Knowledge (XXG)

Schottky junction solar cell

Source 📝

20: 95:
The Schottky-junction is an attempt to increase the efficiency of solar cells by introducing an impurity energy level in the band gap. This impurity can absorb more lower energy photons, which improves the power conversion efficiency of the cell. This type of solar cell allows enhanced light trapping
145:
layer. Its function as a wide band-gap semiconductor helps planarize the anode surface, and helps maximum photon flux to reach the active layer. In this case, NiO thickness was also measured, and increasing the thickness decreases cell efficiency. In these cells, nickel oxide replaces
120:
semiconductor, CdSe has many applications in modern technology. Previous experiments using CdSe in solar cells resulted in a power-conversion efficiency of approximately 0.72%. Liang Li et al. propose using single cadmium selenide nanobelts-on-electrodes. This method uses
125:, or EBL, which provides a more efficient synthesis method to developing Schottky junction solar cells. Although this material does not provide a large power-conversion efficiency as of yet, the advent of simpler fabrication methods show promise in 75:
However, research has shown thin insulating layers between metal and semiconductors improve solar cell performance, generating interest in metal-insulator-semiconductor Schottky junction solar cells. A thin insulating layer, such as
63:
of the metal and the conduction band of the semiconductor, an abrupt potential difference is created, instead of the smooth band transition observed across a p-n junction in a standard solar cell, and this is a
150:, resulting in a dramatic increases in performance while still maintaining stability of the cell. Compared to the cadmium selenide cell, nickel dioxide cells provide a power-conversion efficiency to 5.2%. 402:
Fan, Guifeng; Zhu, Hongwei; Wang, Kunlin; Wei, Jinquan; Li, Xinming; Shu, Qinke; Guo, Ning; Wu, Dehai (2011). "Graphene/Silicon Nanowire Schottky Junction for Enhanced Light Harvesting".
170:
layer to prevent photo-current suppression. Sheng S. Li et al. for the first time show that an effective barrier height equal to the band gap energy can be realized if the thickness and
367:
Luque, Antonio; Martí, Antonio (1997). "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels".
579: 471:"p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells" 442:
Li, Liang; Lu, Hao; Deng, Kaimo (3 Dec 2012). "Single CdSe nanobelts-on-electrodes Schottky junction solar cells".
122: 523:
Li, Sheng S. (Feb 1978). "Theoretical analysis of a novel MPN gallium arsenide Schottky barrier solar cell".
469:
Irwin, Michael D.; Buchholz, Bruce; Hains, Alexander W.; Chang, Robert P. H.; Marks, Tobin J. (26 Feb 2008).
85: 129:
applications. Further research is being conducted to increase the efficiency of cadmium selenide cells.
72:, manufacturing of Schottky barrier solar cells proves to be cost-effective and industrially scalable. 606: 532: 482: 376: 333: 298: 204: 52: 48: 69: 585: 349: 271: 575: 419: 89: 174:
density of the p-layer as well as the dopant density in the n substrate are properly chosen.
56: 567: 540: 500: 490: 451: 411: 384: 341: 306: 263: 212: 159: 113: 65: 126: 77: 536: 486: 380: 337: 302: 256:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
208: 505: 470: 117: 104:
Schottky junction solar cells can be constructed using many different material types.
600: 544: 81: 36: 589: 353: 275: 55:
semiconductor layers sandwiched together, forming the source of built-in voltage (a
138: 40: 19: 248: 289:
Srivatava, S.; et al. (1980). "Efficiency of Schottky Barrier Solar Cells".
388: 60: 475:
Proceedings of the National Academy of Sciences of the United States of America
96:
and faster carrier transport compared to more conventional photovoltaic cells.
44: 495: 345: 310: 162:
cell can produce an efficiency of around 22%. This is considered an MIS, or
147: 423: 267: 571: 455: 415: 217: 192: 171: 163: 167: 142: 32: 18: 146:
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, or
193:"The Physics and Chemistry of the Schottky Barrier Height" 137:
When constructing bulk-heterojunction solar cells, p-type
324:
Pulfrey, David L. (1978). "MIS Solar Cells: A Review".
23:
Band diagram of p-n junction in standard solar cell
236:. Hoboken, New Jersey: John Wiley & Sons, Inc. 59:). Due to differing energy levels between the 29:Schottky-junction (Schottky-barrier) solar cell 43:necessary for charge separation. Traditional 8: 566:(2 ed.). Wiley-VCH. pp. 26–38. 504: 494: 216: 68:. Although vulnerable to higher rates of 183: 404:ACS Applied Materials & Interfaces 518: 516: 326:IEEE Transactions on Electron Devices 249:"Theory of the Schottky Barrier Cell" 232:Partain, Larry; Fraas, Lewis (2010). 7: 437: 435: 433: 247:Landsberg, P.T.; Klimpe, C. (1977). 234:Solar Cells and Their Applications 14: 444:Journal of Materials Chemistry A 88:by allowing the possibility of 564:Semiconductor Electrochemistry 158:Under the right conditions, a 92:to tunnel through this layer. 1: 164:metal-insulator-semiconductor 545:10.1016/0038-1101(78)90274-5 389:10.1103/physrevlett.78.5014 16:Schottky barrier solar cell 623: 562:Memming, Rüdiger (2000). 191:Tung, Raymond T. (2014). 123:electron-beam lithography 31:, an interface between a 525:Solid-State Electronics 496:10.1073/pnas.0711990105 369:Physical Review Letters 346:10.1109/t-ed.1978.19271 311:10.1002/pssa.2210580203 291:Physica Status Solidi A 197:Applied Physics Reviews 84:pair recombination and 66:Schottky height barrier 268:10.1098/rspa.1977.0058 166:, and requires a thin 80:, can reduce rates of 24: 572:10.1002/9783527613069 22: 537:1978SSEle..21..435L 487:2008PNAS..105.2783I 381:1997PhRvL..78.5014L 338:1978ITED...25.1308P 303:1980PSSAR..58..343S 209:2014ApPRv...1a1304T 70:thermionic emission 456:10.1039/C2TA00410K 25: 416:10.1021/am1010354 375:(26): 5014–5017. 332:(11): 1308–1317. 262:(1676): 101–118. 218:10.1063/1.4858400 90:minority carriers 614: 593: 549: 548: 520: 511: 510: 508: 498: 481:(8): 2783–2787. 466: 460: 459: 450:(6): 2089–2093. 439: 428: 427: 399: 393: 392: 364: 358: 357: 321: 315: 314: 286: 280: 279: 253: 244: 238: 237: 229: 223: 222: 220: 188: 160:gallium arsenide 154:Gallium arsenide 141:is an effective 114:cadmium selenide 112:One material is 108:Cadmium selenide 47:are composed of 622: 621: 617: 616: 615: 613: 612: 611: 597: 596: 582: 581:978-352731281-8 561: 558: 556:Further reading 553: 552: 522: 521: 514: 468: 467: 463: 441: 440: 431: 401: 400: 396: 366: 365: 361: 323: 322: 318: 288: 287: 283: 251: 246: 245: 241: 231: 230: 226: 190: 189: 185: 180: 156: 135: 127:nano-electronic 110: 102: 78:silicon dioxide 17: 12: 11: 5: 620: 618: 610: 609: 599: 598: 595: 594: 580: 557: 554: 551: 550: 531:(2): 435–438. 512: 461: 429: 410:(3): 721–725. 394: 359: 316: 297:(2): 343–348. 281: 239: 224: 182: 181: 179: 176: 155: 152: 134: 131: 118:direct bandgap 109: 106: 101: 100:Material types 98: 15: 13: 10: 9: 6: 4: 3: 2: 619: 608: 605: 604: 602: 591: 587: 583: 577: 573: 569: 565: 560: 559: 555: 546: 542: 538: 534: 530: 526: 519: 517: 513: 507: 502: 497: 492: 488: 484: 480: 476: 472: 465: 462: 457: 453: 449: 445: 438: 436: 434: 430: 425: 421: 417: 413: 409: 405: 398: 395: 390: 386: 382: 378: 374: 370: 363: 360: 355: 351: 347: 343: 339: 335: 331: 327: 320: 317: 312: 308: 304: 300: 296: 292: 285: 282: 277: 273: 269: 265: 261: 257: 250: 243: 240: 235: 228: 225: 219: 214: 210: 206: 203:(1): 011304. 202: 198: 194: 187: 184: 177: 175: 173: 169: 165: 161: 153: 151: 149: 144: 140: 132: 130: 128: 124: 119: 115: 107: 105: 99: 97: 93: 91: 87: 83: 82:electron-hole 79: 73: 71: 67: 62: 58: 54: 50: 46: 42: 39:provides the 38: 37:semiconductor 34: 30: 21: 563: 528: 524: 478: 474: 464: 447: 443: 407: 403: 397: 372: 368: 362: 329: 325: 319: 294: 290: 284: 259: 255: 242: 233: 227: 200: 196: 186: 157: 139:nickel oxide 136: 133:Nickel oxide 111: 103: 94: 86:dark current 74: 57:p-n junction 41:band bending 28: 26: 607:Solar cells 61:Fermi level 45:solar cells 27:In a basic 178:References 148:PEDOT:PSS 601:Category 590:30162712 424:21323376 354:47296128 276:97366390 533:Bibcode 506:2268537 483:Bibcode 377:Bibcode 334:Bibcode 299:Bibcode 205:Bibcode 116:. As a 588:  578:  503:  422:  352:  274:  172:dopant 53:n-type 49:p-type 35:and a 586:S2CID 350:S2CID 272:S2CID 252:(PDF) 168:oxide 143:anode 33:metal 576:ISBN 420:PMID 51:and 568:doi 541:doi 501:PMC 491:doi 479:105 452:doi 412:doi 385:doi 342:doi 307:doi 264:doi 260:354 213:doi 603:: 584:. 574:. 539:. 529:21 527:. 515:^ 499:. 489:. 477:. 473:. 446:. 432:^ 418:. 406:. 383:. 373:78 371:. 348:. 340:. 330:25 328:. 305:. 295:58 293:. 270:. 258:. 254:. 211:. 199:. 195:. 592:. 570:: 547:. 543:: 535:: 509:. 493:: 485:: 458:. 454:: 448:1 426:. 414:: 408:3 391:. 387:: 379:: 356:. 344:: 336:: 313:. 309:: 301:: 278:. 266:: 221:. 215:: 207:: 201:1

Index


metal
semiconductor
band bending
solar cells
p-type
n-type
p-n junction
Fermi level
Schottky height barrier
thermionic emission
silicon dioxide
electron-hole
dark current
minority carriers
cadmium selenide
direct bandgap
electron-beam lithography
nano-electronic
nickel oxide
anode
PEDOT:PSS
gallium arsenide
metal-insulator-semiconductor
oxide
dopant
"The Physics and Chemistry of the Schottky Barrier Height"
Bibcode
2014ApPRv...1a1304T
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.