 1913: 1909: 1904: 1900: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1847: 1843: 1839: 1835: 1828: 1825: 1814: 1808: 1805: 1800: 1796: 1791: 1786: 1782: 1778: 1774: 1767: 1764: 1759: 1755: 1750: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1701: 1696: 1692: 1688: 1684: 1680: 1677: 1675: 1666: 1663: 1659: 1657: 1650: 1647: 1635: 1629: 1625: 1624: 1616: 1613: 1608: 1604: 1600: 1594: 1590: 1586: 1582: 1575: 1573: 1569: 1564: 1558: 1554: 1547: 1544: 1539: 1533: 1529: 1524: 1523: 1514: 1511: 1505: 1503: 1501: 1496: 1490: 1486: 1478: 1474: 1466: 1462: 1454: 1442: 1440: 1430: 1426: 1422: 1421: 1416: 1412: 1407: 1405: 1389: 1387: 1385: 1384:abscisic acid 1381: 1375: 1373: 1372:transpiration 1356: 1350: 1346: 1344: 1340: 1336: 1332: 1329:. Guard cell 1328: 1324: 1320: 1315: 1313: 1309: 1302: 1297: 1295: 1293: 1289: 1288: 1279: 1277: 1275: 1271: 1270: 1265: 1261: 1260: 1255: 1247: 1242: 1235: 1232: 1225: 1222: 1215: 1211: 1204: 1203: 1202: 1200: 1192: 1188: 1187: 1182: 1178: 1171: 1168: 1164: 1157: 1154: 1150: 1146: 1142: 1139: 1138: 1137: 1135: 1127: 1123: 1119: 1115: 1111: 1107: 1100: 1097: 1093: 1092:Molluginaceae 1089: 1086:hemiparacytic 1082: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1049: 1048:Cucurbitaceae 1045: 1041: 1037: 1033: 1029: 1022: 1019: 1015: 1011: 1007: 1003: 999: 992: 989: 985: 981: 974: 973: 972: 970: 965: 957: 955: 953: 949: 945: 941: 936: 932: 928: 923: 920: 915: 913: 909: 905: 901: 897: 893: 889: 884: 880: 878: 874: 870: 862: 860: 858: 854: 845: 838: 836: 827: 823: 819: 815: 811: 807: 803: 799: 788: 781: 762: 756: 753: 748: 736: 732: 723: 713: 710: 703: 702: 701: 699: 676: 664: 660: 651: 645: 642: 636: 633: 626: 625: 624: 622: 603: 599: 595: 583: 579: 570: 563: 560: 553: 552: 551: 549: 545: 541: 537: 530: 523: 504: 498: 495: 484: 480: 471: 464: 461: 454: 453: 452: 450: 446: 442: 438: 434: 430: 429:transpiration 422: 420: 417: 415: 411: 407: 402: 398: 397:abscisic acid 393: 391: 387: 383: 379: 375: 371: 366: 362: 358: 354: 351:humidity), a 344: 339: 331: 329: 327: 318: 312:C.A.M. plants 311: 309: 307: 302: 300: 295: 291: 287: 279: 277: 275: 274:transpiration 271: 267: 263: 259: 248: 243: 239: 234: 227: 225: 223: 219: 215: 214:hypostomatous 211: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 165: 163: 162:transpiration 159: 155: 151: 147: 143: 139: 134: 132: 128: 124: 120: 116: 108: 104: 101: 97: 89: 85: 77: 76: 70: 62: 55: 51: 46: 40: 33: 19: 4330:Horticulture 4320:Floriculture 4222:Correct name 4072:Reproduction 4062:Woody plants 3987:Plant growth 3946:Gas Exchange 3931:Phytomelanin 3859: 3809:Plant embryo 3559:Reproductive 3407:Phragmoplast 3116: 3112: 3058: 3054: 3046: 3002: 2996: 2963: 2959: 2953: 2926: 2922: 2890: 2886: 2850: 2846: 2806: 2762: 2756: 2737: 2731: 2704: 2700: 2646: 2642: 2636: 2601: 2597: 2587: 2552: 2548: 2538: 2513: 2509: 2502: 2475: 2471: 2461: 2444: 2438: 2432: 2423: 2417: 2384: 2380: 2374: 2347: 2343: 2333: 2274: 2270: 2264: 2242:(1): 90–95. 2239: 2235: 2229: 2186: 2182: 2149:cite journal 2108: 2104: 2072: 2062: 2043: 2039: 2029: 2018:, retrieved 2011:the original 2002: 1996: 1955: 1951: 1945: 1934:. Retrieved 1930:the original 1925: 1876: 1872: 1862: 1837: 1833: 1827: 1816:. Retrieved 1807: 1780: 1776: 1766: 1731: 1727: 1717: 1685:(1): 23–29. 1682: 1678: 1673: 1665: 1655: 1649: 1637:. Retrieved 1622: 1615: 1580: 1552: 1546: 1521: 1513: 1497: 1446: 1418: 1414: 1410: 1408: 1393: 1376: 1357: 1347: 1316: 1306: 1286: 1283: 1274:cloud forest 1267: 1263: 1262:, conifers, 1258: 1251: 1236: 1226: 1216: 1205: 1196: 1189:and several 1184: 1180: 1172: 1166: 1158: 1144: 1140: 1131: 1125: 1109: 1101: 1083: 1077: 1066:cross-celled 1065: 1057: 1051: 1040:Boraginaceae 1031: 1023: 1017: 1014:Crassulaceae 1006:Brassicaceae 1001: 993: 983: 975: 961: 952:silver maple 924: 916: 911: 907: 902:(a putative 899: 895: 891: 885: 881: 866: 853:conceptacles 850: 825: 821: 817: 813: 809: 805: 786: 779: 777: 697: 691: 620: 618: 547: 543: 539: 535: 528: 521: 519: 448: 426: 418: 394: 386:microfibrils 349: 323: 303: 283: 270:water vapour 256: 241: 217: 213: 209: 189:Dicotyledons 166: 158:Water vapour 135: 123:gas exchange 114: 106: 102: 95: 87: 81: 73: 4431:Plant cells 4146:Pollen tube 4141:Pollinators 4131:Pollination 4126:Germination 3941:Respiration 3924:Chlorophyll 3770:Pedicellate 3704:Gametophyte 3623:Aestivation 3574:Antheridium 3569:Archegonium 3417:Plasmodesma 3394:Plant cells 3257:Paleobotany 3252:Ethnobotany 3237:Astrobotany 2344:Development 2020:October 20, 1331:protoplasts 1327:chlorophyll 1287:Arabidopsis 1181:four-celled 1074:Acanthaceae 1036:Apocynaceae 984:star-celled 978:actinocytic 948:sugar maple 944:white birch 863:Development 414:plasmolysed 353:proton pump 173:land plants 142:respiration 131:guard cells 48:Stoma in a 4420:Categories 4168:Microspore 4158:Sporangium 4136:Artificial 3824:Sporophyte 3819:Sporophyll 3814:Receptacle 3709:Gynandrium 3579:Androecium 3488:Vegetative 3358:Angiosperm 3353:Gymnosperm 3247:Dendrology 2300:2433/91250 1936:2013-02-24 1818:2015-10-04 1506:References 1487:results a 1417:gene using 1343:Zeaxanthin 1319:blue light 1292:coronatine 1229:desmocytic 1175:tetracytic 1167:six-celled 1153:Cyperaceae 1145:grass-like 1026:anomocytic 1010:Solanaceae 996:anisocytic 338:Guard cell 177:liverworts 169:sporophyte 127:parenchyma 4365:Botanists 4283:Herbarium 4180:Megaspore 4078:Evolution 4021:Subshrubs 3989:and habit 3914:Nutrition 3909:Cellulose 3904:Bulk flow 3887:Materials 3850:Epidermis 3714:Gynoecium 3695:Endosperm 3690:Dispersal 3606:Staminode 3542:Sessility 3530:Cataphyll 3450:Mesophyll 3402:Cell wall 3343:Lycophyte 3323:Bryophyte 3277:Geobotany 3262:Phycology 2387:(1): 14. 2309:0028-0836 2203:1543-8120 2189:: e0162. 1972:1573-5079 1607:224833888 1409:The gene 1404:genotypes 1335:potassium 1323:red light 1239:polocytic 1219:pericytic 1208:hypocytic 1179:(meaning 1165:(meaning 1161:hexacytic 1143:(meaning 1114:Rubiaceae 1108:(meaning 1104:paracytic 1096:Aizoaceae 1064:(meaning 1030:(meaning 1000:(meaning 988:Ebenaceae 982:(meaning 940:White ash 873:trichomes 839:Evolution 733:− 661:− 580:− 481:− 433:diffusion 390:epidermal 365:potassium 294:mesophyll 185:hornworts 154:diffusion 119:epidermis 4405:Category 4325:Forestry 4315:Agronomy 4308:Practice 4259:Cultivar 4254:Cultigen 4114:timeline 4006:Rosettes 3894:Aleurone 3870:Trichome 3787:Perianth 3599:Filament 3457:Meristem 3380:glossary 3242:Bryology 3153:18077401 3091:83843467 3083:11130071 2988:39010041 2980:11130053 2945:86237270 2869:23730938 2723:23731256 2673:16959560 2628:13612107 2620:16959575 2579:19864375 2530:21632378 2494:31571301 2366:25063454 2317:20010603 2256:19781980 2221:23864836 2141:32009729 2133:15178800 1988:28367821 1980:24442366 1903:17653153 1854:33863211 1799:11559731 1758:12231838 1709:12096815 1213:opening. 1134:monocots 1122:Fabaceae 1060:diacytic 437:humidity 238:bok choy 228:Function 195:such as 115:stomates 4083:Ecology 3840:Cuticle 3670:Capsule 3660:Anatomy 3611:Tapetum 3535:Petiole 3510:Rhizome 3505:Rhizoid 3432:Tissues 3422:Vacuole 3412:Plastid 3214:Outline 3209:History 3144:2148358 3121:Bibcode 3063:Bibcode 3029:9332099 2789:9332099 2570:2785996 2409:2403413 2389:Bibcode 2325:4302041 2279:Bibcode 2212:3711358 2113:Bibcode 2105:Science 1881:Bibcode 1700:4233769 1656:Stomata 1639:15 June 1623:Stomata 1581:Stomata 1465:biomass 1339:sucrose 1149:Poaceae 935:willows 931:Poplars 857:cuticle 824:), and 410:osmosis 401:cytosol 378:osmosis 357:protons 355:drives 290:RuBisCO 107:stomate 98:, from 96:stomata 4387:Plants 4290:(IAPT) 4043:Lianas 4011:Shrubs 3963:Starch 3855:Nectar 3775:Raceme 3741:Stigma 3729:Locule 3719:Carpel 3680:Pyrena 3618:Flower 3594:Anther 3589:Stamen 3584:Pollen 3306:groups 3198:Botany 3151:  3141:  3089:  3081:  3055:Nature 3027:  3017:  2986:  2978:  2960:Nature 2943:  2867:  2821:  2787:  2777:  2744:  2721:  2671:  2626:  2618:  2577:  2567:  2528:  2492:  2407:  2364:  2323:  2315:  2307:  2271:Nature 2254:  2219:  2209:  2201:  2139:  2131:  2079:  1986:  1978:  1970:  1901:  1873:Nature 1852:  1797:  1756:  1749:158804 1746:  1707:  1697:  1630:  1605:  1595:  1559:  1534:  1447:The CO 1425:allele 1380:turgor 1046:, and 1012:, and 969:dicots 778:where 520:where 370:malate 244:) leaf 181:mosses 144:, and 138:oxygen 84:botany 50:tomato 32:Stroma 4347:Lists 4264:Group 4187:Spore 4121:Flora 4038:Vines 4033:Trees 3996:Habit 3968:Sugar 3860:Stoma 3802:Sepal 3797:Petal 3792:Tepal 3780:Umbel 3765:Bract 3746:Style 3734:Ovule 3724:Ovary 3665:Berry 3655:Fruit 3648:Whorl 3515:Shoot 3313:Algae 3304:Plant 3087:S2CID 3025:S2CID 2984:S2CID 2941:S2CID 2785:S2CID 2624:S2CID 2405:JSTOR 2321:S2CID 2137:S2CID 2014:(PDF) 2007:(PDF) 1984:S2CID 1603:S2CID 1312:xylem 1264:Hakea 1199:ferns 1186:Tilia 958:Types 925:Most 919:Auxin 445:ozone 205:maize 197:onion 103:ÏƒÏ„ÏŒÎžÎą 100:Greek 88:stoma 56:image 4269:Grex 4151:Self 3685:Seed 3547:Stem 3525:Leaf 3500:Root 3495:Bulb 3479:Wood 3440:Cork 3338:Fern 3149:PMID 3079:PMID 3015:ISBN 2976:PMID 2865:PMID 2819:ISBN 2775:ISBN 2742:ISBN 2719:PMID 2669:PMID 2643:Cell 2616:PMID 2598:Cell 2575:PMID 2526:PMID 2490:PMID 2362:PMID 2313:PMID 2305:ISSN 2252:PMID 2217:PMID 2199:ISSN 2155:link 2129:PMID 2077:ISBN 2022:2014 1976:PMID 1968:ISSN 1899:PMID 1850:PMID 1795:PMID 1754:PMID 1705:PMID 1641:2016 1628:ISBN 1593:ISBN 1557:ISBN 1532:ISBN 1266:and 1151:and 1120:and 1094:and 1072:and 950:and 942:and 933:and 912:SPCH 900:YODA 785:and 527:and 266:leaf 203:and 183:and 86:, a 3958:Sap 3675:Nut 3520:Bud 3139:PMC 3129:doi 3117:104 3071:doi 3059:408 3047:HIC 3007:doi 2968:doi 2964:408 2931:doi 2927:148 2895:doi 2855:doi 2811:doi 2767:doi 2709:doi 2705:199 2659:hdl 2651:doi 2647:126 2606:doi 2602:126 2565:PMC 2557:doi 2553:151 2518:doi 2480:doi 2476:101 2449:doi 2397:doi 2352:doi 2348:141 2295:hdl 2287:doi 2275:463 2244:doi 2207:PMC 2191:doi 2121:doi 2109:304 2048:doi 1960:doi 1889:doi 1877:448 1842:doi 1838:153 1785:doi 1744:PMC 1736:doi 1732:102 1695:PMC 1687:doi 1676:L." 1585:doi 1493:atm 1415:HIC 1411:HIC 1396:atm 1368:atm 1364:atm 1254:wax 1197:In 1132:In 971:: 908:TMM 896:ERL 892:EPF 812:), 754:1.6 292:in 201:oat 111:pl. 92:pl. 82:In 4422:: 3147:. 3137:. 3127:. 3115:. 3111:. 3099:^ 3085:. 3077:. 3069:. 3057:. 3037:^ 3023:. 3013:. 2982:. 2974:. 2962:. 2939:. 2925:. 2921:. 2907:^ 2891:17 2889:. 2877:^ 2863:. 2851:36 2849:. 2845:. 2833:^ 2817:. 2797:^ 2783:. 2773:. 2717:. 2703:. 2699:. 2681:^ 2667:. 2657:. 2645:. 2622:. 2614:. 2600:. 2596:. 2573:. 2563:. 2551:. 2547:. 2524:. 2514:95 2512:. 2488:. 2474:. 2470:. 2445:63 2443:. 2403:. 2395:. 2385:20 2383:. 2360:. 2346:. 2342:. 2319:. 2311:. 2303:. 2293:. 2285:. 2273:. 2250:. 2240:13 2238:. 2215:. 2205:. 2197:. 2187:11 2185:. 2181:. 2163:^ 2151:}} 2147:{{ 2135:. 2127:. 2119:. 2107:. 2103:. 2091:^ 2044:49 2042:. 2038:. 1982:. 1974:. 1966:. 1954:. 1924:. 1911:^ 1897:. 1887:. 1875:. 1871:. 1848:. 1836:. 1793:. 1781:52 1779:. 1775:. 1752:. 1742:. 1730:. 1726:. 1703:. 1693:. 1683:89 1681:. 1601:. 1591:. 1571:^ 1530:. 1528:88 1477:C4 1473:C3 1449:2 1386:. 1276:. 1116:, 1042:, 1038:, 1008:, 875:, 623:: 249:CO 222:Ξm 199:, 164:. 156:. 113:: 94:: 3382:) 3378:( 3190:e 3183:t 3176:v 3155:. 3131:: 3123:: 3093:. 3073:: 3065:: 3051:2 3031:. 3009:: 2990:. 2970:: 2947:. 2933:: 2901:. 2897:: 2871:. 2857:: 2827:. 2813:: 2791:. 2769:: 2750:. 2725:. 2711:: 2675:. 2661:: 2653:: 2630:. 2608:: 2581:. 2559:: 2532:. 2520:: 2496:. 2482:: 2455:. 2451:: 2411:. 2399:: 2391:: 2368:. 2354:: 2327:. 2297:: 2289:: 2281:: 2258:. 2246:: 2223:. 2193:: 2157:) 2143:. 2123:: 2115:: 2085:. 2056:. 2050:: 1990:. 1962:: 1956:9 1939:. 1905:. 1891:: 1883:: 1856:. 1844:: 1821:. 1801:. 1787:: 1760:. 1738:: 1711:. 1689:: 1643:. 1609:. 1587:: 1565:. 1540:. 1481:2 1469:2 1457:2 1437:2 1433:2 1400:2 1362:( 1360:2 1353:2 1193:. 1155:. 1128:. 1098:. 1080:. 1054:. 1020:. 990:. 833:2 829:i 826:C 822:g 820:/ 818:A 814:g 810:E 808:/ 806:A 804:( 794:2 790:i 787:C 783:a 780:C 763:, 757:P 749:g 746:) 741:i 737:C 728:a 724:C 720:( 714:= 711:A 698:A 694:2 677:. 669:a 665:e 656:i 652:e 646:P 643:E 637:= 634:g 621:g 604:P 600:/ 596:g 593:) 588:a 584:e 575:i 571:e 567:( 564:= 561:E 548:g 544:r 540:r 536:P 532:a 529:e 525:i 522:e 505:, 499:r 496:P 489:a 485:e 476:i 472:e 465:= 462:E 449:E 251:2 240:( 109:( 90:( 41:. 34:. 20:)

Index

Stomatal density
Stroma
Stoma (medicine)

tomato
scanning electron microscope


Tradescantia zebrina
botany
Greek
epidermis
gas exchange
parenchyma
guard cells
oxygen
respiration
carbon dioxide
photosynthesis
diffusion
Water vapour
transpiration
sporophyte
land plants
liverworts
mosses
hornworts
Dicotyledons
Monocotyledons
onion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑