Knowledge (XXG)

Run-and-tumble motion

Source đź“ť

862: 973: 45: 1599: 999: 1066:). Vourc’h et al. (2020) showed that this biased motility stems from the averaged displacements during run periods, which is no longer random (as it was in the uniform illumination). They showed the bias is the result of the number of runs, which is greater toward the light source, and not of longer runs in this direction. Brought together, these results suggest distinct pathways for the recognition of light intensity and light direction in this prokaryotic microorganism. This effect can be used in the active control of bacterial flows. 1205: 885: 1594:{\displaystyle {\frac {\partial f(\mathbf {r} ,{\hat {\mathbf {s} }},t)}{\partial t}}+v_{0}\,{\hat {\mathbf {s} }}\cdot \nabla f(\mathbf {r} ,{\hat {\mathbf {s} }},t)=\xi ^{-1}\nabla \cdot (\nabla V(\mathbf {r} )f(\mathbf {r} ,{\hat {\mathbf {s} }},t))-\alpha f(\mathbf {r} ,{\hat {\mathbf {s} }},t)+{\frac {\alpha }{\Omega _{d}}}\int g({\hat {\mathbf {s} }}-{\hat {\mathbf {s} }}')f(\mathbf {r} ,{\hat {\mathbf {s} }}',t)d{\hat {\mathbf {s} }}'} 606: 900: 3441: 2421: 2350: 2370:
Cooper, Kendal G.; Chong, Audrey; Kari, Laszlo; Jeffrey, Brendan; Starr, Tregei; Martens, Craig; McClurg, Molly; Posada, Victoria R.; Laughlin, Richard C.; Whitfield-Cargile, Canaan; Garry Adams, L.; Bryan, Laura K.; Little, Sara V.; Krath, Mary; Lawhon, Sara D.; Steele-Mortimer, Olivia (2021-01-13).
915:
In a uniform medium, run-and-tumble trajectories appear as a sequence of nearly straight segments interspersed by erratic reorientation events, during which the bacterium remains stationary. The straight segments correspond to the runs, and the reorientation events correspond to the tumbles. Because
1047:
being in the run state randomly in all directions. This feature, however, vanishes after a typical characteristic time of about one hour, when the initial probability is recovered. These results were well described by a mathematical model based on a linear response theory proposed by Vourc’h et al.
852:
that pushes the cell in a forward run, parallel to the long axis of the cell. Clockwise rotation disassembles the bundle and the cell rotates randomly (tumbling). After the tumbling event, straight swimming is recovered in a new direction. That is, counterclockwise rotation results in steady motion
714:
pathways) for the bacterium to move in a directed manner along gradients and reach more favorable conditions for life. The direction of flagellar rotation is controlled by the type of molecules detected by the receptors on the surface of the cell: in the presence of an attractant gradient, the rate
809:
that controls the direction of the flagellar motor. This can result in a chemotaxis, where attractant gradients extend the length of time flagellar motors rotate CCW, resulting in more smooth swimming in a favourable direction, while repellents cause an increase of CW rotations, resulting in more
657:
and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed (or slowly varying) direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.
935:
in a uniform aqueous medium, the mean turn angle is about 70 degrees, with a relatively broad distribution. In more complex environments, the tumbling distribution and run duration may depend on the agent's local environment, which allows for goal-oriented navigation
1089:. Contrary to the run phase that can extend from a fraction of a second to several minutes, the tumble lasts only a fraction of a second. The tumbling phase is a clockwise rotation that allows the cell to change the motility direction of the next run. 1961: 2856:
Choi, Jong-Soon; Chung, Young-Ho; Moon, Yoon-Jung; Kim, Changhoon; Watanabe, Masakatsu; Song, Pill-Soon; Joe, Cheol-O; Bogorad, Lawrence; Park, Young Mok (1999). "Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803".
2059: 877:
which project in all directions. Clockwise (CW) rotation of flagellar motors results in random re-orientation for the bacterium, but counter-clockwise (CCW) rotation produces approximate straight-line motion.
3798:
Rosser, Gabriel; Fletcher, Alexander G.; Wilkinson, David A.; de Beyer, Jennifer A.; Yates, Christian A.; Armitage, Judith P.; Maini, Philip K.; Baker, Ruth E. (2013-10-24). Coombs, Daniel (ed.).
2661:
Schuergers, Nils; Lenn, Tchern; Kampmann, Ronald; Meissner, Markus V; Esteves, Tiago; Temerinac-Ott, Maja; Korvink, Jan G; Lowe, Alan R; Mullineaux, Conrad W; Wilde, Annegret (2016-02-09).
637: 3743:
Polin, Marco; Tuval, Idan; Drescher, Knut; Gollub, J. P.; Goldstein, Raymond E. (2009-07-23). "ChlamydomonasSwims with Two "Gears" in a Eukaryotic Version of Run-and-Tumble Locomotion".
2088:
In real-world systems, more complex models may be required. In such cases, specialized analysis methods have been developed to infer model parameters from experimental trajectory data.
1069:
It has also been observed that very strong local illumination inactivates the motility apparatus. Increasing the light intensity of more than ~475 ÎĽmol m s reverses the direction of
853:
and clockwise rotation in tumbling; counterclockwise rotation in a given direction is maintained longer in the presence of molecules of interest (like sugars or aminoacids).
2124: â€“ biologically propelled motion through a liquid medium; in contrast of passive swimming (floating); involves the expenditure of energy to travel to a desired location 1782: 861: 940:). For example, a tumbling distribution that depends on a chemical gradient can guide bacteria toward a food source or away from a repellant, a behavior referred to as 1010:
cyanobacterium. During run the cell moves quickly from one point to another, while during tumble it remains constrained in a given area and tends to change directions.
669:, which may depend on the organism's local environment (e.g., chemical gradients). The duration of a run is usually random in the same sense. An example is wild-type 1114:
Theoretically and computationally, run-and-tumble motion can be modeled as a stochastic process. One of the simplest models is based on the following assumptions:
706:
and—irrespective of species and type of flagellation—they have only two modes of operation: clockwise or counterclockwise rotation. Bacterial swimming is used in
4020:
Villa-Torrealba, Andrea; Chávez-Raby, Cristóbal; de Castro, Pablo; Soto, Rodrigo (2020-06-22). "Run-and-tumble bacteria slowly approaching the diffusive regime".
1972: 3920: 3861:
Seyrich, Maximilian; Alirezaeizanjani, Zahra; Beta, Carsten; Stark, Holger (2018-10-25). "Statistical parameter inference of bacterial swimming strategies".
3669:
Krell, Tino; Lacal, Jesús; Muñoz-Martínez, Francisco; Reyes-Darias, José Antonio; Cadirci, Bilge Hilal; García-Fontana, Cristina; Ramos, Juan Luis (2011).
3533: 2373:"Regulatory protein HilD stimulates Salmonella Typhimurium invasiveness by promoting smooth swimming via the methyl-accepting chemotaxis protein McpC" 623: 931:
In contrast with the more gradual effect of rotational diffusion, the change in orientation (turn angle) during a tumble is large; for an isolated
4079: 3603: 3461: 924:, so the runs can be approximated as constant velocity motion. The deviation of real-world runs from straight lines is usually attributed to 972: 2608:
Vourc'h, Thomas; Léopoldès, Julien; Peerhossaini, Hassan (2020-02-03). "Light Control of the Diffusion Coefficient of Active Fluids".
1095:
is another scheme that allows an organism to move toward or away from gradients of nutrients or other chemical stimuli. Detecting by
630: 3623: 3918:
Solon, A. P.; Cates, M. E.; Tailleur, J. (2015). "Active brownian particles and run-and-tumble particles: A comparative study".
44: 3981: 2091:
The mathematical abstraction of run-and-tumble motion also appears outside of biology—for example, in idealized models of
1161: 3401: 666: 3480: 998: 884: 4126: 3804: 3675: 3621:
Guasto, Jeffrey S.; Rusconi, Roberto; Stocker, Roman (2012-01-21). "Fluid Mechanics of Planktonic Microorganisms".
338: 1701: 1143: 748: 676: 462: 454: 343: 2154: 683: 537: 407: 263: 1664: 290: 3863: 782: 733: 610: 402: 301: 715:
of smooth swimming increases, while the presence of a repellent gradient increases the rate of tumbling.
4181: 548: 412: 1956:{\displaystyle \langle \mathbf {r} ^{2}\rangle ={\frac {2v_{0}^{2}}{\alpha ^{2}(1-\sigma _{1})}}\left} 797:, bacteria swim in a random pattern produced by alternating counterclockwise (CCW) and clockwise (CW) 4041: 3939: 3882: 3813: 3754: 3632: 3552: 3313: 3212: 3071: 2975: 2451: 1139: 1106:
is observed in a homogenous environment, and the direction of each run is identified after a tumble.
925: 569: 711: 584: 523: 472: 467: 3660:
Jensen, Oliver E. (2015), "Mathematical Biomechanics", in Nicholas J. Higham; et al. (eds.),
4159: 4112: 4031: 4008: 3963: 3929: 3906: 3872: 3786: 3723: 3595: 3576: 3542: 3503: 3337: 3303: 3236: 3202: 3102: 2944: 2890: 2643: 2617: 2121: 2115: 2092: 806: 662: 487: 306: 96: 80: 69: 4077:
Wadhams, George H.; Armitage, Judith P. (2004). "Making sense of it all: bacterial chemotaxis".
698:
Many bacteria swim, propelled by rotation of the flagella outside the cell body. In contrast to
4151: 4143: 4124:
Wadhwa, Navish; Berg, Howard C. (2021-09-21). "Bacterial motility: machinery and mechanisms".
4104: 4096: 4065: 4057: 4022: 4000: 3955: 3898: 3849: 3831: 3778: 3770: 3745: 3731: 3694: 3648: 3609: 3599: 3568: 3519: 3467: 3457: 3430: 3395:
Bastos-Arrieta, Julio; Revilla-Guarinos, Ainhoa; Uspal, William E.; Simmchen, Juliane (2018).
3329: 3228: 3159: 3141: 3094: 3052: 3044: 3009: 2991: 2936: 2928: 2882: 2874: 2821: 2803: 2759: 2741: 2702: 2684: 2635: 2583: 2565: 2487: 2469: 2410: 2392: 2339: 2321: 2160: 2109: 2096: 921: 770: 739: 574: 482: 353: 196: 188: 101: 3564: 1035:, displaying an intermittent two phase motion; a high-motility run and a low-motility tumble 4135: 4088: 4049: 3990: 3947: 3890: 3839: 3821: 3800:"Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides" 3762: 3715: 3684: 3640: 3589: 3560: 3511: 3495: 3420: 3410: 3321: 3220: 3149: 3133: 3086: 3036: 2999: 2983: 2920: 2866: 2811: 2793: 2749: 2733: 2692: 2674: 2627: 2573: 2557: 2477: 2459: 2400: 2384: 2329: 2311: 849: 828: 787: 699: 477: 85: 17: 3040: 2054:{\displaystyle \sigma _{1}=\int _{0}^{2\pi }g({\hat {\mathbf {s} }})(\cos \theta )d\theta } 1040: 917: 845: 579: 366: 258: 3706:
Paasschens, J. C. J. (1 July 1997). "Solution of the time-dependent Boltzmann equation".
2240: 2238: 2236: 2234: 1054:
cells can also undergo biased motility under directional illumination. Under directional
4045: 3943: 3886: 3817: 3758: 3644: 3636: 3556: 3317: 3291: 3216: 2979: 2455: 2112: â€“ Ability of many animals to find their way accurately without maps or instruments 3844: 3799: 3531:
Cates, Michael E.; Tailleur, Julien (2015-03-01). "Motility-Induced Phase Separation".
3425: 3396: 3190: 3154: 3121: 3004: 2963: 2870: 2816: 2781: 2697: 2662: 2578: 2546:"Phototaxis Assays of Synechocystis sp. PCC 6803 at Macroscopic and Microscopic Scales" 2545: 2482: 2439: 2405: 2372: 2334: 2299: 2130: 1024: 841: 753: 507: 348: 270: 3090: 2754: 2721: 1757:. In two dimensions, the mean squared displacement corresponding to initial condition 4175: 4163: 4116: 3689: 3670: 3341: 3240: 2948: 2924: 2647: 2142: 1099: 1096: 1019: 1006: 980: 962: 826:
An archetype of bacterial swimming is represented by the well-studied model organism
812: 802: 757: 423: 333: 311: 248: 3967: 3910: 3790: 3580: 2894: 2737: 2163: â€“ Memoryless continuous-time stochastic process that shows two distinct values 4012: 3106: 2316: 2136: 1131: 1055: 1032: 1031:
species can move in cell suspensions and on moist surfaces and by using retractile
989: 844:
swimming pattern, as shown in the diagrams below. Counterclockwise rotation of the
833: 724: 543: 532: 253: 233: 206: 201: 155: 143: 53: 3951: 1039:. The two phases can be modified under various external stressors. Increasing the 899: 3826: 3325: 2464: 1062:
cells perform phototactic motility and head toward the light source (in positive
4053: 3224: 2438:
Egbert, Matthew D.; Barandiaran, Xabier E.; Di Paolo, Ezequiel A. (2010-12-02).
1694: 1625: 1103: 1078: 589: 518: 243: 228: 173: 4139: 3894: 3445: 2425: 2388: 2354: 928:, which causes small fluctuations in the orientation over the course of a run. 3995: 3976: 3613: 3137: 2722:"Multiple Light Inputs Control Phototaxis in Synechocystis sp. Strain PCC6803" 1092: 1082: 1063: 941: 793: 778: 774: 387: 238: 161: 149: 137: 131: 4147: 4100: 4061: 3959: 3902: 3835: 3774: 3735: 3727: 3719: 3652: 3572: 3523: 3507: 3415: 3191:"Run-and-tumble particles in two dimensions: Marginal position distributions" 3145: 3048: 2995: 2932: 2878: 2807: 2745: 2688: 2639: 2569: 2473: 2396: 2325: 3766: 3471: 2561: 798: 703: 382: 167: 125: 4155: 4108: 4069: 4004: 3853: 3782: 3698: 3434: 3333: 3232: 3163: 3098: 3056: 3013: 2886: 2840:
Emergent phototactic responses of cyanobacteria under complex light regimes
2825: 2763: 2706: 2587: 2491: 2414: 2343: 2244: 2133: â€“ Biological ability to detect and respond to cell population density 2940: 2798: 2424:
Modified material was copied from this source, which is available under a
2353:
Modified material was copied from this source, which is available under a
3515: 2148: 908: 874: 654: 564: 559: 2679: 2118: â€“ Ability of bacteria to move independently using metabolic energy 682:
Run-and-tumble motion forms the basis of certain mathematical models of
3440: 3253: 2964:"Bacterial swarming: a model system for studying dynamic self-assembly" 2420: 2349: 1073:
cells to move away from the high levels of radiation source. Moreover,
869: 671: 512: 433: 397: 3499: 3481:"Existence and Uniqueness Theorems for the Neutron Transport Equation" 2911:
Parkinson, John S. (1993). "Signal transduction schemes of bacteria".
2631: 2987: 1138:, i.e., the number of tumbling events in a given time interval has a 438: 428: 392: 4092: 2225: 4036: 3934: 3877: 3308: 3207: 2622: 2157: â€“ Model of self-propelled motion in a dissipative environment 988:. These cells lack flagella, but achieve motility using retractile 805:
detect attractants or repellents and stimulate responses through a
3547: 1689:. The integral is taken over all possible unit vectors, i.e., the 985: 937: 898: 816:
uses run-and-tumbling in a manner which can result in phototaxis.
117: 3444:
Material was copied from this source, which is available under a
3277: 3027:
Mattick, John S. (2002). "Type IV Pili and Twitching Motility".
744: 3265: 2298:
Mehdizadeh Allaf, Malihe; Peerhossaini, Hassan (2022-03-24).
944:. Tumbles are typically faster than runs: tumbling events of 1156:
Interactions with other agents are negligible (dilute limit)
2780:
Moon, Yoon-Jung; Kim, Seung; Chung, Young-Ho (2012-12-03).
1195:
is the unit vector in the direction of its orientation. In
948:
last about 0.1 seconds, compared to ~ 1 second for a run.
675:
in a dilute aqueous medium, for which the run duration is
2663:"Cyanobacteria use micro-optics to sense light direction" 1043:, uniformly over the space, increases the probability of 3122:"Responding to chemical gradients: bacterial chemotaxis" 2720:
Ng, Wing-On; Grossman, Arthur R.; Bhaya, Devaki (2003).
2544:
Jakob, Annik; Schuergers, Nils; Wilde, Annegret (2017).
2268: 781:, to optimally navigate through complex environments or 1102:  the microorganism performs a three-dimensional 769:
Genetically diverse groups of microorganisms rely upon
686:, in which case the particles themselves may be called 3446:
Creative Commons Attribution 4.0 International License
2426:
Creative Commons Attribution 4.0 International License
2355:
Creative Commons Attribution 4.0 International License
810:
tumbling and changes in direction. The cyanobacterium
661:
The tumbling is erratic or "random" in the sense of a
1975: 1785: 1208: 1118:
Runs are straight and performed at constant velocity
707: 2256: 2126:
Pages displaying wikidata descriptions as a fallback
1164:
can be derived for the probability density function
1081:
radiation as an effective escape mechanism to avoid
1027:. Cyanobacterium do not have flagella. Nonetheless, 3292:"Active Brownian motion with directional reversals" 2383:(1). Springer Science and Business Media LLC: 348. 3176: 2603: 2601: 2599: 2597: 2185: 2183: 2181: 2179: 2177: 2053: 1955: 1593: 920:, bacteria starting at rest quickly reach a fixed 2962:Copeland, Matthew F.; Weibel, Douglas B. (2009). 2782:"Sensing and Responding to UV-A in Cyanobacteria" 2139: â€“ Microscopic object able to traverse fluid 2906: 2904: 2440:"A Minimal Model of Metabolism-Based Chemotaxis" 2300:"Cyanobacteria: Model Microorganisms and Beyond" 2293: 2291: 2289: 2287: 2285: 2283: 2281: 2279: 2277: 1077:cells show a negative phototaxis behavior under 3070:Webre, D.J.; Wolanin, P.M; Stock, J.B. (2003). 2838:Chau, R.M.W., Bhaya, D. and Huang, K.C., 2017. 2504: 3664:, Princeton University Press, pp. 609–616 3662:The Princeton Companion to Applied Mathematics 665:—that is, the new direction is sampled from a 3479:Case, K. M.; Zweifel, P. F. (November 1963). 3354: 2201: 1160:With a few other simplifying assumptions, an 631: 8: 3921:The European Physical Journal Special Topics 2539: 2537: 2365: 2363: 1801: 1786: 3975:Sowa, Yoshiyuki; Berry, Richard M. (2008). 3366: 2786:International Journal of Molecular Sciences 2775: 2773: 653:is a movement pattern exhibited by certain 3378: 2528: 1142:. This implies that the run durations are 638: 624: 29: 4035: 3994: 3933: 3876: 3843: 3825: 3688: 3546: 3534:Annual Review of Condensed Matter Physics 3424: 3414: 3307: 3206: 3153: 3120:Sourjik, Victor; Wingreen, Ned S (2012). 3003: 2815: 2797: 2753: 2696: 2678: 2621: 2577: 2481: 2463: 2404: 2333: 2315: 2213: 2016: 2014: 2013: 1998: 1993: 1980: 1974: 1939: 1907: 1887: 1880: 1873: 1853: 1834: 1822: 1817: 1807: 1795: 1790: 1784: 1700:In free space (far from boundaries), the 1576: 1574: 1573: 1545: 1543: 1542: 1533: 1509: 1507: 1506: 1491: 1489: 1488: 1471: 1462: 1439: 1437: 1436: 1428: 1393: 1391: 1390: 1382: 1368: 1341: 1314: 1312: 1311: 1303: 1280: 1278: 1277: 1276: 1270: 1232: 1230: 1229: 1221: 1209: 1207: 3671:"Diversity at its best: Bacterial taxis" 3565:10.1146/annurev-conmatphys-031214-014710 3290:Santra; Basu; Sabhapandit (2021-07-13). 3189:Santra; Basu; Sabhapandit (2020-06-15). 1667:describing transitions from orientation 2173: 2145: â€“ Matter behavior at system scale 723:Run-and-tumble motion is found in many 37: 3041:10.1146/annurev.micro.56.012302.160938 2516: 891:Run-and-tumble swimming pattern  785:host tissues. In the model organisms 4080:Nature Reviews Molecular Cell Biology 7: 3588:Chandrasekhar, Subrahmanyan (1960). 2189: 710:(mediated by specific receptors and 3645:10.1146/annurev-fluid-120710-101156 3397:"Bacterial Biohybrid Microswimmers" 1127:(initial speed-up is instantaneous) 743:. It has also been observed in the 2871:10.1111/j.1751-1097.1999.tb01954.x 2257:Guasto, Rusconi & Stocker 2012 1645:is the friction, and the function 1468: 1359: 1350: 1294: 1254: 1212: 25: 1085:and other cellular components of 3690:10.1111/j.1462-2920.2010.02383.x 3624:Annual Review of Fluid Mechanics 3439: 3177:Solon, Cates & Tailleur 2015 2419: 2348: 2017: 1791: 1577: 1546: 1534: 1510: 1492: 1440: 1429: 1394: 1383: 1369: 1315: 1304: 1281: 1233: 1222: 997: 971: 883: 860: 605: 604: 43: 3982:Quarterly Reviews of Biophysics 3488:Journal of Mathematical Physics 3126:Current Opinion in Cell Biology 2859:Photochemistry and Photobiology 2738:10.1128/jb.185.5.1599-1607.2003 2151: â€“ Model in fluid dynamics 679:with a mean of about 1 second. 38:Microbial and microbot movement 2317:10.3390/microorganisms10040696 2042: 2030: 2027: 2021: 2010: 1913: 1894: 1859: 1840: 1682:. For complete reorientation, 1581: 1566: 1550: 1530: 1524: 1514: 1496: 1485: 1456: 1444: 1425: 1413: 1410: 1398: 1379: 1373: 1365: 1356: 1331: 1319: 1300: 1285: 1249: 1237: 1218: 1199:-dimensions, this equation is 1: 3091:10.1016/S0960-9822(02)01424-0 3029:Annual Review of Microbiology 2610:Journal of Fluids Engineering 1189:is the particle position and 1162:integro-differential equation 1153:Tumble duration is negligible 3827:10.1371/journal.pcbi.1003276 3402:Frontiers in Robotics and AI 3326:10.1103/PhysRevE.104.L012601 2925:10.1016/0092-8674(93)90267-t 2465:10.1371/journal.pcbi.1001004 911:projecting in all directions 667:probability density function 18:Synechocystis run-and-tumble 4127:Nature Reviews Microbiology 4054:10.1103/physreve.101.062607 3977:"Bacterial flagellar motor" 3952:10.1140/epjst/e2015-02457-0 3254:Villa-Torrealba et al. 2020 3225:10.1103/PhysRevE.101.062120 2505:Wadhams & Armitage 2004 1004:Run-and-tumble motion of a 4198: 4140:10.1038/s41579-021-00626-4 3805:PLOS Computational Biology 3676:Environmental Microbiology 2444:PLOS Computational Biology 2389:10.1038/s41467-020-20558-6 2245:Bastos-Arrieta et al. 2018 1639:is an external potential, 1134:and occur at average rate 850:flagellar bundle formation 339:Bacteria collective motion 3996:10.1017/S0033583508004691 3138:10.1016/j.ceb.2011.11.008 2202:Cates & Tailleur 2015 1702:mean squared displacement 1144:exponentially distributed 765:Directed motility (taxis) 749:Chlamydomonas reinhardtii 702:, bacterial flagella are 677:exponentially distributed 463:Synthetic molecular motor 344:Collective cell migration 3895:10.1088/1367-2630/aae72c 3720:10.1103/PhysRevE.56.1135 3416:10.3389/frobt.2018.00097 2155:Active Brownian particle 1665:scattering cross section 688:run-and-tumble particles 684:self-propelled particles 264:Self-propelled particles 27:Type of bacterial motion 3767:10.1126/science.1172667 3367:Case & Zweifel 1963 2726:Journal of Bacteriology 2562:10.21769/bioprotoc.2328 291:Biohybrid microswimmers 222:Microbots and particles 3864:New Journal of Physics 3456:. New York: Springer. 3072:"Bacterial chemotaxis" 2529:Wadhwa & Berg 2021 2055: 1957: 1715:generically scales as 1595: 912: 734:Salmonella typhimurium 3452:Berg, Howard (2004). 2799:10.3390/ijms131216303 2377:Nature Communications 2214:Sowa & Berry 2008 2056: 1958: 1596: 1110:Mathematical modeling 902: 651:Run-and-tumble motion 549:cytoplasmic streaming 1973: 1783: 1206: 1140:Poisson distribution 1130:Tumbling events are 926:rotational diffusion 727:bacteria, including 570:Molecular biophysics 302:bacterial biohybrids 4046:2020PhRvE.101f2607V 3944:2015EPJST.224.1231S 3887:2018NJPh...20j3033S 3818:2013PLSCB...9E3276R 3759:2009Sci...325..487P 3637:2012AnRFM..44..373G 3557:2015ARCMP...6..219C 3318:2021PhRvE.104a2601S 3278:Seyrich et al. 2018 3217:2020PhRvE.101f2120S 2980:2009SMat....5.1174C 2792:(12): 16303–16332. 2680:10.7554/elife.12620 2456:2010PLSCB...6E1004E 2006: 1827: 1017:Another example is 978:Cross section of a 719:Biological examples 712:signal transduction 585:Non-motile bacteria 524:Axophilic migration 473:Molecular propeller 468:Molecular modelling 33:Part of a series on 3596:Dover Publications 3591:Radiative Transfer 3355:Chandrasekhar 1960 3266:Rosser et al. 2013 2122:Aquatic locomotion 2116:Bacterial motility 2093:radiative transfer 2051: 1989: 1953: 1813: 1591: 916:they exist at low 913: 807:signalling cascade 799:flagellar rotation 663:stochastic process 488:Molecular tweezers 307:protist biohybrids 146:(electric current) 97:Protist locomotion 70:Bacterial motility 4087:(12): 1024–1037. 4023:Physical Review E 3753:(5939): 487–490. 3708:Physical Review E 3605:978-0-486-31845-5 3500:10.1063/1.1703916 3494:(11): 1376–1385. 3463:978-0-387-21638-6 3454:E. coli in motion 3296:Physical Review E 3195:Physical Review E 2632:10.1115/1.4045951 2269:Polin et al. 2009 2226:Krell et al. 2011 2161:Telegraph process 2110:Animal navigation 2097:neutron transport 2024: 1946: 1863: 1584: 1553: 1517: 1499: 1477: 1447: 1401: 1322: 1288: 1261: 1240: 922:terminal velocity 773:(taxis), such as 771:directed motility 740:Bacillus subtilis 648: 647: 575:Molecular machine 483:molecular shuttle 376:Biological motors 354:Swarming motility 327:Collective motion 16:(Redirected from 4189: 4167: 4120: 4073: 4039: 4016: 3998: 3971: 3937: 3928:(7): 1231–1262. 3914: 3880: 3857: 3847: 3829: 3812:(10): e1003276. 3794: 3739: 3714:(1): 1135–1141. 3702: 3692: 3683:(5): 1115–1124. 3665: 3656: 3617: 3584: 3550: 3527: 3485: 3475: 3443: 3438: 3428: 3418: 3382: 3376: 3370: 3364: 3358: 3352: 3346: 3345: 3311: 3287: 3281: 3275: 3269: 3263: 3257: 3251: 3245: 3244: 3210: 3186: 3180: 3174: 3168: 3167: 3157: 3117: 3111: 3110: 3076: 3067: 3061: 3060: 3024: 3018: 3017: 3007: 2988:10.1039/b812146j 2974:(6): 1174–1187. 2959: 2953: 2952: 2908: 2899: 2898: 2853: 2847: 2836: 2830: 2829: 2819: 2801: 2777: 2768: 2767: 2757: 2732:(5): 1599–1607. 2717: 2711: 2710: 2700: 2682: 2658: 2652: 2651: 2625: 2605: 2592: 2591: 2581: 2541: 2532: 2526: 2520: 2514: 2508: 2502: 2496: 2495: 2485: 2467: 2450:(12): e1001004. 2435: 2429: 2423: 2418: 2408: 2367: 2358: 2352: 2347: 2337: 2319: 2295: 2272: 2266: 2260: 2254: 2248: 2242: 2229: 2223: 2217: 2211: 2205: 2199: 2193: 2187: 2127: 2084: 2070:parametrized as 2069: 2060: 2058: 2057: 2052: 2026: 2025: 2020: 2015: 2005: 1997: 1985: 1984: 1962: 1960: 1959: 1954: 1952: 1948: 1947: 1945: 1944: 1943: 1927: 1920: 1919: 1912: 1911: 1881: 1864: 1862: 1858: 1857: 1839: 1838: 1828: 1826: 1821: 1808: 1800: 1799: 1794: 1775: 1756: 1750: 1735: 1729: 1714: 1692: 1688: 1681: 1675: 1674: 1662: 1660: 1644: 1638: 1623: 1617: 1600: 1598: 1597: 1592: 1590: 1586: 1585: 1580: 1575: 1559: 1555: 1554: 1549: 1544: 1537: 1523: 1519: 1518: 1513: 1508: 1501: 1500: 1495: 1490: 1478: 1476: 1475: 1463: 1449: 1448: 1443: 1438: 1432: 1403: 1402: 1397: 1392: 1386: 1372: 1349: 1348: 1324: 1323: 1318: 1313: 1307: 1290: 1289: 1284: 1279: 1275: 1274: 1262: 1260: 1252: 1242: 1241: 1236: 1231: 1225: 1210: 1198: 1194: 1188: 1182: 1149: 1137: 1126: 1001: 975: 887: 864: 846:flagellar motors 829:Escherichia coli 821:Escherichia coli 788:Escherichia coli 700:protist flagella 640: 633: 626: 613: 608: 607: 478:molecular sensor 455:Synthetic motors 367:Molecular motors 158:(magnetic field) 47: 30: 21: 4197: 4196: 4192: 4191: 4190: 4188: 4187: 4186: 4172: 4171: 4170: 4123: 4093:10.1038/nrm1524 4076: 4019: 3974: 3917: 3860: 3797: 3742: 3705: 3668: 3659: 3620: 3606: 3587: 3530: 3483: 3478: 3464: 3451: 3394: 3390: 3385: 3379:Paasschens 1997 3377: 3373: 3365: 3361: 3353: 3349: 3289: 3288: 3284: 3276: 3272: 3264: 3260: 3252: 3248: 3188: 3187: 3183: 3175: 3171: 3119: 3118: 3114: 3079:Current Biology 3074: 3069: 3068: 3064: 3026: 3025: 3021: 2961: 2960: 2956: 2910: 2909: 2902: 2855: 2854: 2850: 2837: 2833: 2779: 2778: 2771: 2719: 2718: 2714: 2660: 2659: 2655: 2607: 2606: 2595: 2543: 2542: 2535: 2527: 2523: 2515: 2511: 2503: 2499: 2437: 2436: 2432: 2369: 2368: 2361: 2297: 2296: 2275: 2267: 2263: 2255: 2251: 2243: 2232: 2224: 2220: 2212: 2208: 2200: 2196: 2188: 2175: 2171: 2166: 2125: 2105: 2071: 2065: 1976: 1971: 1970: 1935: 1928: 1903: 1883: 1882: 1869: 1865: 1849: 1830: 1829: 1809: 1789: 1781: 1780: 1758: 1752: 1737: 1731: 1716: 1704: 1690: 1683: 1677: 1672: 1668: 1658: 1646: 1640: 1629: 1619: 1611: 1605: 1572: 1541: 1505: 1467: 1337: 1266: 1253: 1211: 1204: 1203: 1196: 1190: 1184: 1165: 1147: 1135: 1125: 1119: 1112: 1041:light intensity 1015: 1014: 1013: 1012: 1011: 1002: 994: 993: 976: 967: 966: 956: 918:Reynolds number 897: 896: 895: 894: 893: 892: 888: 880: 879: 878: 865: 824: 767: 721: 708:bacterial taxis 696: 644: 603: 596: 595: 594: 580:Nanoengineering 555: 540: 528: 515: 502: 494: 493: 492: 457: 447: 446: 445: 419: 377: 360: 359: 358: 328: 320: 319: 318: 295: 285: 277: 276: 275: 259:Janus particles 223: 215: 214: 213: 191: 181: 180: 179: 120: 110: 109: 108: 92: 72: 64: 28: 23: 22: 15: 12: 11: 5: 4195: 4193: 4185: 4184: 4174: 4173: 4169: 4168: 4134:(3): 161–173. 4121: 4074: 4017: 3989:(2): 103–132. 3972: 3915: 3871:(10): 103033. 3858: 3795: 3740: 3703: 3666: 3657: 3631:(1): 373–400. 3618: 3604: 3585: 3541:(1): 219–244. 3528: 3476: 3462: 3449: 3391: 3389: 3386: 3384: 3383: 3371: 3359: 3347: 3302:(1): L012601. 3282: 3270: 3258: 3246: 3181: 3169: 3132:(2): 262–268. 3112: 3085:(2): R47–R49. 3062: 3035:(1): 289–314. 3019: 2954: 2919:(5): 857–871. 2900: 2848: 2831: 2769: 2712: 2653: 2593: 2533: 2521: 2509: 2497: 2430: 2359: 2304:Microorganisms 2273: 2261: 2249: 2230: 2218: 2206: 2194: 2172: 2170: 2167: 2165: 2164: 2158: 2152: 2146: 2140: 2134: 2131:Quorum sensing 2128: 2119: 2113: 2106: 2104: 2101: 2062: 2061: 2050: 2047: 2044: 2041: 2038: 2035: 2032: 2029: 2023: 2019: 2012: 2009: 2004: 2001: 1996: 1992: 1988: 1983: 1979: 1964: 1963: 1951: 1942: 1938: 1934: 1931: 1926: 1923: 1918: 1915: 1910: 1906: 1902: 1899: 1896: 1893: 1890: 1886: 1879: 1876: 1872: 1868: 1861: 1856: 1852: 1848: 1845: 1842: 1837: 1833: 1825: 1820: 1816: 1812: 1806: 1803: 1798: 1793: 1788: 1607: 1602: 1601: 1589: 1583: 1579: 1571: 1568: 1565: 1562: 1558: 1552: 1548: 1540: 1536: 1532: 1529: 1526: 1522: 1516: 1512: 1504: 1498: 1494: 1487: 1484: 1481: 1474: 1470: 1466: 1461: 1458: 1455: 1452: 1446: 1442: 1435: 1431: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1400: 1396: 1389: 1385: 1381: 1378: 1375: 1371: 1367: 1364: 1361: 1358: 1355: 1352: 1347: 1344: 1340: 1336: 1333: 1330: 1327: 1321: 1317: 1310: 1306: 1302: 1299: 1296: 1293: 1287: 1283: 1273: 1269: 1265: 1259: 1256: 1251: 1248: 1245: 1239: 1235: 1228: 1224: 1220: 1217: 1214: 1158: 1157: 1154: 1151: 1128: 1123: 1111: 1108: 1100:chemoreceptors 1025:cyanobacterium 1003: 996: 995: 977: 970: 969: 968: 960: 959: 958: 957: 955: 950: 890: 889: 882: 881: 867: 866: 859: 858: 857: 856: 855: 842:run-and-tumble 836:flagellation, 823: 818: 803:Chemoreceptors 766: 763: 754:cyanobacterium 720: 717: 695: 692: 646: 645: 643: 642: 635: 628: 620: 617: 616: 615: 614: 598: 597: 593: 592: 587: 582: 577: 572: 567: 562: 556: 554: 553: 552: 551: 546: 541: 529: 527: 526: 521: 516: 510: 508:Brownian motor 504: 503: 500: 499: 496: 495: 491: 490: 485: 480: 475: 470: 465: 459: 458: 453: 452: 449: 448: 444: 443: 442: 441: 436: 431: 424:Motor proteins 420: 418: 417: 416: 415: 410: 408:intraflagellar 405: 400: 395: 390: 379: 378: 375: 374: 371: 370: 362: 361: 357: 356: 351: 349:Quorum sensing 346: 341: 336: 330: 329: 326: 325: 322: 321: 317: 316: 315: 314: 309: 304: 296: 294: 293: 287: 286: 283: 282: 279: 278: 274: 273: 271:Swarm robotics 268: 267: 266: 261: 256: 246: 241: 236: 231: 225: 224: 221: 220: 217: 216: 212: 211: 210: 209: 204: 193: 192: 187: 186: 183: 182: 178: 177: 171: 165: 159: 153: 147: 141: 135: 129: 122: 121: 116: 115: 112: 111: 107: 106: 105: 104: 93: 91: 90: 89: 88: 83: 78: 76:run-and-tumble 66: 65: 62: 61: 58: 57: 49: 48: 40: 39: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4194: 4183: 4180: 4179: 4177: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4137: 4133: 4129: 4128: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4081: 4075: 4071: 4067: 4063: 4059: 4055: 4051: 4047: 4043: 4038: 4033: 4030:(6): 062607. 4029: 4025: 4024: 4018: 4014: 4010: 4006: 4002: 3997: 3992: 3988: 3984: 3983: 3978: 3973: 3969: 3965: 3961: 3957: 3953: 3949: 3945: 3941: 3936: 3931: 3927: 3923: 3922: 3916: 3912: 3908: 3904: 3900: 3896: 3892: 3888: 3884: 3879: 3874: 3870: 3866: 3865: 3859: 3855: 3851: 3846: 3841: 3837: 3833: 3828: 3823: 3819: 3815: 3811: 3807: 3806: 3801: 3796: 3792: 3788: 3784: 3780: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3747: 3741: 3737: 3733: 3729: 3725: 3721: 3717: 3713: 3709: 3704: 3700: 3696: 3691: 3686: 3682: 3678: 3677: 3672: 3667: 3663: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3630: 3626: 3625: 3619: 3615: 3611: 3607: 3601: 3597: 3593: 3592: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3549: 3544: 3540: 3536: 3535: 3529: 3525: 3521: 3517: 3516:2027.42/70329 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3482: 3477: 3473: 3469: 3465: 3459: 3455: 3450: 3447: 3442: 3436: 3432: 3427: 3422: 3417: 3412: 3408: 3404: 3403: 3398: 3393: 3392: 3387: 3380: 3375: 3372: 3368: 3363: 3360: 3356: 3351: 3348: 3343: 3339: 3335: 3331: 3327: 3323: 3319: 3315: 3310: 3305: 3301: 3297: 3293: 3286: 3283: 3279: 3274: 3271: 3267: 3262: 3259: 3255: 3250: 3247: 3242: 3238: 3234: 3230: 3226: 3222: 3218: 3214: 3209: 3204: 3201:(6): 062120. 3200: 3196: 3192: 3185: 3182: 3178: 3173: 3170: 3165: 3161: 3156: 3151: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3116: 3113: 3108: 3104: 3100: 3096: 3092: 3088: 3084: 3080: 3073: 3066: 3063: 3058: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3023: 3020: 3015: 3011: 3006: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2958: 2955: 2950: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2914: 2907: 2905: 2901: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2865:(1): 95–102. 2864: 2860: 2852: 2849: 2845: 2841: 2835: 2832: 2827: 2823: 2818: 2813: 2809: 2805: 2800: 2795: 2791: 2787: 2783: 2776: 2774: 2770: 2765: 2761: 2756: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2716: 2713: 2708: 2704: 2699: 2694: 2690: 2686: 2681: 2676: 2672: 2668: 2664: 2657: 2654: 2649: 2645: 2641: 2637: 2633: 2629: 2624: 2619: 2615: 2611: 2604: 2602: 2600: 2598: 2594: 2589: 2585: 2580: 2575: 2571: 2567: 2563: 2559: 2556:(11): e2328. 2555: 2551: 2547: 2540: 2538: 2534: 2530: 2525: 2522: 2518: 2513: 2510: 2506: 2501: 2498: 2493: 2489: 2484: 2479: 2475: 2471: 2466: 2461: 2457: 2453: 2449: 2445: 2441: 2434: 2431: 2427: 2422: 2416: 2412: 2407: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2366: 2364: 2360: 2356: 2351: 2345: 2341: 2336: 2331: 2327: 2323: 2318: 2313: 2309: 2305: 2301: 2294: 2292: 2290: 2288: 2286: 2284: 2282: 2280: 2278: 2274: 2270: 2265: 2262: 2258: 2253: 2250: 2246: 2241: 2239: 2237: 2235: 2231: 2227: 2222: 2219: 2215: 2210: 2207: 2203: 2198: 2195: 2191: 2186: 2184: 2182: 2180: 2178: 2174: 2168: 2162: 2159: 2156: 2153: 2150: 2147: 2144: 2143:Active matter 2141: 2138: 2135: 2132: 2129: 2123: 2120: 2117: 2114: 2111: 2108: 2107: 2102: 2100: 2098: 2094: 2089: 2086: 2082: 2078: 2074: 2068: 2048: 2045: 2039: 2036: 2033: 2007: 2002: 1999: 1994: 1990: 1986: 1981: 1977: 1969: 1968: 1967: 1949: 1940: 1936: 1932: 1929: 1924: 1921: 1916: 1908: 1904: 1900: 1897: 1891: 1888: 1884: 1877: 1874: 1870: 1866: 1854: 1850: 1846: 1843: 1835: 1831: 1823: 1818: 1814: 1810: 1804: 1796: 1779: 1778: 1777: 1773: 1769: 1765: 1761: 1755: 1749: 1745: 1741: 1734: 1728: 1724: 1720: 1712: 1708: 1703: 1698: 1696: 1693:-dimensional 1686: 1680: 1671: 1666: 1657: 1653: 1649: 1643: 1636: 1632: 1627: 1624:-dimensional 1622: 1615: 1610: 1587: 1569: 1563: 1560: 1556: 1538: 1527: 1520: 1502: 1482: 1479: 1472: 1464: 1459: 1453: 1450: 1433: 1422: 1419: 1416: 1407: 1404: 1387: 1376: 1362: 1353: 1345: 1342: 1338: 1334: 1328: 1325: 1308: 1297: 1291: 1271: 1267: 1263: 1257: 1246: 1243: 1226: 1215: 1202: 1201: 1200: 1193: 1187: 1180: 1176: 1172: 1168: 1163: 1155: 1152: 1145: 1141: 1133: 1129: 1122: 1117: 1116: 1115: 1109: 1107: 1105: 1101: 1098: 1097:transmembrane 1094: 1090: 1088: 1087:Synechocystis 1084: 1083:damage to DNA 1080: 1076: 1075:Synechocystis 1072: 1071:Synechocystis 1067: 1065: 1061: 1060:Synehcocystis 1057: 1053: 1052:Synechocystis 1049: 1046: 1045:Synechocystis 1042: 1038: 1037:(see diagram) 1034: 1030: 1029:Synechocystis 1026: 1023:, a genus of 1022: 1021: 1020:Synechocystis 1009: 1008: 1007:Synechocystis 1000: 991: 987: 983: 982: 981:Synechocystis 974: 965: 964: 963:Synechocystis 954: 953:Synechocystis 951: 949: 947: 943: 939: 934: 929: 927: 923: 919: 910: 906: 901: 886: 876: 872: 871: 863: 854: 851: 847: 843: 839: 835: 831: 830: 822: 819: 817: 815: 814: 813:Synechocystis 808: 804: 800: 796: 795: 790: 789: 784: 780: 776: 772: 764: 762: 760: 759: 758:Synechocystis 755: 751: 750: 746: 742: 741: 736: 735: 730: 726: 718: 716: 713: 709: 705: 701: 693: 691: 689: 685: 680: 678: 674: 673: 668: 664: 659: 656: 652: 641: 636: 634: 629: 627: 622: 621: 619: 618: 612: 602: 601: 600: 599: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 557: 550: 547: 545: 542: 539: 536: 535: 534: 531: 530: 525: 522: 520: 517: 514: 511: 509: 506: 505: 498: 497: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 460: 456: 451: 450: 440: 437: 435: 432: 430: 427: 426: 425: 422: 421: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 385: 384: 381: 380: 373: 372: 369: 368: 364: 363: 355: 352: 350: 347: 345: 342: 340: 337: 335: 334:Active matter 332: 331: 324: 323: 313: 312:robotic sperm 310: 308: 305: 303: 300: 299: 298: 297: 292: 289: 288: 281: 280: 272: 269: 265: 262: 260: 257: 255: 252: 251: 250: 249:Microparticle 247: 245: 242: 240: 237: 235: 232: 230: 227: 226: 219: 218: 208: 205: 203: 200: 199: 198: 195: 194: 190: 185: 184: 176:(temperature) 175: 172: 169: 166: 163: 160: 157: 154: 151: 148: 145: 142: 139: 136: 133: 130: 127: 124: 123: 119: 114: 113: 103: 100: 99: 98: 95: 94: 87: 84: 82: 79: 77: 74: 73: 71: 68: 67: 60: 59: 56: 55: 54:Microswimmers 51: 50: 46: 42: 41: 36: 32: 31: 19: 4182:Bacteriology 4131: 4125: 4084: 4078: 4027: 4021: 3986: 3980: 3925: 3919: 3868: 3862: 3809: 3803: 3750: 3744: 3711: 3707: 3680: 3674: 3661: 3628: 3622: 3590: 3538: 3532: 3491: 3487: 3453: 3406: 3400: 3374: 3362: 3350: 3299: 3295: 3285: 3273: 3261: 3249: 3198: 3194: 3184: 3172: 3129: 3125: 3115: 3082: 3078: 3065: 3032: 3028: 3022: 2971: 2967: 2957: 2916: 2912: 2862: 2858: 2851: 2846:: e02330-16. 2843: 2839: 2834: 2789: 2785: 2729: 2725: 2715: 2670: 2666: 2656: 2613: 2609: 2553: 2550:Bio-Protocol 2549: 2524: 2512: 2500: 2447: 2443: 2433: 2380: 2376: 2307: 2303: 2264: 2252: 2221: 2209: 2197: 2137:Microswimmer 2090: 2087: 2080: 2076: 2072: 2066: 2063: 1965: 1771: 1767: 1763: 1759: 1753: 1747: 1743: 1739: 1732: 1726: 1722: 1718: 1710: 1706: 1699: 1684: 1678: 1669: 1655: 1651: 1647: 1641: 1634: 1630: 1620: 1613: 1608: 1603: 1191: 1185: 1178: 1174: 1170: 1166: 1159: 1132:uncorrelated 1120: 1113: 1091: 1086: 1074: 1070: 1068: 1059: 1051: 1050: 1044: 1036: 1033:type IV pili 1028: 1018: 1016: 1005: 990:type IV pili 979: 961: 952: 945: 932: 930: 914: 904: 868: 837: 834:peritrichous 827: 825: 820: 811: 792: 786: 768: 756: 747: 738: 732: 728: 725:peritrichous 722: 697: 687: 681: 670: 660: 650: 649: 533:Cytoskeleton 403:motor switch 365: 254:Nanoparticle 234:Nanorobotics 207:photokinesis 202:chemokinesis 170:(fluid flow) 156:Magnetotaxis 144:Electrotaxis 75: 52: 2968:Soft Matter 2517:Jensen 2015 1695:unit sphere 1626:solid angle 1104:random walk 1079:ultraviolet 903:Diagram of 840:performs a 832:. With its 694:Description 590:Virophysics 538:prokaryotic 519:Endocytosis 244:DNA machine 229:Microbotics 174:Thermotaxis 140:(chemicals) 4037:2002.02872 3935:1504.07391 3878:1805.08860 3614:1084019191 3309:2101.11327 3208:2004.07562 2623:2003.02207 2310:(4): 696. 1751:for large 1730:for small 1146:with mean 1093:Chemotaxis 1064:phototaxis 1056:light flux 984:cell with 942:chemotaxis 794:Salmonella 779:phototaxis 775:chemotaxis 544:eukaryotic 388:archaellum 284:Biohybrids 239:Nanomotors 162:Phototaxis 150:Gravitaxis 138:Chemotaxis 132:Anemotaxis 4164:237595932 4148:1740-1526 4117:205493118 4101:1471-0072 4062:2470-0045 3960:1951-6355 3903:1367-2630 3836:1553-7358 3775:0036-8075 3736:1063-651X 3728:1095-3787 3653:0066-4189 3573:1947-5454 3548:1406.3533 3524:0022-2488 3508:1089-7658 3342:231718971 3241:219636018 3146:0955-0674 3049:0066-4227 2996:1744-683X 2949:205020855 2933:0092-8674 2879:0031-8655 2808:1422-0067 2746:0021-9193 2689:2050-084X 2648:211987677 2640:0098-2202 2570:2331-8325 2474:1553-7358 2397:2041-1723 2326:2076-2607 2190:Berg 2004 2049:θ 2040:θ 2037:⁡ 2022:^ 2003:π 1991:∫ 1978:σ 1937:σ 1933:− 1922:− 1905:σ 1901:− 1892:α 1889:− 1871:α 1851:σ 1847:− 1832:α 1802:⟩ 1787:⟨ 1770:, 0) = δ( 1582:^ 1551:^ 1515:^ 1503:− 1497:^ 1480:∫ 1469:Ω 1465:α 1445:^ 1420:α 1417:− 1399:^ 1360:∇ 1354:⋅ 1351:∇ 1343:− 1339:ξ 1320:^ 1295:∇ 1292:⋅ 1286:^ 1255:∂ 1238:^ 1213:∂ 848:leads to 413:evolution 383:Flagellum 168:Rheotaxis 152:(gravity) 126:Aerotaxis 102:amoeboids 81:twitching 4176:Category 4156:34548639 4109:15573139 4070:32688514 4005:18812014 3968:53057662 3911:51455869 3854:24204227 3791:10530835 3783:19628868 3699:21087385 3581:15672131 3472:56124142 3435:33500976 3334:34412243 3233:32688530 3164:22169400 3099:12546801 3057:12142488 3014:23926448 2895:25364218 2887:10420848 2826:23208372 2764:12591877 2707:26858197 2588:34541089 2492:21170312 2415:33441540 2344:35456747 2149:Squirmer 2103:See also 1588:′ 1557:′ 1521:′ 1183:, where 909:flagella 875:flagella 783:colonise 752:and the 655:bacteria 611:Category 565:Mucilage 560:Gray goo 128:(oxygen) 4042:Bibcode 4013:3297704 3940:Bibcode 3883:Bibcode 3845:3812076 3814:Bibcode 3755:Bibcode 3746:Science 3633:Bibcode 3553:Bibcode 3426:7805739 3388:Sources 3314:Bibcode 3213:Bibcode 3155:3320702 3107:3203488 3005:3733279 2976:Bibcode 2941:8098993 2817:3546692 2698:4758948 2579:8410341 2483:3000427 2452:Bibcode 2406:7806825 2335:9025173 2075:= (cos 1966:where 1618:is the 1612:= 2Ď€/Γ( 992:  946:E. Coli 933:E. Coli 907:, with 905:E. coli 870:E. coli 838:E. coli 729:E. coli 672:E. coli 513:Biochip 501:Related 434:kinesin 398:axoneme 197:Kinesis 189:Kinesis 164:(light) 86:gliding 4162:  4154:  4146:  4115:  4107:  4099:  4068:  4060:  4011:  4003:  3966:  3958:  3909:  3901:  3852:  3842:  3834:  3789:  3781:  3773:  3734:  3726:  3697:  3651:  3612:  3602:  3579:  3571:  3522:  3506:  3470:  3460:  3433:  3423:  3409:: 97. 3340:  3332:  3239:  3231:  3162:  3152:  3144:  3105:  3097:  3055:  3047:  3012:  3002:  2994:  2947:  2939:  2931:  2893:  2885:  2877:  2844:mBio 8 2824:  2814:  2806:  2762:  2755:148062 2752:  2744:  2705:  2695:  2687:  2646:  2638:  2586:  2576:  2568:  2490:  2480:  2472:  2413:  2403:  2395:  2342:  2332:  2324:  2079:, sin 1774:)/(2Ď€) 1604:where 737:, and 704:rotors 609:  439:dynein 429:myosin 393:cilium 134:(wind) 4160:S2CID 4113:S2CID 4032:arXiv 4009:S2CID 3964:S2CID 3930:arXiv 3907:S2CID 3873:arXiv 3787:S2CID 3724:eISSN 3577:S2CID 3543:arXiv 3504:eISSN 3484:(PDF) 3338:S2CID 3304:arXiv 3237:S2CID 3203:arXiv 3103:S2CID 3075:(PDF) 2945:S2CID 2891:S2CID 2667:eLife 2644:S2CID 2618:arXiv 2616:(3). 2169:Notes 2064:with 1746:)âź© ~ 1725:)âź© ~ 1673:' 1663:is a 1659:' 938:taxis 873:have 118:Taxis 4152:PMID 4144:ISSN 4105:PMID 4097:ISSN 4066:PMID 4058:ISSN 4001:PMID 3956:ISSN 3899:ISSN 3850:PMID 3832:ISSN 3779:PMID 3771:ISSN 3732:ISSN 3695:PMID 3649:ISSN 3610:OCLC 3600:ISBN 3569:ISSN 3520:ISSN 3468:OCLC 3458:ISBN 3431:PMID 3330:PMID 3229:PMID 3160:PMID 3142:ISSN 3095:PMID 3053:PMID 3045:ISSN 3010:PMID 2992:ISSN 2937:PMID 2929:ISSN 2913:Cell 2883:PMID 2875:ISSN 2822:PMID 2804:ISSN 2760:PMID 2742:ISSN 2703:PMID 2685:ISSN 2636:ISSN 2584:PMID 2566:ISSN 2488:PMID 2470:ISSN 2411:PMID 2393:ISSN 2340:PMID 2322:ISSN 2095:and 1736:and 986:pili 791:and 745:alga 63:Taxa 4136:doi 4089:doi 4050:doi 4028:101 3991:doi 3948:doi 3926:224 3891:doi 3840:PMC 3822:doi 3763:doi 3751:325 3716:doi 3685:doi 3641:doi 3561:doi 3512:hdl 3496:doi 3421:PMC 3411:doi 3322:doi 3300:104 3221:doi 3199:101 3150:PMC 3134:doi 3087:doi 3037:doi 3000:PMC 2984:doi 2921:doi 2867:doi 2812:PMC 2794:doi 2750:PMC 2734:doi 2730:185 2693:PMC 2675:doi 2628:doi 2614:142 2574:PMC 2558:doi 2478:PMC 2460:doi 2401:PMC 2385:doi 2330:PMC 2312:doi 2034:cos 1776:is 1687:= 1 1676:to 1616:/2) 777:or 4178:: 4158:. 4150:. 4142:. 4132:20 4130:. 4111:. 4103:. 4095:. 4083:. 4064:. 4056:. 4048:. 4040:. 4026:. 4007:. 3999:. 3987:41 3985:. 3979:. 3962:. 3954:. 3946:. 3938:. 3924:. 3905:. 3897:. 3889:. 3881:. 3869:20 3867:. 3848:. 3838:. 3830:. 3820:. 3808:. 3802:. 3785:. 3777:. 3769:. 3761:. 3749:. 3730:. 3722:. 3712:56 3710:. 3693:. 3681:13 3679:. 3673:. 3647:. 3639:. 3629:44 3627:. 3608:. 3598:. 3594:. 3575:. 3567:. 3559:. 3551:. 3537:. 3518:. 3510:. 3502:. 3490:. 3486:. 3466:. 3429:. 3419:. 3405:. 3399:. 3336:. 3328:. 3320:. 3312:. 3298:. 3294:. 3235:. 3227:. 3219:. 3211:. 3197:. 3193:. 3158:. 3148:. 3140:. 3130:24 3128:. 3124:. 3101:. 3093:. 3083:13 3081:. 3077:. 3051:. 3043:. 3033:56 3031:. 3008:. 2998:. 2990:. 2982:. 2970:. 2966:. 2943:. 2935:. 2927:. 2917:73 2915:. 2903:^ 2889:. 2881:. 2873:. 2863:70 2861:. 2842:. 2820:. 2810:. 2802:. 2790:13 2788:. 2784:. 2772:^ 2758:. 2748:. 2740:. 2728:. 2724:. 2701:. 2691:. 2683:. 2673:. 2669:. 2665:. 2642:. 2634:. 2626:. 2612:. 2596:^ 2582:. 2572:. 2564:. 2552:. 2548:. 2536:^ 2486:. 2476:. 2468:. 2458:. 2446:. 2442:. 2409:. 2399:. 2391:. 2381:12 2379:. 2375:. 2362:^ 2338:. 2328:. 2320:. 2308:10 2306:. 2302:. 2276:^ 2233:^ 2176:^ 2099:. 2085:. 1766:, 1713:)âź© 1697:. 1654:- 1628:, 1177:, 1173:, 1058:, 801:. 761:. 731:, 690:. 4166:. 4138:: 4119:. 4091:: 4085:5 4072:. 4052:: 4044:: 4034:: 4015:. 3993:: 3970:. 3950:: 3942:: 3932:: 3913:. 3893:: 3885:: 3875:: 3856:. 3824:: 3816:: 3810:9 3793:. 3765:: 3757:: 3738:. 3718:: 3701:. 3687:: 3655:. 3643:: 3635:: 3616:. 3583:. 3563:: 3555:: 3545:: 3539:6 3526:. 3514:: 3498:: 3492:4 3474:. 3448:. 3437:. 3413:: 3407:5 3381:. 3369:. 3357:. 3344:. 3324:: 3316:: 3306:: 3280:. 3268:. 3256:. 3243:. 3223:: 3215:: 3205:: 3179:. 3166:. 3136:: 3109:. 3089:: 3059:. 3039:: 3016:. 2986:: 2978:: 2972:5 2951:. 2923:: 2897:. 2869:: 2828:. 2796:: 2766:. 2736:: 2709:. 2677:: 2671:5 2650:. 2630:: 2620:: 2590:. 2560:: 2554:7 2531:. 2519:. 2507:. 2494:. 2462:: 2454:: 2448:6 2428:. 2417:. 2387:: 2357:. 2346:. 2314:: 2271:. 2259:. 2247:. 2228:. 2216:. 2204:. 2192:. 2083:) 2081:θ 2077:θ 2073:Ĺť 2067:Ĺť 2046:d 2043:) 2031:( 2028:) 2018:s 2011:( 2008:g 2000:2 1995:0 1987:= 1982:1 1950:] 1941:1 1930:1 1925:1 1917:t 1914:) 1909:1 1898:1 1895:( 1885:e 1878:+ 1875:t 1867:[ 1860:) 1855:1 1844:1 1841:( 1836:2 1824:2 1819:0 1815:v 1811:2 1805:= 1797:2 1792:r 1772:r 1768:Ĺť 1764:r 1762:( 1760:f 1754:t 1748:t 1744:t 1742:( 1740:r 1738:⟨ 1733:t 1727:t 1723:t 1721:( 1719:r 1717:⟨ 1711:t 1709:( 1707:r 1705:⟨ 1691:d 1685:g 1679:Ĺť 1670:Ĺť 1661:) 1656:Ĺť 1652:Ĺť 1650:( 1648:g 1642:Îľ 1637:) 1635:r 1633:( 1631:V 1621:d 1614:d 1609:d 1606:Ω 1578:s 1570:d 1567:) 1564:t 1561:, 1547:s 1539:, 1535:r 1531:( 1528:f 1525:) 1511:s 1493:s 1486:( 1483:g 1473:d 1460:+ 1457:) 1454:t 1451:, 1441:s 1434:, 1430:r 1426:( 1423:f 1414:) 1411:) 1408:t 1405:, 1395:s 1388:, 1384:r 1380:( 1377:f 1374:) 1370:r 1366:( 1363:V 1357:( 1346:1 1335:= 1332:) 1329:t 1326:, 1316:s 1309:, 1305:r 1301:( 1298:f 1282:s 1272:0 1268:v 1264:+ 1258:t 1250:) 1247:t 1244:, 1234:s 1227:, 1223:r 1219:( 1216:f 1197:d 1192:Ĺť 1186:r 1181:) 1179:t 1175:Ĺť 1171:r 1169:( 1167:f 1150:. 1148:α 1136:α 1124:0 1121:v 936:( 639:e 632:t 625:v 20:)

Index

Synechocystis run-and-tumble

Microswimmers
Bacterial motility
run-and-tumble
twitching
gliding
Protist locomotion
amoeboids
Taxis
Aerotaxis
Anemotaxis
Chemotaxis
Electrotaxis
Gravitaxis
Magnetotaxis
Phototaxis
Rheotaxis
Thermotaxis
Kinesis
Kinesis
chemokinesis
photokinesis
Microbotics
Nanorobotics
Nanomotors
DNA machine
Microparticle
Nanoparticle
Janus particles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑