Knowledge (XXG)

Deficiency (graph theory)

Source 📝

1269: 907: 1106: 744: 1282:
whose surplus equals the surplus of the entire graph (i.e., equals the minimum). The intersection and union of tight sets with non-empty intersection are tight; this follows from properties of lower-bounded submodular set functions.
346: 948:
if def(G) = |V| - 2 ν(G). Obviously, the strong Hall property implies the Hall property. Bipartite graphs have both of these properties, however there are classes of non-bipartite graphs that have these properties.
920:
whose deficiency equals the deficiency of the entire graph (i.e., equals the maximum). The intersection and union of tight sets are tight; this follows from properties of upper-bounded supermodular set functions.
664: 215: 1264:{\displaystyle \operatorname {sur} _{G}(X_{1}\cup X_{2})+\operatorname {sur} _{G}(X_{1}\cap X_{2})\leq \operatorname {sur} _{G}(X_{1})+\operatorname {sur} _{G}(X_{2})} 902:{\displaystyle \operatorname {def} _{G}(X_{1}\cup X_{2})+\operatorname {def} _{G}(X_{1}\cap X_{2})\geq \operatorname {def} _{G}(X_{1})+\operatorname {def} _{G}(X_{2})} 262: 1472: 1379: 1500: 81: 597: 128: 1537: 1054:
Note the restriction to non-empty subsets: without it, the surplus of all graphs would always be 0. Note also that:
415: 42: 463:. Moreover, using the notion of deficiency, it is possible to state a quantitative version of Hall's theorem: 383: 1079: 1498:
Beckenbach, Isabel; Borndörfer, Ralf (2018-10-01). "Hall's and Kőnig's theorem in graphs and hypergraphs".
1456: 1586: 717: 110:, which is formed by all vertices from 'V' that are connected by an edge to one or more vertices of 957: 1562: 1460: 1378:
Graphs with a positive surplus play an important role in the theory of graph structures; see the
1554: 1517: 1468: 1423: 1546: 1509: 1415: 460: 423: 38: 1482: 1478: 944:
has either a perfect matching or a vertex set with a positive deficiency. A graph has the
698: 225: 572:|. By Hall's marriage theorem, the new graph admits a matching in which all vertices of 46: 17: 1580: 1566: 379: 924:
In a non-bipartite graph, the deficiency function is, in general, not supermodular.
34: 1419: 1403: 1513: 1385:
In a non-bipartite graph, the surplus function is, in general, not submodular.
1340:
is a bipartite graph with a positive surplus, such that deleting any edge from
341:{\displaystyle \mathrm {def} (G;X):=\max _{U\subseteq X}\mathrm {def} _{G}(U)} 1558: 1521: 1427: 952:
In particular, a graph has the strong Hall property if-and-only-if it is
1550: 1535:
Lovász, L. (1970-09-01). "A generalization of Kónig's theorem".
1467:, Annals of Discrete Mathematics, vol. 29, North-Holland, 576:
are matched. Now, restore the original graph by removing the
940:
if Hall's marriage theorem holds for that graph, namely, if
92:
in which no two vertices are connected by an edge. Let
659:{\displaystyle \nu (G)=|X|-\operatorname {def} (G;X),} 1109: 747: 600: 265: 210:{\displaystyle \mathrm {def} _{G}(U):=|U|-|N_{G}(U)|} 131: 546:, and connect every dummy vertex to all vertices of 1333:), the resulting graph has a non-negative surplus. 1306:satisfying the following property for every vertex 37:that is used to refine various theorems related to 1263: 901: 658: 340: 209: 1538:Acta Mathematica Academiae Scientiarum Hungaricae 1359:A bipartite graph has a positive surplus (w.r.t. 296: 956:- its maximum matching size equals its maximum 512:= def(G;X). This means that, for every subset 591:This theorem can be equivalently stated as: 8: 252:), is the maximum deficiency of a subset of 467: 433:X) > 0, it means that for some subsets 1252: 1236: 1220: 1204: 1188: 1175: 1159: 1143: 1130: 1114: 1108: 890: 874: 858: 842: 826: 813: 797: 781: 768: 752: 746: 624: 616: 599: 489:) admits a matching in which at most def( 323: 312: 299: 266: 264: 202: 187: 178: 170: 162: 144: 133: 130: 1394: 677:) is the size of a maximum matching in 550:. After the addition, for every subset 27:Refinement of perfect matching theorems 1363:) if-and-only-if it contains a forest 392:X) = 0, it means that for all subsets 351:Sometimes this quantity is called the 248:with respect to one of its parts (say 1026:is defined by the minimum surplus of 693:Properties of the deficiency function 7: 1493: 1491: 1451: 1449: 1447: 1445: 1443: 1441: 1439: 1437: 1322:and connect them to the vertices in 580:dummy vertices; this leaves at most 319: 316: 313: 273: 270: 267: 140: 137: 134: 25: 366:of the empty subset is 0, so def( 716:), the deficiency function is a 455:|. Hence, by the same theorem, 106:denote the set of neighbors of 1404:"Graphs and matching theorems" 1258: 1245: 1226: 1213: 1194: 1168: 1149: 1123: 896: 883: 864: 851: 832: 806: 787: 761: 650: 638: 625: 617: 610: 604: 335: 329: 289: 277: 203: 199: 193: 179: 171: 163: 156: 150: 1: 1420:10.1215/S0012-7094-55-02268-7 1078:), the surplus function is a 1380:Gallai–Edmonds decomposition 45:. This was first studied by 1402:Ore, Oystein (1955-12-01). 1302:;X) is the largest integer 1603: 1514:10.1016/j.disc.2018.06.013 1367:such that every vertex in 377: 1408:Duke Mathematical Journal 1348:X), then every vertex in 718:supermodular set function 1082:: for every two subsets 720:: for every two subsets 374:Deficiency and matchings 57:Definition of deficiency 49:. A related property is 1080:submodular set function 1018:The surplus of a graph 416:Hall's marriage theorem 43:Hall's marriage theorem 1298:) = 0, the number sur( 1286:For a bipartite graph 1278:subset is a subset of 1272: 1265: 1060: 1052: 1016: 916:subset is a subset of 910: 903: 660: 473:Every bipartite graph 342: 211: 84:of vertices, that is, 18:Surplus (graph theory) 1266: 1102: 1062:In a bipartite graph 1056: 1036: 982: 904: 740: 661: 343: 212: 1501:Discrete Mathematics 1107: 946:strong Hall property 928:Strong Hall property 745: 598: 429:In contrast, if def( 263: 129: 76:be a graph, and let 1356:;X) + 1. 1042:X) := min sur 958:fractional matching 471: —  384:Tutte–Berge formula 353:critical difference 228:, with bipartition 41:in graphs, such as 1551:10.1007/BF01894789 1261: 899: 656: 542:dummy vertices to 469: 338: 310: 207: 1508:(10): 2753–2761. 459:does not admit a 295: 16:(Redirected from 1594: 1571: 1570: 1532: 1526: 1525: 1495: 1486: 1485: 1453: 1432: 1431: 1399: 1371:has degree 2 in 1318:new vertices to 1270: 1268: 1267: 1262: 1257: 1256: 1241: 1240: 1225: 1224: 1209: 1208: 1193: 1192: 1180: 1179: 1164: 1163: 1148: 1147: 1135: 1134: 1119: 1118: 1022:w.r.t. a subset 908: 906: 905: 900: 895: 894: 879: 878: 863: 862: 847: 846: 831: 830: 818: 817: 802: 801: 786: 785: 773: 772: 757: 756: 665: 663: 662: 657: 628: 620: 472: 461:perfect matching 424:perfect matching 347: 345: 344: 339: 328: 327: 322: 309: 276: 216: 214: 213: 208: 206: 192: 191: 182: 174: 166: 149: 148: 143: 105: 75: 39:perfect matching 33:is a concept in 21: 1602: 1601: 1597: 1596: 1595: 1593: 1592: 1591: 1577: 1576: 1575: 1574: 1534: 1533: 1529: 1497: 1496: 1489: 1475: 1465:Matching Theory 1455: 1454: 1435: 1401: 1400: 1396: 1391: 1352:has degree sur( 1328: 1248: 1232: 1216: 1200: 1184: 1171: 1155: 1139: 1126: 1110: 1105: 1104: 1095: 1088: 1045: 1009: 997: 987: 966: 930: 886: 870: 854: 838: 822: 809: 793: 777: 764: 748: 743: 742: 733: 726: 699:bipartite graph 695: 683:matching number 596: 595: 563: 525: 503: 501:are unmatched. 470: 446: 405: 386: 376: 365: 311: 261: 260: 226:bipartite graph 183: 132: 127: 126: 122:is defined by: 98: 93: 88:is a subset of 82:independent set 62: 59: 28: 23: 22: 15: 12: 11: 5: 1600: 1598: 1590: 1589: 1579: 1578: 1573: 1572: 1545:(3): 443–446. 1527: 1487: 1473: 1461:Plummer, M. D. 1457:Lovász, László 1433: 1414:(4): 625–639. 1393: 1392: 1390: 1387: 1344:decreases sur( 1326: 1260: 1255: 1251: 1247: 1244: 1239: 1235: 1231: 1228: 1223: 1219: 1215: 1212: 1207: 1203: 1199: 1196: 1191: 1187: 1183: 1178: 1174: 1170: 1167: 1162: 1158: 1154: 1151: 1146: 1142: 1138: 1133: 1129: 1125: 1122: 1117: 1113: 1093: 1086: 1058:def(G;X) = max 1043: 1007: 993: 985: 980:is defined by: 965: 962: 929: 926: 898: 893: 889: 885: 882: 877: 873: 869: 866: 861: 857: 853: 850: 845: 841: 837: 834: 829: 825: 821: 816: 812: 808: 805: 800: 796: 792: 789: 784: 780: 776: 771: 767: 763: 760: 755: 751: 731: 724: 694: 691: 667: 666: 655: 652: 649: 646: 643: 640: 637: 634: 631: 627: 623: 619: 615: 612: 609: 606: 603: 559: 521: 497:) vertices of 465: 442: 401: 375: 372: 363: 349: 348: 337: 334: 331: 326: 321: 318: 315: 308: 305: 302: 298: 294: 291: 288: 285: 282: 279: 275: 272: 269: 218: 217: 205: 201: 198: 195: 190: 186: 181: 177: 173: 169: 165: 161: 158: 155: 152: 147: 142: 139: 136: 96: 58: 55: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1599: 1588: 1585: 1584: 1582: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1539: 1531: 1528: 1523: 1519: 1515: 1511: 1507: 1503: 1502: 1494: 1492: 1488: 1484: 1480: 1476: 1474:0-444-87916-1 1470: 1466: 1462: 1458: 1452: 1450: 1448: 1446: 1444: 1442: 1440: 1438: 1434: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1398: 1395: 1388: 1386: 1383: 1381: 1376: 1374: 1370: 1366: 1362: 1357: 1355: 1351: 1347: 1343: 1339: 1334: 1332: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1284: 1281: 1277: 1276:surplus-tight 1271: 1253: 1249: 1242: 1237: 1233: 1229: 1221: 1217: 1210: 1205: 1201: 1197: 1189: 1185: 1181: 1176: 1172: 1165: 1160: 1156: 1152: 1144: 1140: 1136: 1131: 1127: 1120: 1115: 1111: 1101: 1099: 1092: 1085: 1081: 1077: 1073: 1069: 1065: 1059: 1055: 1051: 1049: 1041: 1035: 1033: 1029: 1025: 1021: 1015: 1013: 1005: 1001: 996: 991: 981: 979: 975: 971: 963: 961: 959: 955: 950: 947: 943: 939: 938:Hall property 935: 927: 925: 922: 919: 915: 909: 891: 887: 880: 875: 871: 867: 859: 855: 848: 843: 839: 835: 827: 823: 819: 814: 810: 803: 798: 794: 790: 782: 778: 774: 769: 765: 758: 753: 749: 739: 737: 730: 723: 719: 715: 711: 707: 703: 700: 692: 690: 688: 684: 680: 676: 672: 653: 647: 644: 641: 635: 632: 629: 621: 613: 607: 601: 594: 593: 592: 589: 587: 583: 579: 575: 571: 567: 562: 557: 553: 549: 545: 541: 537: 533: 529: 524: 519: 515: 511: 507: 502: 500: 496: 492: 488: 484: 480: 476: 464: 462: 458: 454: 450: 445: 440: 436: 432: 427: 425: 421: 417: 414:|. Hence, by 413: 409: 404: 399: 395: 391: 385: 381: 380:Tutte theorem 373: 371: 369: 362:Note that def 360: 358: 354: 332: 324: 306: 303: 300: 292: 286: 283: 280: 259: 258: 257: 255: 251: 247: 243: 239: 235: 231: 227: 223: 196: 188: 184: 175: 167: 159: 153: 145: 125: 124: 123: 121: 117: 113: 109: 103: 99: 91: 87: 83: 79: 73: 69: 65: 56: 54: 52: 48: 44: 40: 36: 32: 19: 1587:Graph theory 1542: 1536: 1530: 1505: 1499: 1464: 1411: 1407: 1397: 1384: 1377: 1372: 1368: 1364: 1360: 1358: 1353: 1349: 1345: 1341: 1337: 1335: 1330: 1323: 1319: 1315: 1314:: if we add 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1285: 1279: 1275: 1273: 1103: 1097: 1090: 1083: 1075: 1071: 1067: 1063: 1061: 1057: 1053: 1047: 1039: 1037: 1031: 1027: 1023: 1019: 1017: 1011: 1003: 999: 994: 992:) := |N 989: 983: 977: 973: 972:of a subset 969: 967: 953: 951: 945: 941: 937: 933: 931: 923: 917: 913: 911: 741: 735: 728: 721: 713: 709: 705: 701: 696: 686: 682: 681:(called the 678: 674: 670: 668: 590: 585: 584:vertices of 581: 577: 573: 569: 565: 560: 555: 551: 547: 543: 539: 535: 531: 527: 522: 517: 513: 509: 505: 504: 498: 494: 490: 486: 482: 478: 474: 466: 456: 452: 448: 443: 438: 434: 430: 428: 419: 411: 407: 402: 397: 393: 389: 387: 367: 361: 356: 352: 350: 253: 249: 245: 241: 237: 233: 229: 221: 219: 119: 115: 111: 107: 101: 94: 89: 85: 77: 71: 67: 63: 60: 50: 35:graph theory 30: 29: 1030:subsets of 588:unmatched. 118:of the set 47:Øystein Ore 1389:References 378:See also: 242:deficiency 116:deficiency 31:Deficiency 1567:121333106 1559:1588-2632 1522:0012-365X 1428:0012-7094 1290:with def( 1243:⁡ 1211:⁡ 1198:≤ 1182:∩ 1166:⁡ 1137:∪ 1121:⁡ 1028:non-empty 881:⁡ 849:⁡ 836:≥ 820:∩ 804:⁡ 775:∪ 759:⁡ 636:⁡ 630:− 602:ν 451:)| < | 422:admits a 304:⊆ 176:− 1581:Category 1463:(1986), 1006:| = −def 936:has the 932:A graph 370:X) ≥ 0. 220:Suppose 1483:0859549 970:surplus 964:Surplus 468:Theorem 388:If def( 51:surplus 1565:  1557:  1520:  1481:  1471:  1426:  1002:)| − | 960:size. 954:stable 669:where 568:)| ≥ | 538:. Add 530:)| ≥ | 508:. Let 410:)| ≥ | 240:. The 114:. The 80:be an 1563:S2CID 914:tight 697:In a 506:Proof 224:is a 1555:ISSN 1518:ISSN 1469:ISBN 1424:ISSN 1038:sur( 968:The 558:, |N 520:, |N 441:, |N 400:, |N 382:and 61:Let 1547:doi 1510:doi 1506:341 1416:doi 1336:If 1310:in 1234:sur 1202:sur 1157:sur 1112:sur 1096:of 1066:= ( 984:sur 976:of 872:def 840:def 795:def 750:def 734:of 704:= ( 689:). 685:of 633:def 554:of 516:of 477:= ( 437:of 396:of 359:. 355:of 297:max 244:of 66:= ( 1583:: 1561:. 1553:. 1543:21 1541:. 1516:. 1504:. 1490:^ 1479:MR 1477:, 1459:; 1436:^ 1422:. 1412:22 1410:. 1406:. 1382:. 1375:. 1346:G; 1274:A 1089:, 1074:, 1040:G; 1034:: 912:A 727:, 712:, 534:|- 485:, 431:G; 426:. 418:, 390:G; 368:G; 293::= 256:: 236:∪ 232:= 160::= 70:, 53:. 1569:. 1549:: 1524:. 1512:: 1430:. 1418:: 1373:F 1369:X 1365:F 1361:X 1354:G 1350:X 1342:G 1338:G 1331:x 1329:( 1327:G 1324:N 1320:X 1316:s 1312:X 1308:x 1304:s 1300:G 1296:X 1294:; 1292:G 1288:G 1280:X 1259:) 1254:2 1250:X 1246:( 1238:G 1230:+ 1227:) 1222:1 1218:X 1214:( 1206:G 1195:) 1190:2 1186:X 1177:1 1173:X 1169:( 1161:G 1153:+ 1150:) 1145:2 1141:X 1132:1 1128:X 1124:( 1116:G 1100:: 1098:X 1094:2 1091:X 1087:1 1084:X 1076:E 1072:Y 1070:+ 1068:X 1064:G 1050:) 1048:U 1046:( 1044:G 1032:X 1024:X 1020:G 1014:) 1012:U 1010:( 1008:G 1004:U 1000:U 998:( 995:G 990:U 988:( 986:G 978:V 974:U 942:G 934:G 918:X 897:) 892:2 888:X 884:( 876:G 868:+ 865:) 860:1 856:X 852:( 844:G 833:) 828:2 824:X 815:1 811:X 807:( 799:G 791:+ 788:) 783:2 779:X 770:1 766:X 762:( 754:G 738:: 736:X 732:2 729:X 725:1 722:X 714:E 710:Y 708:+ 706:X 702:G 687:G 679:G 675:G 673:( 671:ν 654:, 651:) 648:X 645:; 642:G 639:( 626:| 622:X 618:| 614:= 611:) 608:G 605:( 586:X 582:d 578:d 574:X 570:U 566:U 564:( 561:G 556:X 552:U 548:X 544:Y 540:d 536:d 532:U 528:U 526:( 523:G 518:X 514:U 510:d 499:X 495:X 493:; 491:G 487:E 483:Y 481:+ 479:X 475:G 457:G 453:U 449:U 447:( 444:G 439:X 435:U 420:G 412:U 408:U 406:( 403:G 398:X 394:U 364:G 357:G 336:) 333:U 330:( 325:G 320:f 317:e 314:d 307:X 301:U 290:) 287:X 284:; 281:G 278:( 274:f 271:e 268:d 254:X 250:X 246:G 238:Y 234:X 230:V 222:G 204:| 200:) 197:U 194:( 189:G 185:N 180:| 172:| 168:U 164:| 157:) 154:U 151:( 146:G 141:f 138:e 135:d 120:U 112:U 108:U 104:) 102:U 100:( 97:G 95:N 90:V 86:U 78:U 74:) 72:E 68:V 64:G 20:)

Index

Surplus (graph theory)
graph theory
perfect matching
Hall's marriage theorem
Øystein Ore
independent set
bipartite graph
Tutte theorem
Tutte–Berge formula
Hall's marriage theorem
perfect matching
perfect matching
bipartite graph
supermodular set function
fractional matching
submodular set function
Gallai–Edmonds decomposition
"Graphs and matching theorems"
doi
10.1215/S0012-7094-55-02268-7
ISSN
0012-7094







Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.