Knowledge (XXG)

Lefschetz hyperplane theorem

Source đź“ť

1137:, therefore, can be understood if one understands how hyperplane sections are identified across the slits and at the singular points. Away from the singular points, the identification can be described inductively. At the singular points, the 605: 464: 323: 1966: 1889: 1828: 2258: 173: 86:
for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.
1975:
nearly yields the usual Lefschetz theorem for cohomology with coefficients in any field of characteristic zero. It is, however, slightly weaker because of the additional assumptions on
1691: 2102: 816: 731: 1621: 2036: 245: 893: 2996: 2390: 2348: 1729: 925: 848: 763: 637: 496: 355: 1767: 1561: 1021: 2128: 2439: 2413:, with the isomorphism in de Rham cohomology given by multiplication by a power of the class of the Kähler form. It can fail for non-Kähler manifolds: for example, 2156: 1347:
Neither Lefschetz's proof nor Andreotti and Frankel's proof directly imply the Lefschetz hyperplane theorem for homotopy groups. An approach that does was found by
1095: 1070:-plane and making an additional finite number of slits, the resulting family of hyperplane sections is topologically trivial. That is, it is a product of a generic 1048: 988: 669: 528: 387: 1249: 2302: 2282: 2224: 2204: 2056: 1993: 1581: 1513: 1493: 1473: 1453: 1433: 1413: 1393: 1373: 1337: 1317: 1297: 1273: 1226: 1198: 1159: 1135: 1115: 1068: 961: 213: 193: 139: 119: 2748: 2158:-adic cohomology. Up to some restrictions on the constructible sheaf, the Lefschetz theorem remains true for constructible sheaves in positive characteristic. 2138:
The motivation behind Artin and Grothendieck's proof for constructible sheaves was to give a proof that could be adapted to the setting of Ă©tale and
2698: 2010:
found a generalization of the Lefschetz hyperplane theorem to the case where the coefficients of the cohomology lie not in a field but instead in a
679:, one can show that each of these statements is equivalent to a vanishing theorem for certain relative topological invariants. In order, these are: 3011: 3006: 536: 2970: 2882: 2845: 2812: 1892: 395: 254: 2828:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics , vol. 48, Berlin, New York: 2926: 1898: 1833: 1772: 1201: 2703: 1972: 2417:
have vanishing second cohomology groups, so there is no analogue of the second cohomology class of a hyperplane section.
2954: 2907: 2229: 144: 1626: 2869:, Collection de Monographies publiée sous la Direction de M. Émile Borel (in French), Paris: Gauthier-Villars 2061: 1530:
found that under certain restrictions, it is possible to prove a Lefschetz-type theorem for the Hodge groups
771: 686: 1586: 2681: 2007: 63: 3001: 2629: 2162: 90: 2935: 2017: 218: 2800: 2686: 2421: 2011: 856: 676: 2803:(1992), "Solomon Lefschetz", in National Academy of Sciences, Office of the Home Secretary (ed.), 2781: 2654: 2181: 1161:
of a particularly simple form. This coordinate system can be used to prove the theorem directly.
56: 36: 32: 2409: 2353: 2311: 1696: 898: 821: 736: 2966: 2878: 2862: 2841: 2821: 2808: 2796: 2792: 2765: 2646: 2443:
of smooth projective varieties over algebraically closed fields of positive characteristic by
1527: 1276: 936: 610: 469: 328: 83: 44: 1734: 1533: 993: 2958: 2833: 2757: 2712: 2673: 2638: 2624: 2305: 2107: 1523: 1395:
of a section of a line bundle. An application of Morse theory to this section implies that
1173: 940: 52: 2980: 2915: 2892: 2855: 2777: 2726: 2666: 2424: 2141: 1073: 1026: 966: 642: 501: 360: 2976: 2911: 2888: 2851: 2829: 2773: 2722: 2662: 2261: 1231: 17: 2743: 2739: 2620: 2444: 2287: 2267: 2209: 2189: 2041: 1978: 1566: 1498: 1478: 1458: 1438: 1418: 1398: 1378: 1358: 1322: 1302: 1282: 1258: 1211: 1205: 1183: 1169: 1144: 1120: 1100: 1053: 946: 198: 178: 124: 104: 71: 47:
and the shape of its subvarieties. More precisely, the theorem says that for a variety
2990: 2946: 2922: 2785: 2003: 2403:. It immediately implies the injectivity part of the Lefschetz hyperplane theorem. 1769:. By Hodge theory, these cohomology groups are equal to the sheaf cohomology groups 2414: 2169: 1177: 1348: 1455:
or more. From this, it follows that the relative homology and homotopy groups of
2899: 1138: 28: 2837: 2694: 1352: 1252: 67: 2962: 2769: 2717: 2650: 1023:. Because a generic hyperplane section is smooth, all but a finite number of 600:{\displaystyle \pi _{k}(Y,\mathbb {Z} )\rightarrow \pi _{k}(X,\mathbb {Z} )} 247:
is smooth. The Lefschetz theorem refers to any of the following statements:
89:
A far-reaching generalization of the hard Lefschetz theorem is given by the
1200:
plays the role of a Morse function. The basic tool in this approach is the
2761: 2658: 1339:. The long exact sequence of relative homology then gives the theorem. 459:{\displaystyle H^{k}(X,\mathbb {Z} )\rightarrow H^{k}(Y,\mathbb {Z} )} 318:{\displaystyle H_{k}(Y,\mathbb {Z} )\rightarrow H_{k}(X,\mathbb {Z} )} 943:
to prove the theorem. Rather than considering the hyperplane section
2642: 43:
is a precise statement of certain relations between the shape of an
1961:{\displaystyle H^{q}(X,\textstyle \bigwedge ^{p}\Omega _{X}|_{Y})} 2928:
ThĂ©orie de Hodge et thĂ©orème de Lefschetz « difficile Â»
2165:. In this setting, the theorem holds for highly singular spaces. 97:
The Lefschetz hyperplane theorem for complex projective varieties
2399:, christened in French by Grothendieck more colloquially as the 1884:{\displaystyle H^{q}(Y,\textstyle \bigwedge ^{p}\Omega _{Y})} 1823:{\displaystyle H^{q}(X,\textstyle \bigwedge ^{p}\Omega _{X})} 2086: 2023: 1593: 2953:, Cambridge Studies in Advanced Mathematics, vol. 77, 1050:
are smooth varieties. After removing these points from the
1176:
recognized that Lefschetz's theorem could be recast using
2501: 2627:(1959), "The Lefschetz theorem on hyperplane sections", 2226:-dimensional non-singular complex projective variety in 1999:
Artin and Grothendieck's proof for constructible sheaves
1141:
implies that there is a choice of coordinate system for
1351:
no later than 1957 and was simplified and published by
1921: 1856: 1795: 963:
alone, he put it into a family of hyperplane sections
2427: 2356: 2314: 2290: 2270: 2232: 2212: 2192: 2144: 2110: 2064: 2044: 2020: 1981: 1901: 1836: 1775: 1737: 1699: 1629: 1589: 1569: 1536: 1501: 1481: 1461: 1441: 1421: 1401: 1381: 1361: 1325: 1305: 1285: 1261: 1234: 1214: 1186: 1147: 1123: 1103: 1076: 1056: 1029: 996: 969: 949: 901: 859: 824: 774: 739: 689: 645: 613: 539: 504: 472: 398: 363: 331: 257: 221: 201: 181: 147: 141:-dimensional complex projective algebraic variety in 127: 107: 1891:. Therefore, the theorem follows from applying the 2433: 2384: 2342: 2296: 2276: 2252: 2218: 2198: 2150: 2134:The Lefschetz theorem in other cohomology theories 2122: 2096: 2050: 2030: 1987: 1960: 1883: 1822: 1761: 1723: 1685: 1615: 1575: 1555: 1507: 1487: 1467: 1447: 1427: 1407: 1387: 1367: 1331: 1311: 1291: 1267: 1243: 1220: 1192: 1153: 1129: 1109: 1089: 1062: 1042: 1015: 982: 955: 919: 887: 842: 810: 757: 725: 663: 631: 599: 522: 490: 458: 381: 349: 317: 239: 207: 187: 167: 133: 113: 2512: 2951:Hodge theory and complex algebraic geometry. II 1998: 2807:, vol. 61, The National Academies Press, 2406:The hard Lefschetz theorem in fact holds for 2308:of a hyperplane gives an isomorphism between 466:in singular cohomology is an isomorphism for 8: 2253:{\displaystyle \mathbb {C} \mathbf {P} ^{N}} 2014:. They prove that for a constructible sheaf 1519:Kodaira and Spencer's proof for Hodge groups 168:{\displaystyle \mathbb {C} \mathbf {P} ^{N}} 82:. A result of this kind was first stated by 2867:L'Analysis situs et la gĂ©omĂ©trie algĂ©brique 325:in singular homology is an isomorphism for 2582: 2570: 2546: 2420:The hard Lefschetz theorem was proven for 2997:Topological methods of algebraic geometry 2906:, Annals of Mathematics Studies, No. 51, 2716: 2685: 2490: 2426: 2361: 2355: 2319: 2313: 2289: 2269: 2244: 2239: 2234: 2233: 2231: 2211: 2191: 2143: 2109: 2085: 2084: 2069: 2063: 2043: 2022: 2021: 2019: 1980: 1948: 1943: 1936: 1926: 1906: 1900: 1871: 1861: 1841: 1835: 1810: 1800: 1780: 1774: 1736: 1698: 1662: 1634: 1628: 1598: 1592: 1591: 1588: 1568: 1541: 1535: 1500: 1480: 1460: 1440: 1420: 1400: 1380: 1360: 1324: 1304: 1284: 1260: 1233: 1213: 1185: 1146: 1122: 1102: 1081: 1075: 1055: 1034: 1028: 1007: 995: 974: 968: 948: 900: 864: 858: 823: 801: 800: 779: 773: 738: 716: 715: 694: 688: 644: 612: 590: 589: 574: 560: 559: 544: 538: 503: 471: 449: 448: 433: 419: 418: 403: 397: 362: 330: 308: 307: 292: 278: 277: 262: 256: 220: 200: 180: 159: 154: 149: 148: 146: 126: 106: 2168:A Lefschetz-type theorem also holds for 1686:{\displaystyle H^{p,q}(X)\to H^{p,q}(Y)} 768:The relative singular cohomology groups 2502:Griffiths, Spencer & Whitehead 1992 2459: 2448: 2161:The theorem can also be generalized to 2097:{\displaystyle H^{k}(U,{\mathcal {F}})} 811:{\displaystyle H^{k}(X,Y;\mathbb {Z} )} 726:{\displaystyle H_{k}(X,Y;\mathbb {Z} )} 231: 2605: 2558: 2523: 2478: 2466: 1518: 1515:and higher, which yields the theorem. 683:The relative singular homology groups 2594: 1616:{\displaystyle {\mathcal {O}}_{X}(Y)} 7: 2877:, New York: Chelsea Publishing Co., 2749:Publications MathĂ©matiques de l'IHÉS 2535: 2826:Positivity in algebraic geometry. I 1623:is ample. Then the restriction map 1583:is smooth and that the line bundle 1933: 1868: 1807: 25: 1968:and using a long exact sequence. 1355:in 1959. Thom and Bott interpret 1342: 2240: 1893:Akizuki–Nakano vanishing theorem 1435:by adjoining cells of dimension 1319:are trivial in degree less than 155: 2469:, Theorem 7.3 and Corollary 7.4 3012:Theorems in algebraic topology 3007:Theorems in algebraic geometry 2379: 2373: 2337: 2331: 2091: 2075: 2031:{\displaystyle {\mathcal {F}}} 1971:Combining this proof with the 1954: 1944: 1912: 1877: 1847: 1816: 1786: 1680: 1674: 1655: 1652: 1646: 1610: 1604: 1204:, which states that a complex 882: 870: 805: 785: 720: 700: 594: 580: 567: 564: 550: 453: 439: 426: 423: 409: 312: 298: 285: 282: 268: 240:{\displaystyle U=X\setminus Y} 1: 2704:Michigan Mathematical Journal 1973:universal coefficient theorem 1251:) has the homotopy type of a 1165:Andreotti and Frankel's proof 888:{\displaystyle \pi _{k}(X,Y)} 853:The relative homotopy groups 2513:Andreotti & Frankel 1959 1563:. Specifically, assume that 1495:are concentrated in degrees 41:Lefschetz hyperplane theorem 2873:Lefschetz, Solomon (1971), 2744:"La conjecture de Weil. II" 2699:"On a theorem of Lefschetz" 2401:ThĂ©orème de Lefschetz vache 1097:with an open subset of the 195:be a hyperplane section of 3028: 2955:Cambridge University Press 2908:Princeton University Press 2385:{\displaystyle H^{n+k}(X)} 2343:{\displaystyle H^{n-k}(X)} 2179: 1724:{\displaystyle p+q<n-1} 1375:as the vanishing locus in 2838:10.1007/978-3-642-18808-4 1228:(and thus real dimension 1202:Andreotti–Frankel theorem 920:{\displaystyle k\leq n-1} 843:{\displaystyle k\leq n-1} 758:{\displaystyle k\leq n-1} 2963:10.1017/CBO9780511615177 2058:, the cohomology groups 1415:can be constructed from 1343:Thom's and Bott's proofs 1275:. This implies that the 632:{\displaystyle k<n-1} 491:{\displaystyle k<n-1} 350:{\displaystyle k<n-1} 18:Strong Lefschetz theorem 2304:-fold product with the 1762:{\displaystyle p+q=n-1} 1556:{\displaystyle H^{p,q}} 1016:{\displaystyle Y=Y_{0}} 2718:10.1307/mmj/1028998225 2435: 2397:hard Lefschetz theorem 2386: 2344: 2298: 2278: 2254: 2220: 2200: 2176:Hard Lefschetz theorem 2152: 2124: 2123:{\displaystyle k>n} 2098: 2052: 2032: 2008:Alexander Grothendieck 1989: 1962: 1885: 1824: 1763: 1725: 1687: 1617: 1577: 1557: 1509: 1489: 1469: 1449: 1429: 1409: 1389: 1369: 1333: 1313: 1293: 1269: 1245: 1222: 1194: 1155: 1131: 1111: 1091: 1064: 1044: 1017: 984: 957: 921: 889: 844: 812: 759: 727: 665: 639:and is surjective for 633: 607:is an isomorphism for 601: 524: 492: 460: 383: 357:and is surjective for 351: 319: 241: 209: 189: 169: 135: 115: 2630:Annals of Mathematics 2436: 2434:{\displaystyle \ell } 2387: 2345: 2299: 2279: 2255: 2221: 2201: 2163:intersection homology 2153: 2151:{\displaystyle \ell } 2125: 2099: 2053: 2038:on an affine variety 2033: 1990: 1963: 1886: 1825: 1764: 1726: 1693:is an isomorphism if 1688: 1618: 1578: 1558: 1510: 1490: 1470: 1450: 1430: 1410: 1390: 1370: 1334: 1314: 1294: 1270: 1246: 1223: 1208:of complex dimension 1195: 1180:. Here the parameter 1164: 1156: 1132: 1112: 1092: 1090:{\displaystyle Y_{t}} 1065: 1045: 1043:{\displaystyle Y_{t}} 1018: 985: 983:{\displaystyle Y_{t}} 958: 931: 922: 890: 845: 813: 760: 728: 666: 664:{\displaystyle k=n-1} 634: 602: 525: 523:{\displaystyle k=n-1} 498:and is injective for 493: 461: 384: 382:{\displaystyle k=n-1} 352: 320: 242: 210: 190: 170: 136: 116: 91:decomposition theorem 2900:Milnor, John Willard 2805:Biographical Memoirs 2801:Whitehead, George W. 2678:The Hodge Conjecture 2425: 2354: 2312: 2288: 2268: 2230: 2210: 2190: 2142: 2108: 2062: 2042: 2018: 1979: 1899: 1834: 1773: 1735: 1731:and is injective if 1697: 1627: 1587: 1567: 1534: 1499: 1479: 1459: 1439: 1419: 1399: 1379: 1359: 1323: 1303: 1283: 1259: 1255:of (real) dimension 1232: 1212: 1184: 1145: 1121: 1101: 1074: 1054: 1027: 994: 967: 947: 899: 857: 822: 772: 737: 687: 643: 611: 537: 502: 470: 396: 361: 329: 255: 219: 199: 179: 145: 125: 105: 2012:constructible sheaf 939:used his idea of a 677:long exact sequence 78:determine those of 2863:Lefschetz, Solomon 2822:Lazarsfeld, Robert 2797:Spencer, Donald C. 2793:Griffiths, Phillip 2762:10.1007/BF02684780 2445:Pierre Deligne 2431: 2382: 2340: 2294: 2274: 2250: 2216: 2196: 2182:Lefschetz manifold 2148: 2120: 2094: 2048: 2028: 1985: 1958: 1957: 1881: 1880: 1820: 1819: 1759: 1721: 1683: 1613: 1573: 1553: 1505: 1485: 1465: 1445: 1425: 1405: 1385: 1365: 1329: 1309: 1289: 1265: 1244:{\displaystyle 2n} 1241: 1218: 1190: 1151: 1127: 1107: 1087: 1060: 1040: 1013: 980: 953: 917: 885: 840: 808: 755: 723: 661: 629: 597: 520: 488: 456: 379: 347: 315: 237: 205: 185: 165: 131: 111: 57:hyperplane section 37:algebraic topology 33:algebraic geometry 31:, specifically in 2972:978-0-521-80283-3 2884:978-0-8284-0234-7 2847:978-3-540-22533-1 2814:978-0-309-04746-3 2674:Beauville, Arnaud 2633:, Second Series, 2625:Frankel, Theodore 2297:{\displaystyle k} 2277:{\displaystyle X} 2219:{\displaystyle n} 2199:{\displaystyle X} 2051:{\displaystyle U} 1988:{\displaystyle Y} 1931: 1866: 1805: 1576:{\displaystyle Y} 1528:Donald C. Spencer 1508:{\displaystyle n} 1488:{\displaystyle X} 1468:{\displaystyle Y} 1448:{\displaystyle n} 1428:{\displaystyle Y} 1408:{\displaystyle X} 1388:{\displaystyle X} 1368:{\displaystyle Y} 1332:{\displaystyle n} 1312:{\displaystyle X} 1292:{\displaystyle Y} 1277:relative homology 1268:{\displaystyle n} 1221:{\displaystyle n} 1193:{\displaystyle t} 1154:{\displaystyle X} 1130:{\displaystyle X} 1110:{\displaystyle t} 1063:{\displaystyle t} 956:{\displaystyle Y} 937:Solomon Lefschetz 932:Lefschetz's proof 208:{\displaystyle X} 188:{\displaystyle Y} 134:{\displaystyle n} 114:{\displaystyle X} 84:Solomon Lefschetz 45:algebraic variety 16:(Redirected from 3019: 2983: 2942: 2940: 2934:, archived from 2933: 2918: 2895: 2870: 2858: 2817: 2788: 2735: 2734: 2733: 2720: 2690: 2689: 2669: 2608: 2603: 2597: 2592: 2586: 2585:, Example 3.1.25 2580: 2574: 2573:, Theorem 3.1.13 2568: 2562: 2556: 2550: 2549:, Example 3.1.24 2544: 2538: 2533: 2527: 2521: 2515: 2510: 2504: 2499: 2493: 2488: 2482: 2476: 2470: 2464: 2441:-adic cohomology 2440: 2438: 2437: 2432: 2391: 2389: 2388: 2383: 2372: 2371: 2349: 2347: 2346: 2341: 2330: 2329: 2306:cohomology class 2303: 2301: 2300: 2295: 2283: 2281: 2280: 2275: 2259: 2257: 2256: 2251: 2249: 2248: 2243: 2237: 2225: 2223: 2222: 2217: 2205: 2203: 2202: 2197: 2157: 2155: 2154: 2149: 2129: 2127: 2126: 2121: 2104:vanish whenever 2103: 2101: 2100: 2095: 2090: 2089: 2074: 2073: 2057: 2055: 2054: 2049: 2037: 2035: 2034: 2029: 2027: 2026: 1994: 1992: 1991: 1986: 1967: 1965: 1964: 1959: 1953: 1952: 1947: 1941: 1940: 1930: 1922: 1911: 1910: 1890: 1888: 1887: 1882: 1876: 1875: 1865: 1857: 1846: 1845: 1829: 1827: 1826: 1821: 1815: 1814: 1804: 1796: 1785: 1784: 1768: 1766: 1765: 1760: 1730: 1728: 1727: 1722: 1692: 1690: 1689: 1684: 1673: 1672: 1645: 1644: 1622: 1620: 1619: 1614: 1603: 1602: 1597: 1596: 1582: 1580: 1579: 1574: 1562: 1560: 1559: 1554: 1552: 1551: 1524:Kunihiko Kodaira 1514: 1512: 1511: 1506: 1494: 1492: 1491: 1486: 1474: 1472: 1471: 1466: 1454: 1452: 1451: 1446: 1434: 1432: 1431: 1426: 1414: 1412: 1411: 1406: 1394: 1392: 1391: 1386: 1374: 1372: 1371: 1366: 1338: 1336: 1335: 1330: 1318: 1316: 1315: 1310: 1298: 1296: 1295: 1290: 1274: 1272: 1271: 1266: 1250: 1248: 1247: 1242: 1227: 1225: 1224: 1219: 1199: 1197: 1196: 1191: 1174:Theodore Frankel 1160: 1158: 1157: 1152: 1136: 1134: 1133: 1128: 1116: 1114: 1113: 1108: 1096: 1094: 1093: 1088: 1086: 1085: 1069: 1067: 1066: 1061: 1049: 1047: 1046: 1041: 1039: 1038: 1022: 1020: 1019: 1014: 1012: 1011: 989: 987: 986: 981: 979: 978: 962: 960: 959: 954: 941:Lefschetz pencil 926: 924: 923: 918: 894: 892: 891: 886: 869: 868: 849: 847: 846: 841: 817: 815: 814: 809: 804: 784: 783: 764: 762: 761: 756: 732: 730: 729: 724: 719: 699: 698: 670: 668: 667: 662: 638: 636: 635: 630: 606: 604: 603: 598: 593: 579: 578: 563: 549: 548: 533:The natural map 529: 527: 526: 521: 497: 495: 494: 489: 465: 463: 462: 457: 452: 438: 437: 422: 408: 407: 392:The natural map 388: 386: 385: 380: 356: 354: 353: 348: 324: 322: 321: 316: 311: 297: 296: 281: 267: 266: 251:The natural map 246: 244: 243: 238: 214: 212: 211: 206: 194: 192: 191: 186: 174: 172: 171: 166: 164: 163: 158: 152: 140: 138: 137: 132: 120: 118: 117: 112: 53:projective space 21: 3027: 3026: 3022: 3021: 3020: 3018: 3017: 3016: 2987: 2986: 2973: 2945: 2938: 2931: 2921: 2898: 2885: 2875:Selected papers 2872: 2861: 2848: 2830:Springer-Verlag 2820: 2815: 2791: 2756:(52): 137–252, 2740:Deligne, Pierre 2738: 2731: 2729: 2693: 2672: 2643:10.2307/1970034 2621:Andreotti, Aldo 2619: 2616: 2611: 2604: 2600: 2593: 2589: 2583:Lazarsfeld 2004 2581: 2577: 2571:Lazarsfeld 2004 2569: 2565: 2557: 2553: 2547:Lazarsfeld 2004 2545: 2541: 2534: 2530: 2522: 2518: 2511: 2507: 2500: 2496: 2489: 2485: 2477: 2473: 2465: 2461: 2457: 2423: 2422: 2410:Kähler manifold 2357: 2352: 2351: 2315: 2310: 2309: 2286: 2285: 2266: 2265: 2262:cohomology ring 2238: 2228: 2227: 2208: 2207: 2188: 2187: 2184: 2178: 2140: 2139: 2136: 2106: 2105: 2065: 2060: 2059: 2040: 2039: 2016: 2015: 2001: 1977: 1976: 1942: 1932: 1902: 1897: 1896: 1867: 1837: 1832: 1831: 1806: 1776: 1771: 1770: 1733: 1732: 1695: 1694: 1658: 1630: 1625: 1624: 1590: 1585: 1584: 1565: 1564: 1537: 1532: 1531: 1521: 1497: 1496: 1477: 1476: 1457: 1456: 1437: 1436: 1417: 1416: 1397: 1396: 1377: 1376: 1357: 1356: 1345: 1321: 1320: 1301: 1300: 1281: 1280: 1257: 1256: 1230: 1229: 1210: 1209: 1182: 1181: 1167: 1143: 1142: 1119: 1118: 1099: 1098: 1077: 1072: 1071: 1052: 1051: 1030: 1025: 1024: 1003: 992: 991: 970: 965: 964: 945: 944: 934: 897: 896: 860: 855: 854: 820: 819: 775: 770: 769: 735: 734: 690: 685: 684: 641: 640: 609: 608: 570: 540: 535: 534: 500: 499: 468: 467: 429: 399: 394: 393: 359: 358: 327: 326: 288: 258: 253: 252: 217: 216: 197: 196: 177: 176: 153: 143: 142: 123: 122: 103: 102: 99: 72:homotopy groups 23: 22: 15: 12: 11: 5: 3025: 3023: 3015: 3014: 3009: 3004: 2999: 2989: 2988: 2985: 2984: 2971: 2947:Voisin, Claire 2943: 2923:Sabbah, Claude 2919: 2896: 2883: 2859: 2846: 2818: 2813: 2789: 2736: 2711:(3): 211–216, 2691: 2687:10.1.1.74.2423 2670: 2637:(3): 713–717, 2615: 2612: 2610: 2609: 2598: 2587: 2575: 2563: 2561:, Theorem 1.29 2551: 2539: 2528: 2516: 2505: 2494: 2491:Lefschetz 1924 2483: 2481:, Theorem 1.23 2471: 2458: 2456: 2453: 2430: 2381: 2378: 2375: 2370: 2367: 2364: 2360: 2339: 2336: 2333: 2328: 2325: 2322: 2318: 2293: 2273: 2260:. Then in the 2247: 2242: 2236: 2215: 2195: 2177: 2174: 2147: 2135: 2132: 2119: 2116: 2113: 2093: 2088: 2083: 2080: 2077: 2072: 2068: 2047: 2025: 2000: 1997: 1984: 1956: 1951: 1946: 1939: 1935: 1929: 1925: 1920: 1917: 1914: 1909: 1905: 1879: 1874: 1870: 1864: 1860: 1855: 1852: 1849: 1844: 1840: 1818: 1813: 1809: 1803: 1799: 1794: 1791: 1788: 1783: 1779: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1720: 1717: 1714: 1711: 1708: 1705: 1702: 1682: 1679: 1676: 1671: 1668: 1665: 1661: 1657: 1654: 1651: 1648: 1643: 1640: 1637: 1633: 1612: 1609: 1606: 1601: 1595: 1572: 1550: 1547: 1544: 1540: 1520: 1517: 1504: 1484: 1464: 1444: 1424: 1404: 1384: 1364: 1344: 1341: 1328: 1308: 1288: 1264: 1240: 1237: 1217: 1206:affine variety 1189: 1170:Aldo Andreotti 1166: 1163: 1150: 1126: 1106: 1084: 1080: 1059: 1037: 1033: 1010: 1006: 1002: 999: 977: 973: 952: 933: 930: 929: 928: 916: 913: 910: 907: 904: 884: 881: 878: 875: 872: 867: 863: 851: 839: 836: 833: 830: 827: 807: 803: 799: 796: 793: 790: 787: 782: 778: 766: 754: 751: 748: 745: 742: 722: 718: 714: 711: 708: 705: 702: 697: 693: 673: 672: 660: 657: 654: 651: 648: 628: 625: 622: 619: 616: 596: 592: 588: 585: 582: 577: 573: 569: 566: 562: 558: 555: 552: 547: 543: 531: 519: 516: 513: 510: 507: 487: 484: 481: 478: 475: 455: 451: 447: 444: 441: 436: 432: 428: 425: 421: 417: 414: 411: 406: 402: 390: 378: 375: 372: 369: 366: 346: 343: 340: 337: 334: 314: 310: 306: 303: 300: 295: 291: 287: 284: 280: 276: 273: 270: 265: 261: 236: 233: 230: 227: 224: 204: 184: 162: 157: 151: 130: 110: 98: 95: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3024: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2994: 2992: 2982: 2978: 2974: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2941:on 2004-07-07 2937: 2930: 2929: 2924: 2920: 2917: 2913: 2909: 2905: 2901: 2897: 2894: 2890: 2886: 2880: 2876: 2871:Reprinted in 2868: 2864: 2860: 2857: 2853: 2849: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2816: 2810: 2806: 2802: 2798: 2794: 2790: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2751: 2750: 2745: 2741: 2737: 2728: 2724: 2719: 2714: 2710: 2706: 2705: 2700: 2696: 2692: 2688: 2683: 2679: 2675: 2671: 2668: 2664: 2660: 2656: 2652: 2648: 2644: 2640: 2636: 2632: 2631: 2626: 2622: 2618: 2617: 2613: 2607: 2602: 2599: 2596: 2591: 2588: 2584: 2579: 2576: 2572: 2567: 2564: 2560: 2555: 2552: 2548: 2543: 2540: 2537: 2532: 2529: 2525: 2520: 2517: 2514: 2509: 2506: 2503: 2498: 2495: 2492: 2487: 2484: 2480: 2475: 2472: 2468: 2463: 2460: 2454: 2452: 2450: 2446: 2442: 2428: 2418: 2416: 2415:Hopf surfaces 2412: 2411: 2404: 2402: 2398: 2393: 2376: 2368: 2365: 2362: 2358: 2334: 2326: 2323: 2320: 2316: 2307: 2291: 2271: 2263: 2245: 2213: 2193: 2183: 2175: 2173: 2171: 2170:Picard groups 2166: 2164: 2159: 2145: 2133: 2131: 2117: 2114: 2111: 2081: 2078: 2070: 2066: 2045: 2013: 2009: 2005: 2004:Michael Artin 1996: 1982: 1974: 1969: 1949: 1937: 1927: 1923: 1918: 1915: 1907: 1903: 1894: 1872: 1862: 1858: 1853: 1850: 1842: 1838: 1811: 1801: 1797: 1792: 1789: 1781: 1777: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1718: 1715: 1712: 1709: 1706: 1703: 1700: 1677: 1669: 1666: 1663: 1659: 1649: 1641: 1638: 1635: 1631: 1607: 1599: 1570: 1548: 1545: 1542: 1538: 1529: 1525: 1516: 1502: 1482: 1462: 1442: 1422: 1402: 1382: 1362: 1354: 1350: 1340: 1326: 1306: 1286: 1278: 1262: 1254: 1238: 1235: 1215: 1207: 1203: 1187: 1179: 1175: 1171: 1162: 1148: 1140: 1124: 1104: 1082: 1078: 1057: 1035: 1031: 1008: 1004: 1000: 997: 975: 971: 950: 942: 938: 914: 911: 908: 905: 902: 895:are zero for 879: 876: 873: 865: 861: 852: 837: 834: 831: 828: 825: 818:are zero for 797: 794: 791: 788: 780: 776: 767: 752: 749: 746: 743: 740: 733:are zero for 712: 709: 706: 703: 695: 691: 682: 681: 680: 678: 658: 655: 652: 649: 646: 626: 623: 620: 617: 614: 586: 583: 575: 571: 556: 553: 545: 541: 532: 517: 514: 511: 508: 505: 485: 482: 479: 476: 473: 445: 442: 434: 430: 415: 412: 404: 400: 391: 376: 373: 370: 367: 364: 344: 341: 338: 335: 332: 304: 301: 293: 289: 274: 271: 263: 259: 250: 249: 248: 234: 228: 225: 222: 202: 182: 160: 128: 108: 96: 94: 92: 87: 85: 81: 77: 73: 69: 65: 61: 58: 54: 50: 46: 42: 38: 34: 30: 19: 3002:Morse theory 2950: 2936:the original 2927: 2904:Morse theory 2903: 2874: 2866: 2825: 2804: 2753: 2747: 2730:, retrieved 2708: 2702: 2677: 2634: 2628: 2614:Bibliography 2601: 2590: 2578: 2566: 2554: 2542: 2531: 2526:, p. 39 2519: 2508: 2497: 2486: 2474: 2462: 2419: 2408:any compact 2407: 2405: 2400: 2396: 2395:This is the 2394: 2185: 2167: 2160: 2137: 2002: 1970: 1522: 1346: 1178:Morse theory 1168: 935: 674: 100: 88: 79: 75: 59: 51:embedded in 48: 40: 26: 2695:Bott, Raoul 2606:Sabbah 2001 2559:Voisin 2003 2524:Milnor 1963 2479:Voisin 2003 2467:Milnor 1963 1139:Morse lemma 29:mathematics 2991:Categories 2732:2010-01-30 2455:References 2180:See also: 1353:Raoul Bott 1279:groups of 1253:CW-complex 215:such that 175:, and let 68:cohomology 2786:189769469 2770:1618-1913 2682:CiteSeerX 2651:0003-486X 2595:Beauville 2536:Bott 1959 2429:ℓ 2324:− 2146:ℓ 1934:Ω 1924:⋀ 1869:Ω 1859:⋀ 1808:Ω 1798:⋀ 1754:− 1716:− 1656:→ 1349:RenĂ© Thom 912:− 906:≤ 862:π 835:− 829:≤ 750:− 744:≤ 656:− 624:− 572:π 568:→ 542:π 515:− 483:− 427:→ 374:− 342:− 286:→ 232:∖ 2949:(2003), 2925:(2001), 2902:(1963), 2865:(1924), 2824:(2004), 2742:(1980), 2697:(1959), 1117:-plane. 990:, where 675:Using a 64:homology 2981:1997577 2916:0163331 2893:0299447 2856:2095471 2778:0601520 2727:0215323 2667:0177422 2659:1970034 2447: ( 2979:  2969:  2914:  2891:  2881:  2854:  2844:  2811:  2784:  2776:  2768:  2725:  2684:  2665:  2657:  2649:  2284:, the 121:be an 70:, and 62:, the 55:and a 39:, the 2939:(PDF) 2932:(PDF) 2782:S2CID 2655:JSTOR 2206:be a 2967:ISBN 2879:ISBN 2842:ISBN 2809:ISBN 2766:ISSN 2647:ISSN 2449:1980 2350:and 2186:Let 2115:> 2006:and 1830:and 1710:< 1526:and 1172:and 618:< 477:< 336:< 101:Let 35:and 2959:doi 2834:doi 2758:doi 2713:doi 2639:doi 2451:). 2264:of 1895:to 1475:in 1299:in 74:of 27:In 2993:: 2977:MR 2975:, 2965:, 2957:, 2912:MR 2910:, 2889:MR 2887:, 2852:MR 2850:, 2840:, 2832:, 2799:; 2795:; 2780:, 2774:MR 2772:, 2764:, 2754:52 2752:, 2746:, 2723:MR 2721:, 2707:, 2701:, 2680:, 2676:, 2663:MR 2661:, 2653:, 2645:, 2635:69 2623:; 2392:. 2172:. 2130:. 1995:. 93:. 66:, 2961:: 2836:: 2760:: 2715:: 2709:6 2641:: 2380:) 2377:X 2374:( 2369:k 2366:+ 2363:n 2359:H 2338:) 2335:X 2332:( 2327:k 2321:n 2317:H 2292:k 2272:X 2246:N 2241:P 2235:C 2214:n 2194:X 2118:n 2112:k 2092:) 2087:F 2082:, 2079:U 2076:( 2071:k 2067:H 2046:U 2024:F 1983:Y 1955:) 1950:Y 1945:| 1938:X 1928:p 1919:, 1916:X 1913:( 1908:q 1904:H 1878:) 1873:Y 1863:p 1854:, 1851:Y 1848:( 1843:q 1839:H 1817:) 1812:X 1802:p 1793:, 1790:X 1787:( 1782:q 1778:H 1757:1 1751:n 1748:= 1745:q 1742:+ 1739:p 1719:1 1713:n 1707:q 1704:+ 1701:p 1681:) 1678:Y 1675:( 1670:q 1667:, 1664:p 1660:H 1653:) 1650:X 1647:( 1642:q 1639:, 1636:p 1632:H 1611:) 1608:Y 1605:( 1600:X 1594:O 1571:Y 1549:q 1546:, 1543:p 1539:H 1503:n 1483:X 1463:Y 1443:n 1423:Y 1403:X 1383:X 1363:Y 1327:n 1307:X 1287:Y 1263:n 1239:n 1236:2 1216:n 1188:t 1149:X 1125:X 1105:t 1083:t 1079:Y 1058:t 1036:t 1032:Y 1009:0 1005:Y 1001:= 998:Y 976:t 972:Y 951:Y 927:. 915:1 909:n 903:k 883:) 880:Y 877:, 874:X 871:( 866:k 850:. 838:1 832:n 826:k 806:) 802:Z 798:; 795:Y 792:, 789:X 786:( 781:k 777:H 765:. 753:1 747:n 741:k 721:) 717:Z 713:; 710:Y 707:, 704:X 701:( 696:k 692:H 671:. 659:1 653:n 650:= 647:k 627:1 621:n 615:k 595:) 591:Z 587:, 584:X 581:( 576:k 565:) 561:Z 557:, 554:Y 551:( 546:k 530:. 518:1 512:n 509:= 506:k 486:1 480:n 474:k 454:) 450:Z 446:, 443:Y 440:( 435:k 431:H 424:) 420:Z 416:, 413:X 410:( 405:k 401:H 389:. 377:1 371:n 368:= 365:k 345:1 339:n 333:k 313:) 309:Z 305:, 302:X 299:( 294:k 290:H 283:) 279:Z 275:, 272:Y 269:( 264:k 260:H 235:Y 229:X 226:= 223:U 203:X 183:Y 161:N 156:P 150:C 129:n 109:X 80:Y 76:X 60:Y 49:X 20:)

Index

Strong Lefschetz theorem
mathematics
algebraic geometry
algebraic topology
algebraic variety
projective space
hyperplane section
homology
cohomology
homotopy groups
Solomon Lefschetz
decomposition theorem
long exact sequence
Solomon Lefschetz
Lefschetz pencil
Morse lemma
Aldo Andreotti
Theodore Frankel
Morse theory
Andreotti–Frankel theorem
affine variety
CW-complex
relative homology
René Thom
Raoul Bott
Kunihiko Kodaira
Donald C. Spencer
Akizuki–Nakano vanishing theorem
universal coefficient theorem
Michael Artin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑