Knowledge

Symmetric monoidal category

Source 📝

1279: 1526: 1546: 1536: 743: 674: 257: 481: 505: 429: 573: 795: 769: 116: 90: 529: 64: 453: 296: 156: 136: 284: 308: 923: 362:, is symmetric monoidal. The tensor product is the direct product of objects, and any terminal object (empty product) is the unit object. 541: 592: 818:
Fong, Brendan; Spivak, David I. (2018-10-12). "Seven Sketches in Compositionality: An Invitation to Applied Category Theory".
916: 1570: 1120: 1075: 683: 381:-modules is symmetric monoidal. The latter example class includes the category of all vector spaces over a given field. 1549: 404:(or of the Lie algebra) is a symmetric monoidal category. Here the standard tensor product of representations is used. 359: 625: 208: 355:. Like before, the tensor product is just the cartesian product of groups, and the trivial group is the unit object. 1539: 1325: 1189: 1097: 295: 1498: 1142: 1080: 1003: 798: 170: 159: 1529: 1485: 1090: 909: 611: 603: 508: 1085: 1067: 545: 345: 328:
are the associativity isomorphism, the left unit isomorphism, and the right unit isomorphism respectively.
1292: 1058: 1038: 961: 858: 264: 1174: 1013: 839: 366: 283: 986: 981: 401: 863: 462: 1330: 1278: 1208: 1204: 1008: 580: 163: 490: 414: 307: 1184: 1179: 1161: 1043: 1018: 894: 819: 551: 352: 774: 748: 95: 69: 1493: 1430: 1418: 1320: 1245: 1240: 1198: 1194: 976: 971: 607: 514: 373:
is monoidal (using the ordinary tensor product of modules), but not necessarily symmetric. If
182: 49: 43: 17: 1454: 1340: 1315: 1250: 1235: 1230: 1169: 998: 966: 876: 576: 456: 438: 341: 158:
of the category). One of the prototypical examples of a symmetric monoidal category is the
1366: 932: 596: 31: 1403: 1398: 1382: 1345: 1335: 1255: 141: 121: 1564: 1393: 1225: 1102: 1028: 843: 1147: 1048: 1408: 1388: 1260: 1130: 389: 35: 1440: 1378: 991: 890: 1434: 1125: 1503: 1135: 1033: 1473: 1463: 1112: 1023: 889:
This article incorporates material from Symmetric monoidal category on
1468: 344:. The tensor product is the set theoretic cartesian product, and any 824: 1350: 901: 336:
Some examples and non-examples of symmetric monoidal categories:
880: 1290: 943: 905: 358:
More generally, any category with finite products, that is, a
27:
Monoidal category where A ⊗ B is naturally equivalent to B ⊗ A
844:"Symmetric Monoidal Categories Model all Connective Spectra" 66:
is defined) such that the tensor product is symmetric (i.e.
622:
In a symmetric monoidal category, the natural isomorphisms
511:
symmetric monoidal category with the internal hom-functor
745:. If we abandon this requirement (but still require that 92:
is, in a certain strict sense, naturally isomorphic to
777: 751: 686: 628: 554: 517: 493: 465: 441: 417: 211: 144: 124: 98: 72: 52: 1453: 1417: 1365: 1358: 1309: 1218: 1160: 1111: 1066: 1057: 954: 595:is a symmetric monoidal category with a compatible 789: 763: 737: 668: 567: 523: 499: 475: 447: 423: 251: 150: 130: 110: 84: 58: 738:{\displaystyle s_{BA}\circ s_{AB}=1_{A\otimes B}} 895:Creative Commons Attribution/Share-Alike License 669:{\displaystyle s_{AB}:A\otimes B\to B\otimes A} 252:{\displaystyle s_{AB}:A\otimes B\to B\otimes A} 275:and such that the following diagrams commute: 917: 46:(i.e. a category in which a "tensor product" 8: 1545: 1535: 1362: 1306: 1287: 1063: 951: 940: 924: 910: 902: 797:), we obtain the more general notion of a 862: 823: 776: 750: 723: 707: 691: 685: 633: 627: 559: 553: 548:) of a symmetric monoidal category is an 516: 492: 468: 467: 466: 464: 440: 416: 216: 210: 143: 123: 97: 71: 51: 810: 483:are symmetric monoidal, and moreover, ( 851:Theory and Applications of Categories 377:is commutative, the category of left 7: 181:A symmetric monoidal category is a 593:dagger symmetric monoidal category 560: 25: 1544: 1534: 1525: 1524: 1277: 348:can be fixed as the unit object. 306: 294: 282: 171:tensor product of vector spaces 893:, which is licensed under the 654: 544:(geometric realization of the 476:{\displaystyle {\mathbb {C} }} 237: 1: 614:symmetric monoidal category. 291:The associativity coherence: 18:Symmetric monoidal ∞-category 500:{\displaystyle \circledast } 424:{\displaystyle \circledast } 402:representations of the group 193:) such that, for every pair 1219:Constructions on categories 877:Symmetric monoidal category 771:be naturally isomorphic to 680:inverses in the sense that 568:{\displaystyle E_{\infty }} 360:cartesian monoidal category 40:symmetric monoidal category 1587: 1326:Higher-dimensional algebra 790:{\displaystyle B\otimes A} 764:{\displaystyle A\otimes B} 205:, there is an isomorphism 111:{\displaystyle B\otimes A} 85:{\displaystyle A\otimes B} 1520: 1299: 1286: 1275: 950: 939: 799:braided monoidal category 160:category of vector spaces 524:{\displaystyle \oslash } 59:{\displaystyle \otimes } 1136:Cokernels and quotients 1059:Universal constructions 396:), the category of all 316:In the diagrams above, 1293:Higher category theory 1039:Natural transformation 791: 765: 739: 670: 569: 525: 501: 477: 449: 448:{\displaystyle \odot } 425: 253: 152: 132: 112: 86: 60: 792: 766: 740: 671: 570: 526: 502: 478: 450: 426: 367:category of bimodules 254: 153: 133: 113: 87: 61: 1162:Algebraic categories 775: 749: 684: 626: 552: 515: 491: 463: 439: 415: 279:The unit coherence: 209: 142: 122: 96: 70: 50: 1571:Monoidal categories 1331:Homotopy hypothesis 1009:Commutative diagram 581:infinite loop space 169:using the ordinary 1044:Universal property 787: 761: 735: 666: 565: 521: 497: 473: 445: 421: 388:and a group (or a 353:category of groups 249: 148: 128: 108: 82: 56: 1558: 1557: 1516: 1515: 1512: 1511: 1494:monoidal category 1449: 1448: 1321:Enriched category 1273: 1272: 1269: 1268: 1246:Quotient category 1241:Opposite category 1156: 1155: 542:classifying space 457:stereotype spaces 303:The inverse law: 183:monoidal category 151:{\displaystyle B} 131:{\displaystyle A} 44:monoidal category 16:(Redirected from 1578: 1548: 1547: 1538: 1537: 1528: 1527: 1363: 1341:Simplex category 1316:Categorification 1307: 1288: 1281: 1251:Product category 1236:Kleisli category 1231:Functor category 1076:Terminal objects 1064: 999:Adjoint functors 952: 941: 926: 919: 912: 903: 869: 868: 866: 848: 836: 830: 829: 827: 815: 796: 794: 793: 788: 770: 768: 767: 762: 744: 742: 741: 736: 734: 733: 715: 714: 699: 698: 675: 673: 672: 667: 641: 640: 597:dagger structure 577:group completion 574: 572: 571: 566: 564: 563: 530: 528: 527: 522: 506: 504: 503: 498: 482: 480: 479: 474: 472: 471: 454: 452: 451: 446: 430: 428: 427: 422: 407:The categories ( 342:category of sets 310: 298: 286: 258: 256: 255: 250: 224: 223: 162:over some fixed 157: 155: 154: 149: 137: 135: 134: 129: 118:for all objects 117: 115: 114: 109: 91: 89: 88: 83: 65: 63: 62: 57: 21: 1586: 1585: 1581: 1580: 1579: 1577: 1576: 1575: 1561: 1560: 1559: 1554: 1508: 1478: 1445: 1422: 1413: 1370: 1354: 1305: 1295: 1282: 1265: 1214: 1152: 1121:Initial objects 1107: 1053: 946: 935: 933:Category theory 930: 873: 872: 864:10.1.1.501.2534 846: 838: 837: 833: 817: 816: 812: 807: 773: 772: 747: 746: 719: 703: 687: 682: 681: 629: 624: 623: 620: 618:Generalizations 589: 587:Specializations 555: 550: 549: 538: 513: 512: 489: 488: 461: 460: 437: 436: 413: 412: 334: 212: 207: 206: 179: 140: 139: 120: 119: 94: 93: 68: 67: 48: 47: 32:category theory 28: 23: 22: 15: 12: 11: 5: 1584: 1582: 1574: 1573: 1563: 1562: 1556: 1555: 1553: 1552: 1542: 1532: 1521: 1518: 1517: 1514: 1513: 1510: 1509: 1507: 1506: 1501: 1496: 1482: 1476: 1471: 1466: 1460: 1458: 1451: 1450: 1447: 1446: 1444: 1443: 1438: 1427: 1425: 1420: 1415: 1414: 1412: 1411: 1406: 1401: 1396: 1391: 1386: 1375: 1373: 1368: 1360: 1356: 1355: 1353: 1348: 1346:String diagram 1343: 1338: 1336:Model category 1333: 1328: 1323: 1318: 1313: 1311: 1304: 1303: 1300: 1297: 1296: 1291: 1284: 1283: 1276: 1274: 1271: 1270: 1267: 1266: 1264: 1263: 1258: 1256:Comma category 1253: 1248: 1243: 1238: 1233: 1228: 1222: 1220: 1216: 1215: 1213: 1212: 1202: 1192: 1190:Abelian groups 1187: 1182: 1177: 1172: 1166: 1164: 1158: 1157: 1154: 1153: 1151: 1150: 1145: 1140: 1139: 1138: 1128: 1123: 1117: 1115: 1109: 1108: 1106: 1105: 1100: 1095: 1094: 1093: 1083: 1078: 1072: 1070: 1061: 1055: 1054: 1052: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 995: 994: 989: 984: 979: 974: 969: 958: 956: 948: 947: 944: 937: 936: 931: 929: 928: 921: 914: 906: 900: 899: 886: 871: 870: 840:Thomason, R.W. 831: 809: 808: 806: 803: 786: 783: 780: 760: 757: 754: 732: 729: 726: 722: 718: 713: 710: 706: 702: 697: 694: 690: 665: 662: 659: 656: 653: 650: 647: 644: 639: 636: 632: 619: 616: 588: 585: 575:space, so its 562: 558: 537: 534: 533: 532: 520: 496: 470: 444: 420: 405: 384:Given a field 382: 363: 356: 349: 333: 330: 314: 313: 312: 311: 301: 300: 299: 289: 288: 287: 248: 245: 242: 239: 236: 233: 230: 227: 222: 219: 215: 201:of objects in 178: 175: 147: 127: 107: 104: 101: 81: 78: 75: 55: 34:, a branch of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1583: 1572: 1569: 1568: 1566: 1551: 1543: 1541: 1533: 1531: 1523: 1522: 1519: 1505: 1502: 1500: 1497: 1495: 1491: 1487: 1483: 1481: 1479: 1472: 1470: 1467: 1465: 1462: 1461: 1459: 1456: 1452: 1442: 1439: 1436: 1432: 1429: 1428: 1426: 1424: 1416: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1394:Tetracategory 1392: 1390: 1387: 1384: 1383:pseudofunctor 1380: 1377: 1376: 1374: 1372: 1364: 1361: 1357: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1308: 1302: 1301: 1298: 1294: 1289: 1285: 1280: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1226:Free category 1224: 1223: 1221: 1217: 1210: 1209:Vector spaces 1206: 1203: 1200: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1167: 1165: 1163: 1159: 1149: 1146: 1144: 1141: 1137: 1134: 1133: 1132: 1129: 1127: 1124: 1122: 1119: 1118: 1116: 1114: 1110: 1104: 1103:Inverse limit 1101: 1099: 1096: 1092: 1089: 1088: 1087: 1084: 1082: 1079: 1077: 1074: 1073: 1071: 1069: 1065: 1062: 1060: 1056: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1029:Kan extension 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 964: 963: 960: 959: 957: 953: 949: 942: 938: 934: 927: 922: 920: 915: 913: 908: 907: 904: 898: 896: 892: 887: 885: 883: 878: 875: 874: 865: 860: 857:(5): 78–118. 856: 852: 845: 841: 835: 832: 826: 821: 814: 811: 804: 802: 800: 784: 781: 778: 758: 755: 752: 730: 727: 724: 720: 716: 711: 708: 704: 700: 695: 692: 688: 679: 663: 660: 657: 651: 648: 645: 642: 637: 634: 630: 617: 615: 613: 609: 605: 600: 598: 594: 586: 584: 582: 578: 556: 547: 543: 535: 518: 510: 494: 486: 458: 442: 434: 418: 410: 406: 403: 399: 395: 391: 387: 383: 380: 376: 372: 368: 364: 361: 357: 354: 350: 347: 343: 339: 338: 337: 331: 329: 327: 323: 319: 309: 305: 304: 302: 297: 293: 292: 290: 285: 281: 280: 278: 277: 276: 274: 270: 266: 262: 246: 243: 240: 234: 231: 228: 225: 220: 217: 213: 204: 200: 196: 192: 188: 184: 176: 174: 172: 168: 165: 161: 145: 125: 105: 102: 99: 79: 76: 73: 53: 45: 41: 37: 33: 19: 1489: 1474: 1455:Categorified 1359:n-categories 1310:Key concepts 1148:Direct limit 1131:Coequalizers 1049:Yoneda lemma 955:Key concepts 945:Key concepts 888: 881: 854: 850: 834: 813: 677: 621: 601: 590: 539: 484: 432: 408: 397: 393: 385: 378: 374: 370: 369:over a ring 335: 325: 321: 317: 315: 272: 268: 260: 202: 198: 194: 190: 186: 180: 166: 39: 29: 1423:-categories 1399:Kan complex 1389:Tricategory 1371:-categories 1261:Subcategory 1019:Exponential 987:Preadditive 982:Pre-abelian 610:cocomplete 390:Lie algebra 259:called the 36:mathematics 1441:3-category 1431:2-category 1404:∞-groupoid 1379:Bicategory 1126:Coproducts 1086:Equalizers 992:Bicategory 891:PlanetMath 825:1803.05316 805:References 676:are their 536:Properties 177:Definition 1490:Symmetric 1435:2-functor 1175:Relations 1098:Pullbacks 859:CiteSeerX 782:⊗ 756:⊗ 728:⊗ 701:∘ 661:⊗ 655:→ 649:⊗ 561:∞ 519:⊘ 495:⊛ 443:⊙ 419:⊛ 346:singleton 244:⊗ 238:→ 232:⊗ 103:⊗ 77:⊗ 54:⊗ 1565:Category 1550:Glossary 1530:Category 1504:n-monoid 1457:concepts 1113:Colimits 1081:Products 1034:Morphism 977:Concrete 972:Additive 962:Category 842:(1995). 608:complete 400:-linear 332:Examples 267:in both 263:that is 261:swap map 1540:Outline 1499:n-group 1464:2-group 1419:Strict 1409:∞-topos 1205:Modules 1143:Pushout 1091:Kernels 1024:Functor 967:Abelian 879:at the 507:) is a 431:) and ( 265:natural 1486:Traced 1469:2-ring 1199:Fields 1185:Groups 1180:Magmas 1068:Limits 861:  612:closed 604:cosmos 579:is an 509:closed 324:, and 1480:-ring 1367:Weak 1351:Topos 1195:Rings 847:(PDF) 820:arXiv 606:is a 546:nerve 459:over 455:) of 392:over 189:, ⊗, 164:field 42:is a 1170:Sets 540:The 365:The 351:The 340:The 271:and 138:and 38:, a 1014:End 1004:CCC 884:Lab 678:own 485:Ste 433:Ste 409:Ste 30:In 1567:: 1492:) 1488:)( 853:. 849:. 801:. 602:A 599:. 591:A 583:. 320:, 197:, 173:. 167:k, 1484:( 1477:n 1475:E 1437:) 1433:( 1421:n 1385:) 1381:( 1369:n 1211:) 1207:( 1201:) 1197:( 925:e 918:t 911:v 897:. 882:n 867:. 855:1 828:. 822:: 785:A 779:B 759:B 753:A 731:B 725:A 721:1 717:= 712:B 709:A 705:s 696:A 693:B 689:s 664:A 658:B 652:B 646:A 643:: 638:B 635:A 631:s 557:E 531:. 487:, 469:C 435:, 411:, 398:k 394:k 386:k 379:R 375:R 371:R 326:r 322:l 318:a 273:B 269:A 247:A 241:B 235:B 229:A 226:: 221:B 218:A 214:s 203:C 199:B 195:A 191:I 187:C 185:( 146:B 126:A 106:A 100:B 80:B 74:A 20:)

Index

Symmetric monoidal ∞-category
category theory
mathematics
monoidal category
category of vector spaces
field
tensor product of vector spaces
monoidal category
natural



category of sets
singleton
category of groups
cartesian monoidal category
category of bimodules
Lie algebra
representations of the group
stereotype spaces
closed
classifying space
nerve
group completion
infinite loop space
dagger symmetric monoidal category
dagger structure
cosmos
complete
closed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.