Knowledge (XXG)

Swift heavy ion

Source 📝

91: 912:
Mendoza, C., S. Peuget, T. Charpentier, M. Moskura, R. Caraballo, O. Bouty, A. H. Mir, I. Monnet, C. Grygiel, and C. Jegou. "Oxide glass structure evolution under swift heavy ion irradiation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
460:
Kluth, P.; Schnohr, C. S.; Pakarinen, O. H.; Djurabekova, F.; Sprouster, D. J.; Giulian, R.; Ridgway, M. C.; Byrne, A. P.; Trautmann, C.; Cookson, D. J.; Nordlund, K.; Toulemonde, M. (24 October 2008). "Fine Structure in Swift Heavy Ion Tracks in AmorphousSiO2".
118:
mechanism. Regardless of what the heating mechanism is, it is well established that swift heavy ions typically produce a long nearly cylindrical track of damage in insulators, which has been shown to be underdense in the middle, at least in
753:
D’Orléans, C.; Stoquert, J.P.; Estournès, C.; Grob, J.J.; Muller, D.; Guille, J.L.; Richard-Plouet, M.; Cerruti, C.; Haas, F. (2004). "Elongated Co nanoparticles induced by swift heavy ion irradiations".
154:
growth. Tracks can also be used to sputter materials. They can also be used to elongate nanocrystals embedded in materials. SHI irradiation can also be used for structural modification of nanomaterials.
46:
range and have sufficient energy and mass to penetrate solids on a straight line. In many solids swift heavy ions release sufficient energy to induce permanently modified cylindrical zones, so-called
522:
Kaniukov, E Yu; Ustarroz, J; Yakimchuk, D V; Petrova, M; Terryn, H; Sivakov, V; Petrov, A V (15 February 2016). "Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology".
114:
in the sense that they lead to strong lattice heating and a transient disordered atom zone. However, at least the initial stage of the damage might be better understood in terms of a
216:
Lang, Maik; Djurabekova, Flyura; Medvedev, Nikita; Toulemonde, Marcel; Trautmann, Christina (2020). "Fundamental Phenomena and Applications of Swift Heavy Ion Irradiations".
845: 900:
Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation, Vacuum, Volume 182, December 2020, 109700, DOI:
710:
Toulemonde, M.; Assmann, W.; Trautmann, C.; Grüner, F.; Mieskes, H.D.; Kucal, H.; Wang, Z.G. (2003). "Electronic sputtering of metals and insulators by swift heavy ions".
278:
Meftah, A.; Brisard, F.; Costantini, J. M.; Dooryhee, E.; Hage-Ali, M.; Hervieu, M.; Stoquert, J. P.; Studer, F.; Toulemonde, M. (1 April 1994). "Track formation in SiO
58:
can be produced in many amorphizing materials, but not in pure metals, where the high electronic heat conductivity dissipates away the electronic heating before the
624:
Skupinski, Marek; Toulemonde, Marcel; Lindeberg, Mikael; Hjort, Klas (2005). "Ion tracks developed in polyimide resist on Si wafers as template for nanowires".
797:
Ridgway, M.C.; Kluth, P.; Giulian, R.; Sprouster, D.J.; Araujo, L.L.; Schnohr, C.S.; Llewellyn, D.J.; Byrne, A.P.; Foran, G.J.; Cookson, D.J. (2009).
74:
divided by the mass of the atomic nucleus, written "MeV/u". In order for an ion beam to be considered "swift", the constituent ions should be
202:
M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, and C. Trautmann, Experimental phenomena and thermal spike model description of
844:
Awazu, Koichi; Wang, Xiaomin; Fujimaki, Makoto; Tominaga, Junji; Aiba, Hirohiko; Ohki, Yoshimichi; Komatsubara, Tetsuro (6 August 2008).
31: 27: 932: 667:
Urbassek, H. M.; Kafemann, H.; Johnson, R. E. (1 December 1993). "Atom ejection from a fast-ion track: A molecular-dynamics study".
251: 178: 937: 102:
in crystalline quartz, producing a cylindrical amorphous track in the material. Image size 17 nm × 13 nm.
90: 803:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
756:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
712:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
626:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
583:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
857: 810: 763: 719: 633: 590: 531: 470: 410: 349: 335:"Effect of Stress on Track Formation in Amorphous Iron Boron Alloy: Ion Tracks as Elastic Inclusions" 291: 35: 563: 442: 400: 257: 221: 95: 883: 826: 779: 735: 692: 684: 649: 606: 555: 547: 504: 496: 434: 426: 373: 365: 315: 307: 247: 115: 139:
in polymers can be etched to form a nanometer-thin channel through a polymer foil, so called
873: 865: 818: 771: 727: 676: 641: 598: 539: 486: 478: 418: 357: 299: 239: 231: 206:
in amorphisable inorganic insulators, Mat. Fys. Medd. Kong. Dan. Vid. Selsk. 52, 263 (2006).
334: 78:
or heavier, and the energy such that the beam particles have a velocity comparable to the
798: 543: 861: 814: 767: 723: 637: 594: 535: 474: 414: 353: 295: 846:"Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions" 235: 71: 731: 602: 391:
Bringa, E. M.; Johnson, R. E. (4 April 2002). "Coulomb Explosion and Thermal Spikes".
926: 799:"Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation" 261: 111: 23: 567: 446: 482: 422: 361: 901: 869: 822: 775: 645: 303: 203: 136: 132: 107: 79: 55: 914: 887: 830: 783: 739: 688: 653: 610: 551: 500: 430: 369: 311: 680: 147: 99: 59: 51: 47: 696: 581:
Apel, P. (2003). "Swift ion effects in polymers: industrial applications".
559: 508: 438: 377: 319: 110:
are produced are subject to some debate. They can be considered to produce
50:. If the irradiation is carried out in an initially crystalline material, 405: 151: 243: 878: 179:"Swift heavy ion-induced modification and track formation in materials" 491: 75: 70:
Heavy ion beams are generally described in terms of their energy in
226: 89: 333:
Trautmann, C.; Klaumünzer, S.; Trinkaus, H. (23 October 2000).
135:
have several established and potential practical applications.
43: 39: 290:(18). American Physical Society (APS): 12457–12463. 150:resists have potential to be used as templates for 348:(17). American Physical Society (APS): 3648–3651. 675:(2). American Physical Society (APS): 786–795. 469:(17). American Physical Society (APS): 175503. 399:(16). American Physical Society (APS): 165501. 856:(5). American Physical Society (APS): 054102. 8: 902:https://doi.org/10.1016/j.vacuum.2020.109700 915:https://doi.org/10.1016/j.nimb.2014.02.002 877: 490: 404: 282:quartz and the thermal-spike mechanism". 225: 38:to very high energies, typically in the 273: 271: 172: 170: 168: 164: 16:Particles in a type of high-energy beam 7: 236:10.1016/B978-0-12-803581-8.11644-3 54:consist of an amorphous cylinder. 14: 22:are the components of a type of 218:Comprehensive Nuclear Materials 143:. These are in industrial use. 544:10.1088/0957-4484/27/11/115305 530:(11). IOP Publishing: 115305. 483:10.1103/physrevlett.101.175503 1: 732:10.1016/s0168-583x(03)01721-x 603:10.1016/s0168-583x(03)00634-7 423:10.1103/physrevlett.88.165501 26:with high enough energy that 98:simulation of a swift heavy 809:(6). Elsevier BV: 931–935. 632:(3). Elsevier BV: 681–689. 362:10.1103/physrevlett.85.3648 954: 870:10.1103/physrevb.78.054102 823:10.1016/j.nimb.2009.02.025 776:10.1016/j.nimb.2003.11.063 646:10.1016/j.nimb.2005.04.128 34:. They are accelerated in 304:10.1103/physrevb.49.12457 72:Mega electron volts (MeV) 933:Condensed matter physics 762:. Elsevier BV: 372–378. 718:. Elsevier BV: 346–357. 106:The mechanisms by which 681:10.1103/physrevb.49.786 463:Physical Review Letters 393:Physical Review Letters 342:Physical Review Letters 589:. Elsevier BV: 11–20. 103: 177:Kanjijal, D. (2001). 93: 36:particle accelerators 141:track etch membranes 94:Time evolution of a 913:325 (2014): 54-65. 862:2008PhRvB..78e4102A 815:2009NIMPB.267..931R 768:2004NIMPB.216..372D 724:2003NIMPB.212..346T 638:2005NIMPB.240..681S 595:2003NIMPB.208...11A 536:2016Nanot..27k5305K 475:2008PhRvL.101q5503K 415:2002PhRvL..88p5501B 354:2000PhRvL..85.3648T 296:1994PhRvB..4912457M 86:Ion track formation 28:electronic stopping 104: 96:Molecular Dynamics 62:has time to form. 938:Radiation effects 850:Physical Review B 669:Physical Review B 284:Physical Review B 116:Coulomb explosion 945: 917: 910: 904: 898: 892: 891: 881: 841: 835: 834: 794: 788: 787: 750: 744: 743: 707: 701: 700: 664: 658: 657: 621: 615: 614: 578: 572: 571: 519: 513: 512: 494: 457: 451: 450: 408: 406:cond-mat/0103475 388: 382: 381: 339: 330: 324: 323: 275: 266: 265: 229: 213: 207: 200: 194: 193: 183: 174: 32:nuclear stopping 20:Swift heavy ions 953: 952: 948: 947: 946: 944: 943: 942: 923: 922: 921: 920: 911: 907: 899: 895: 843: 842: 838: 796: 795: 791: 752: 751: 747: 709: 708: 704: 666: 665: 661: 623: 622: 618: 580: 579: 575: 521: 520: 516: 459: 458: 454: 390: 389: 385: 337: 332: 331: 327: 281: 277: 276: 269: 254: 215: 214: 210: 201: 197: 186:Current Science 181: 176: 175: 166: 161: 146:Irradiation of 129: 122: 88: 68: 30:dominates over 17: 12: 11: 5: 951: 949: 941: 940: 935: 925: 924: 919: 918: 905: 893: 836: 789: 745: 702: 659: 616: 573: 524:Nanotechnology 514: 452: 383: 325: 279: 267: 252: 208: 195: 163: 162: 160: 157: 128: 125: 120: 112:thermal spikes 87: 84: 67: 64: 15: 13: 10: 9: 6: 4: 3: 2: 950: 939: 936: 934: 931: 930: 928: 916: 909: 906: 903: 897: 894: 889: 885: 880: 875: 871: 867: 863: 859: 855: 851: 847: 840: 837: 832: 828: 824: 820: 816: 812: 808: 804: 800: 793: 790: 785: 781: 777: 773: 769: 765: 761: 757: 749: 746: 741: 737: 733: 729: 725: 721: 717: 713: 706: 703: 698: 694: 690: 686: 682: 678: 674: 670: 663: 660: 655: 651: 647: 643: 639: 635: 631: 627: 620: 617: 612: 608: 604: 600: 596: 592: 588: 584: 577: 574: 569: 565: 561: 557: 553: 549: 545: 541: 537: 533: 529: 525: 518: 515: 510: 506: 502: 498: 493: 488: 484: 480: 476: 472: 468: 464: 456: 453: 448: 444: 440: 436: 432: 428: 424: 420: 416: 412: 407: 402: 398: 394: 387: 384: 379: 375: 371: 367: 363: 359: 355: 351: 347: 343: 336: 329: 326: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 274: 272: 268: 263: 259: 255: 253:9780081028667 249: 245: 241: 237: 233: 228: 223: 219: 212: 209: 205: 199: 196: 191: 187: 180: 173: 171: 169: 165: 158: 156: 153: 149: 144: 142: 138: 134: 126: 124: 117: 113: 109: 101: 97: 92: 85: 83: 81: 80:Bohr velocity 77: 73: 65: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 24:particle beam 21: 908: 896: 853: 849: 839: 806: 802: 792: 759: 755: 748: 715: 711: 705: 672: 668: 662: 629: 625: 619: 586: 582: 576: 527: 523: 517: 466: 462: 455: 396: 392: 386: 345: 341: 328: 287: 283: 244:10138/318033 217: 211: 198: 189: 185: 145: 140: 131:Swift heavy 130: 127:Applications 105: 69: 19: 18: 879:2241/100795 220:: 485–516. 192:(12): 1560. 927:Categories 227:2001.03711 204:ion tracks 159:References 137:Ion tracks 133:ion tracks 108:ion tracks 66:Definition 56:Ion tracks 52:ion tracks 48:ion tracks 888:1098-0121 831:0168-583X 784:0168-583X 740:0168-583X 689:0163-1829 654:0168-583X 611:0168-583X 552:0957-4484 501:0031-9007 492:10440/862 431:0031-9007 370:0031-9007 312:0163-1829 262:210165042 148:polyimide 100:ion track 60:ion track 697:10010379 568:19102268 560:26878691 509:18999762 447:11034531 439:11955237 378:11030972 320:10010146 152:nanowire 858:Bibcode 811:Bibcode 764:Bibcode 720:Bibcode 634:Bibcode 591:Bibcode 532:Bibcode 471:Bibcode 411:Bibcode 350:Bibcode 292:Bibcode 886:  829:  782:  738:  695:  687:  652:  609:  566:  558:  550:  507:  499:  445:  437:  429:  376:  368:  318:  310:  260:  250:  182:(DjVu) 76:carbon 564:S2CID 443:S2CID 401:arXiv 338:(PDF) 258:S2CID 222:arXiv 884:ISSN 827:ISSN 780:ISSN 736:ISSN 693:PMID 685:ISSN 650:ISSN 607:ISSN 556:PMID 548:ISSN 505:PMID 497:ISSN 435:PMID 427:ISSN 374:PMID 366:ISSN 316:PMID 308:ISSN 248:ISBN 874:hdl 866:doi 819:doi 807:267 772:doi 760:216 728:doi 716:212 677:doi 642:doi 630:240 599:doi 587:208 540:doi 487:hdl 479:doi 467:101 419:doi 358:doi 300:doi 240:hdl 232:doi 119:SiO 44:GeV 42:or 40:MeV 929:: 882:. 872:. 864:. 854:78 852:. 848:. 825:. 817:. 805:. 801:. 778:. 770:. 758:. 734:. 726:. 714:. 691:. 683:. 673:49 671:. 648:. 640:. 628:. 605:. 597:. 585:. 562:. 554:. 546:. 538:. 528:27 526:. 503:. 495:. 485:. 477:. 465:. 441:. 433:. 425:. 417:. 409:. 397:88 395:. 372:. 364:. 356:. 346:85 344:. 340:. 314:. 306:. 298:. 288:49 286:. 270:^ 256:. 246:. 238:. 230:. 190:80 188:. 184:. 167:^ 123:. 82:. 890:. 876:: 868:: 860:: 833:. 821:: 813:: 786:. 774:: 766:: 742:. 730:: 722:: 699:. 679:: 656:. 644:: 636:: 613:. 601:: 593:: 570:. 542:: 534:: 511:. 489:: 481:: 473:: 449:. 421:: 413:: 403:: 380:. 360:: 352:: 322:. 302:: 294:: 280:2 264:. 242:: 234:: 224:: 121:2

Index

particle beam
electronic stopping
nuclear stopping
particle accelerators
MeV
GeV
ion tracks
ion tracks
Ion tracks
ion track
Mega electron volts (MeV)
carbon
Bohr velocity
Four atomic scale images of a SHI track in quartz at different times
Molecular Dynamics
ion track
ion tracks
thermal spikes
Coulomb explosion
ion tracks
Ion tracks
polyimide
nanowire



"Swift heavy ion-induced modification and track formation in materials"
ion tracks
arXiv
2001.03711

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.