Knowledge (XXG)

Aerotaxis

Source 📝

66:, involves repeated cycles of straight-line swimming followed by short reversals that reorient bacteria so that they are constantly drawn up their oxygen gradients toward attractants and away from repellants. Aerotaxis is a dominant sensory system and will cause organisms to follow their oxygen gradient even if it makes them move against other chemical gradients. 41:
part to oxygen's important role in metabolic pathways as they allowed for surveying aerotaxis in many bacterial species. This ability proves to be important for survival as efficient metabolism directly relates to growth. Aerotaxis not only describes the response to energy source, but also the signal transductions across organisms to create ecosystems.
96:
available in the environment like solid metals. By trapping an air bubble in-between a microscope slide and cover slip with the use of a spacer, the team was able to watch how the bacteria migrated to the air pocket over time. After about 20 minutes the bacteria started to aggregate around the air
40:
were attracted by low oxygen concentrations. Ten decades after the first discovery of this movement, it was observed that bacteria are actually bound to areas with optimal oxygen concentrations; resulting in the formation of bands. It was concluded that the creations of these bands was largely in
103:
reveals a layer of bacteria piled up at the air–liquid interface and surrounded by a depletion zone after the air bubble has been used up. In the closed set up air supply is limited and used up so a layer of bacteria is unable to build. However, in an open set up with an unlimited air supply, a
44:
As growing conditions change, such as the availability of oxygen, bacteria capable of energy taxis travel towards nutrient concentrations which are metabolically beneficial. The direction of travel is determined utilizing a transducer, such as Aer or Tsr proteins in
87:
aerobic bacteria, as their model organism, a group of scientists looked to visualize the aerotactic bands formed by aerotactic bacteria. This bacterial strain is considered pivotal for sustainable technologies because of its ability to shift electrons from an
19:
is the movement caused by oxygen gradients. Positive aerotaxis involves the movement toward higher concentration of environmental oxygen, while negative aerotaxis involves the movement towards a lower concentration of environmental oxygen. Aerotactic
177:
Hölscher, Theresa; Bartels, Benjamin; Lin, Yu-Cheng; Gallegos-Monterrosa, Ramses; Price-Whelan, Alexa; Kolter, Roberto; Dietrich, Lars E. P.; Kovács, Ákos T. (2015-11-20).
97:
bubble and form a distinct band. The bacteria move in-between the bubble and the ring, and as time passes and air is used up, the ring shrinks towards the bubble.
421: 414: 130:"Hybrid sideways/longitudinal swimming in the monoflagellate Shewanella oneidensis: from aerotactic band to biofilm" 100: 33: 179:"Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development" 614: 407: 76: 587: 359: 247: 128:
Stricker, Laura; Guido, Isabella; Breithaupt, Thomas; Mazza, Marco G.; Vollmer, Jürgen (2020-10-28).
84: 399: 300: 348:"Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway" 385: 377: 328: 320: 281: 263: 216: 198: 159: 93: 507: 367: 312: 271: 255: 206: 190: 149: 141: 609: 363: 251: 541: 276: 235: 211: 178: 154: 129: 89: 259: 603: 81: 536: 316: 577: 572: 565: 548: 514: 476: 194: 381: 324: 267: 202: 560: 493: 488: 389: 332: 285: 220: 163: 145: 529: 481: 469: 104:
notable layer of bacteria continue to build at the air-liquid interface.
52: 21: 519: 372: 347: 47: 449: 56: 553: 431: 299:
Taylor, Barry L.; Zhulin, Igor B.; Johnson, Mark S. (1999-10-01).
63: 459: 403: 346:
Popp, Felix; Armitage, Judith P.; Schüler, Dirk (2014-11-14).
301:"Aerotaxis and Other Energy-Sensing Behavior in Bacteria" 234:
Mazzag, B. C.; Zhulin, I. B.; Mogilner, A. (2003-12-01).
24:
gather around sources of air forming aerotactic bands.
32:The discovery of aerotaxis was first reported by 236:"Model of Bacterial Band Formation in Aerotaxis" 62:Aerotaxis, similar to other types of bacterial 415: 8: 422: 408: 400: 371: 275: 210: 153: 113: 134:Journal of the Royal Society Interface 7: 123: 121: 119: 117: 434:(directional movements in biology) 14: 51:, which detect changes in either 36:, as he showed microaerophilic 317:10.1146/annurev.micro.53.1.103 1: 305:Annual Review of Microbiology 260:10.1016/S0006-3495(03)74775-4 183:Journal of Molecular Biology 631: 439: 195:10.1016/j.jmb.2015.06.014 101:Phase-contrast microscopy 34:Theodor Wilhelm Engelmann 146:10.1098/rsif.2020.0559 352:Nature Communications 77:Shewanella oneidensis 364:2014NatCo...5.5398P 252:2003BpJ....85.3558M 240:Biophysical Journal 373:10.1038/ncomms6398 597: 596: 189:(23): 3695–3708. 140:(171): 20200559. 94:electron acceptor 622: 588:physical contact 508:electric current 448:(stimulation by 424: 417: 410: 401: 394: 393: 375: 343: 337: 336: 296: 290: 289: 279: 246:(6): 3558–3574. 231: 225: 224: 214: 174: 168: 167: 157: 125: 630: 629: 625: 624: 623: 621: 620: 619: 615:Taxes (biology) 600: 599: 598: 593: 576:(by changes in 435: 428: 398: 397: 345: 344: 340: 298: 297: 293: 233: 232: 228: 176: 175: 171: 127: 126: 115: 110: 72: 38:Spirillum tenue 30: 12: 11: 5: 628: 626: 618: 617: 612: 602: 601: 595: 594: 592: 591: 581: 569: 557: 545: 542:magnetic field 533: 523: 511: 497: 485: 473: 463: 453: 440: 437: 436: 429: 427: 426: 419: 412: 404: 396: 395: 338: 311:(1): 103–128. 291: 226: 169: 112: 111: 109: 106: 90:electron donor 71: 68: 59:motive force. 29: 26: 13: 10: 9: 6: 4: 3: 2: 627: 616: 613: 611: 608: 607: 605: 589: 585: 582: 579: 575: 574: 570: 567: 563: 562: 558: 555: 551: 550: 546: 543: 539: 538: 534: 531: 527: 524: 521: 517: 516: 512: 509: 505: 501: 498: 495: 491: 490: 486: 483: 479: 478: 474: 471: 467: 464: 461: 457: 454: 451: 447: 446: 442: 441: 438: 433: 425: 420: 418: 413: 411: 406: 405: 402: 391: 387: 383: 379: 374: 369: 365: 361: 357: 353: 349: 342: 339: 334: 330: 326: 322: 318: 314: 310: 306: 302: 295: 292: 287: 283: 278: 273: 269: 265: 261: 257: 253: 249: 245: 241: 237: 230: 227: 222: 218: 213: 208: 204: 200: 196: 192: 188: 184: 180: 173: 170: 165: 161: 156: 151: 147: 143: 139: 135: 131: 124: 122: 120: 118: 114: 107: 105: 102: 98: 95: 91: 86: 83: 82:Gram-negative 79: 78: 70:Visualization 69: 67: 65: 60: 58: 55:transport or 54: 50: 49: 42: 39: 35: 27: 25: 23: 18: 583: 571: 559: 547: 537:Magnetotaxis 535: 525: 513: 504:Galvanotaxis 503: 500:Electrotaxis 499: 487: 475: 465: 455: 444: 443: 355: 351: 341: 308: 304: 294: 243: 239: 229: 186: 182: 172: 137: 133: 99: 75: 73: 61: 46: 43: 37: 31: 16: 15: 584:Thigmotaxis 578:temperature 573:Thermotaxis 358:(1): 5398. 92:towards an 85:facultative 604:Categories 566:fluid flow 549:Phototaxis 526:Hydrotaxis 515:Gravitaxis 477:Chemotaxis 456:Anemotaxis 108:References 561:Rheotaxis 494:stiffness 489:Durotaxis 482:chemicals 466:Barotaxis 445:Aerotaxis 430:Types of 382:2041-1723 325:0066-4227 268:0006-3495 203:0022-2836 28:Discovery 17:Aerotaxis 530:moisture 470:pressure 390:25394370 333:10547687 286:14645050 221:26122431 164:33109020 53:electron 22:bacteria 520:gravity 360:Bibcode 277:1303662 248:Bibcode 212:4804472 155:7653395 48:E. coli 610:Oxygen 450:oxygen 388:  380:  331:  323:  284:  274:  266:  219:  209:  201:  162:  152:  74:Using 57:proton 554:light 432:taxes 64:taxis 586:(by 564:(by 552:(by 540:(by 528:(by 518:(by 506:(by 492:(by 480:(by 468:(by 460:wind 458:(by 386:PMID 378:ISSN 329:PMID 321:ISSN 282:PMID 264:ISSN 217:PMID 199:ISSN 160:PMID 80:, a 502:or 368:doi 313:doi 272:PMC 256:doi 207:PMC 191:doi 187:427 150:PMC 142:doi 606:: 384:. 376:. 366:. 354:. 350:. 327:. 319:. 309:53 307:. 303:. 280:. 270:. 262:. 254:. 244:85 242:. 238:. 215:. 205:. 197:. 185:. 181:. 158:. 148:. 138:17 136:. 132:. 116:^ 590:) 580:) 568:) 556:) 544:) 532:) 522:) 510:) 496:) 484:) 472:) 462:) 452:) 423:e 416:t 409:v 392:. 370:: 362:: 356:5 335:. 315:: 288:. 258:: 250:: 223:. 193:: 166:. 144::

Index

bacteria
Theodor Wilhelm Engelmann
E. coli
electron
proton
taxis
Shewanella oneidensis
Gram-negative
facultative
electron donor
electron acceptor
Phase-contrast microscopy




"Hybrid sideways/longitudinal swimming in the monoflagellate Shewanella oneidensis: from aerotactic band to biofilm"
doi
10.1098/rsif.2020.0559
PMC
7653395
PMID
33109020
"Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development"
doi
10.1016/j.jmb.2015.06.014
ISSN
0022-2836
PMC
4804472

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.