Knowledge (XXG)

Schanuel's lemma

Source 📝

1178:
Early in the course I formed a one-step projective resolution of a module, and remarked that if the kernel was projective in one resolution it was projective in all. I added that, although the statement was so simple and straightforward, it would be a while before we proved it. Steve Schanuel spoke
860: 1076: 915: 343: 684: 689: 241: 1021: 573: 1116: 979: 199: 378: 167: 524: 652: 467: 611: 493: 676: 398: 1136: 938: 438: 418: 855:{\displaystyle {\begin{aligned}\ker \pi &=\{(0,q):(0,q)\in X\}\\&=\{(0,q):\phi '(q)=0\}\\&\cong \ker \phi '\cong K'.\end{aligned}}} 1029: 871: 1236: 1207: 249: 1179:
up and told me and the class that it was quite easy, and thereupon sketched what has come to be known as "Schanuel's lemma."
1266: 40:. It is useful in defining the Heller operator in the stable category, and in giving elementary descriptions of 1271: 204: 984: 1170: 529: 172: 1084: 947: 351: 941: 91: 41: 1166: 1147: 1231:. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. pp. 165–168. 616: 63: 578: 141: 1232: 1203: 37: 498: 1242: 1224: 1162: 1158: 655: 472: 447: 33: 21: 1246: 661: 383: 1121: 923: 423: 403: 1260: 25: 1023:, and the same argument as above shows that there is another short exact sequence 17: 441: 115: 135: 1071:{\displaystyle 0\rightarrow K\rightarrow X\rightarrow P'\rightarrow 0,} 910:{\displaystyle 0\rightarrow K'\rightarrow X\rightarrow P\rightarrow 0.} 338:{\displaystyle X=\{(p,q)\in P\oplus P':\phi (p)=\phi '(q)\}.} 36:, allows one to compare how far modules depart from being 400:
is defined as the projection of the first coordinate of
1124: 1087: 1032: 987: 950: 926: 874: 865:
We may conclude that there is a short exact sequence
687: 664: 619: 581: 532: 501: 475: 450: 426: 406: 386: 354: 252: 207: 175: 144: 1130: 1110: 1070: 1015: 973: 932: 909: 854: 670: 646: 605: 567: 518: 487: 461: 432: 412: 392: 372: 337: 235: 193: 161: 1146:The above argument may also be generalized to 78: → 0 and 0 →  8: 807: 763: 750: 708: 329: 259: 1123: 1086: 1031: 986: 949: 925: 873: 688: 686: 663: 618: 580: 531: 500: 474: 449: 425: 405: 385: 353: 251: 206: 174: 143: 1190: 981:. Similarly, we can write another map 1173:in Autumn of 1958. Kaplansky writes: 1118:. Combining the two equivalences for 66:with identity. If 0 →  7: 236:{\displaystyle \phi '\colon P'\to M} 1016:{\displaystyle \pi '\colon X\to P'} 568:{\displaystyle \phi (p)=\phi '(q)} 194:{\displaystyle \phi \colon P\to M} 14: 1111:{\displaystyle X\cong P'\oplus K} 974:{\displaystyle X\cong K'\oplus P} 373:{\displaystyle \pi \colon X\to P} 1059: 1048: 1042: 1036: 1002: 901: 895: 889: 878: 798: 792: 778: 766: 741: 729: 723: 711: 635: 623: 594: 582: 562: 556: 542: 536: 364: 326: 320: 306: 300: 274: 262: 227: 185: 1: 1200:Lectures on Modules and Rings 940:is projective this sequence 55:is the following statement: 20:, especially in the area of 1161:discovered the argument in 647:{\displaystyle \pi (p,q)=p} 1288: 1138:gives the desired result. 606:{\displaystyle (p,q)\in X} 162:{\displaystyle P\oplus P'} 90: → 0 are 469:is surjective, for any 519:{\displaystyle q\in P'} 1132: 1112: 1072: 1017: 975: 934: 911: 856: 672: 648: 607: 569: 520: 489: 488:{\displaystyle p\in P} 463: 462:{\displaystyle \phi '} 434: 414: 394: 374: 339: 237: 195: 163: 1171:University of Chicago 1133: 1113: 1073: 1018: 976: 935: 912: 857: 673: 649: 608: 570: 521: 490: 464: 435: 415: 395: 375: 340: 238: 196: 164: 134:Define the following 106:are projective, then 92:short exact sequences 1148:long exact sequences 1142:Long exact sequences 1122: 1085: 1030: 985: 948: 924: 872: 685: 671:{\displaystyle \pi } 662: 617: 579: 530: 499: 473: 448: 424: 404: 393:{\displaystyle \pi } 384: 352: 250: 205: 173: 142: 1267:Homological algebra 1214:pgs. 165–167. 1167:homological algebra 654:. Now examine the 86: →  82: →  74: →  70: →  1198:Lam, T.Y. (1999). 1128: 1108: 1068: 1013: 971: 930: 907: 852: 850: 668: 644: 603: 565: 516: 485: 459: 430: 410: 390: 370: 335: 233: 191: 159: 42:dimension shifting 1225:Kaplansky, Irving 1131:{\displaystyle X} 933:{\displaystyle P} 495:, one may find a 433:{\displaystyle P} 413:{\displaystyle X} 1279: 1251: 1250: 1229:Fields and Rings 1221: 1215: 1213: 1195: 1163:Irving Kaplansky 1159:Stephen Schanuel 1137: 1135: 1134: 1129: 1117: 1115: 1114: 1109: 1101: 1077: 1075: 1074: 1069: 1058: 1022: 1020: 1019: 1014: 1012: 995: 980: 978: 977: 972: 964: 939: 937: 936: 931: 916: 914: 913: 908: 888: 861: 859: 858: 853: 851: 844: 833: 813: 791: 756: 677: 675: 674: 669: 653: 651: 650: 645: 612: 610: 609: 604: 574: 572: 571: 566: 555: 525: 523: 522: 517: 515: 494: 492: 491: 486: 468: 466: 465: 460: 458: 439: 437: 436: 431: 419: 417: 416: 411: 399: 397: 396: 391: 379: 377: 376: 371: 344: 342: 341: 336: 319: 293: 242: 240: 239: 234: 226: 215: 200: 198: 197: 192: 168: 166: 165: 160: 158: 53:Schanuel's lemma 34:Stephen Schanuel 30:Schanuel's lemma 1287: 1286: 1282: 1281: 1280: 1278: 1277: 1276: 1257: 1256: 1255: 1254: 1239: 1223: 1222: 1218: 1210: 1197: 1196: 1192: 1187: 1156: 1144: 1120: 1119: 1094: 1083: 1082: 1051: 1028: 1027: 1005: 988: 983: 982: 957: 946: 945: 922: 921: 881: 870: 869: 849: 848: 837: 826: 811: 810: 784: 754: 753: 701: 683: 682: 660: 659: 615: 614: 577: 576: 548: 528: 527: 508: 497: 496: 471: 470: 451: 446: 445: 422: 421: 402: 401: 382: 381: 350: 349: 312: 286: 248: 247: 219: 208: 203: 202: 171: 170: 151: 140: 139: 132: 50: 12: 11: 5: 1285: 1283: 1275: 1274: 1269: 1259: 1258: 1253: 1252: 1237: 1216: 1208: 1189: 1188: 1186: 1183: 1182: 1181: 1169:course at the 1155: 1152: 1143: 1140: 1127: 1107: 1104: 1100: 1097: 1093: 1090: 1079: 1078: 1067: 1064: 1061: 1057: 1054: 1050: 1047: 1044: 1041: 1038: 1035: 1011: 1008: 1004: 1001: 998: 994: 991: 970: 967: 963: 960: 956: 953: 929: 918: 917: 906: 903: 900: 897: 894: 891: 887: 884: 880: 877: 863: 862: 847: 843: 840: 836: 832: 829: 825: 822: 819: 816: 814: 812: 809: 806: 803: 800: 797: 794: 790: 787: 783: 780: 777: 774: 771: 768: 765: 762: 759: 757: 755: 752: 749: 746: 743: 740: 737: 734: 731: 728: 725: 722: 719: 716: 713: 710: 707: 704: 702: 700: 697: 694: 691: 690: 667: 643: 640: 637: 634: 631: 628: 625: 622: 602: 599: 596: 593: 590: 587: 584: 575:. This gives 564: 561: 558: 554: 551: 547: 544: 541: 538: 535: 514: 511: 507: 504: 484: 481: 478: 457: 454: 429: 409: 389: 369: 366: 363: 360: 357: 346: 345: 334: 331: 328: 325: 322: 318: 315: 311: 308: 305: 302: 299: 296: 292: 289: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 232: 229: 225: 222: 218: 214: 211: 190: 187: 184: 181: 178: 157: 154: 150: 147: 131: 128: 49: 46: 32:, named after 13: 10: 9: 6: 4: 3: 2: 1284: 1273: 1272:Module theory 1270: 1268: 1265: 1264: 1262: 1248: 1244: 1240: 1238:0-226-42451-0 1234: 1230: 1226: 1220: 1217: 1211: 1209:0-387-98428-3 1205: 1201: 1194: 1191: 1184: 1180: 1176: 1175: 1174: 1172: 1168: 1164: 1160: 1153: 1151: 1149: 1141: 1139: 1125: 1105: 1102: 1098: 1095: 1091: 1088: 1065: 1062: 1055: 1052: 1045: 1039: 1033: 1026: 1025: 1024: 1009: 1006: 999: 996: 992: 989: 968: 965: 961: 958: 954: 951: 943: 927: 904: 898: 892: 885: 882: 875: 868: 867: 866: 845: 841: 838: 834: 830: 827: 823: 820: 817: 815: 804: 801: 795: 788: 785: 781: 775: 772: 769: 760: 758: 747: 744: 738: 735: 732: 726: 720: 717: 714: 705: 703: 698: 695: 692: 681: 680: 679: 665: 657: 641: 638: 632: 629: 626: 620: 600: 597: 591: 588: 585: 559: 552: 549: 545: 539: 533: 512: 509: 505: 502: 482: 479: 476: 455: 452: 443: 427: 407: 387: 367: 361: 358: 355: 332: 323: 316: 313: 309: 303: 297: 294: 290: 287: 283: 280: 277: 271: 268: 265: 256: 253: 246: 245: 244: 230: 223: 220: 216: 212: 209: 188: 182: 179: 176: 155: 152: 148: 145: 137: 129: 127: 125: 121: 117: 113: 109: 105: 101: 98:-modules and 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 56: 54: 47: 45: 43: 39: 35: 31: 27: 26:module theory 23: 19: 1228: 1219: 1202:. Springer. 1199: 1193: 1177: 1157: 1145: 1080: 919: 864: 347: 133: 123: 119: 111: 107: 103: 99: 95: 87: 83: 79: 75: 71: 67: 59: 57: 52: 51: 29: 15: 658:of the map 18:mathematics 1261:Categories 1247:1001.16500 526:such that 442:surjective 116:isomorphic 38:projective 1103:⊕ 1092:≅ 1060:→ 1049:→ 1043:→ 1037:→ 1003:→ 997:: 990:π 966:⊕ 955:≅ 902:→ 896:→ 890:→ 879:→ 835:≅ 828:ϕ 824:⁡ 818:≅ 786:ϕ 745:∈ 699:π 696:⁡ 666:π 621:π 598:∈ 550:ϕ 534:ϕ 506:∈ 480:∈ 453:ϕ 444:. Since 388:π 365:→ 359:: 356:π 314:ϕ 298:ϕ 284:⊕ 278:∈ 228:→ 217:: 210:ϕ 186:→ 180:: 177:ϕ 149:⊕ 136:submodule 48:Statement 24:known as 1227:(1972). 1099:′ 1056:′ 1010:′ 993:′ 962:′ 886:′ 842:′ 831:′ 789:′ 553:′ 513:′ 456:′ 380:, where 348:The map 317:′ 291:′ 224:′ 213:′ 169:, where 156:′ 122:⊕ 110:⊕ 1154:Origins 1081:and so 22:algebra 1245:  1235:  1206:  942:splits 920:Since 656:kernel 1185:Notes 944:, so 613:with 440:, is 420:into 130:Proof 62:be a 1233:ISBN 1204:ISBN 201:and 102:and 64:ring 58:Let 1243:Zbl 1165:'s 821:ker 693:ker 138:of 118:to 114:is 94:of 16:In 1263:: 1241:. 1150:. 905:0. 678:: 243:: 126:. 120:K′ 112:P′ 104:P′ 84:P′ 80:K′ 44:. 28:, 1249:. 1212:. 1126:X 1106:K 1096:P 1089:X 1066:, 1063:0 1053:P 1046:X 1040:K 1034:0 1007:P 1000:X 969:P 959:K 952:X 928:P 899:P 893:X 883:K 876:0 846:. 839:K 808:} 805:0 802:= 799:) 796:q 793:( 782:: 779:) 776:q 773:, 770:0 767:( 764:{ 761:= 751:} 748:X 742:) 739:q 736:, 733:0 730:( 727:: 724:) 721:q 718:, 715:0 712:( 709:{ 706:= 642:p 639:= 636:) 633:q 630:, 627:p 624:( 601:X 595:) 592:q 589:, 586:p 583:( 563:) 560:q 557:( 546:= 543:) 540:p 537:( 510:P 503:q 483:P 477:p 428:P 408:X 368:P 362:X 333:. 330:} 327:) 324:q 321:( 310:= 307:) 304:p 301:( 295:: 288:P 281:P 275:) 272:q 269:, 266:p 263:( 260:{ 257:= 254:X 231:M 221:P 189:M 183:P 153:P 146:P 124:P 108:K 100:P 96:R 88:M 76:M 72:P 68:K 60:R

Index

mathematics
algebra
module theory
Stephen Schanuel
projective
dimension shifting
ring
short exact sequences
isomorphic
submodule
surjective
kernel
splits
long exact sequences
Stephen Schanuel
Irving Kaplansky
homological algebra
University of Chicago
ISBN
0-387-98428-3
Kaplansky, Irving
ISBN
0-226-42451-0
Zbl
1001.16500
Categories
Homological algebra
Module theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.