Knowledge (XXG)

Thermoelectric effect

Source 📝

2949:( … I dipped into boiling water one end of such an arc for about half a minute, then I took it out and without giving it time to cool, resumed the experiment with the two glasses of cool water; and at this point that the frog in the bath convulsed; and this even two, three, four times, repeating the experiment; until, cooled – by such dips more or less long and repeated, or by a longer exposure to the air – the end of the iron dipped earlier into the hot water, this arc returned completely incapable of exciting convulsions of the animal.) 153: 437: 930: 422: 47: 2056:
transfer from the hot reservoir to the cold reservoir would need to be prevented by a specifically matching voltage difference maintained by the electric reservoirs, and the electric current would need to be zero. For a steady state, there must be at least some heat transfer or some non-zero electric
2048:
The thermoelectric effects lie beyond the scope of equilibrium thermodynamics. They necessarily involve continuing flows of energy. At least, they involve three bodies or thermodynamic subsystems, arranged in a particular way, along with a special arrangement of the surroundings. The three bodies are
739:
In practice, thermoelectric effects are essentially unobservable for a localized hot or cold spot in a single homogeneous conducting material, since the overall emfs from the increasing and decreasing temperature gradients will perfectly cancel out. Attaching an electrode to the hotspot in an attempt
1417:
is the Thomson coefficient. The Thomson effect is a manifestation of the direction of flow of electrical carriers with respect to a temperature gradient within a conductor. These absorb energy (heat) flowing in a direction opposite to a thermal gradient, increasing their potential energy, and, when
1177:
in magnetic induction): if a simple thermoelectric circuit is closed, then the Seebeck effect will drive a current, which in turn (by the Peltier effect) will always transfer heat from the hot to the cold junction. The close relationship between Peltier and Seebeck effects can be seen in the direct
2904:
In 1794, Volta found that if a temperature difference existed between the ends of an iron rod, then it could excite spasms of a frog's leg. His apparatus consisted of two glasses of water. Dipped in each glass was a wire that was connected to one or the other hind leg of a frog. An iron rod was
1958: 883:
functions similarly to a thermocouple but involves an unknown material instead of an unknown temperature: a metallic probe of known composition is kept at a constant known temperature and held in contact with the unknown sample that is locally heated to the probe temperature, thereby providing an
2344:
If the Thomson coefficient of a material is measured over a wide temperature range, it can be integrated using the Thomson relations to determine the absolute values for the Peltier and Seebeck coefficients. This needs to be done only for one material, since the other values can be determined by
2340:
The Thomson coefficient is unique among the three main thermoelectric coefficients because it is the only one directly measurable for individual materials. The Peltier and Seebeck coefficients can only be easily determined for pairs of materials; hence, it is difficult to find values of absolute
836:
article for more details) the voltage measured at the loose ends of the wires is directly dependent on the unknown temperature, and yet totally independent of other details such as the exact geometry of the wires. This direct relationship allows the thermocouple arrangement to be used as a
941: 1276:
For certain materials, the Seebeck coefficient is not constant in temperature, and so a spatial gradient in temperature can result in a gradient in the Seebeck coefficient. If a current is driven through this gradient, then a continuous version of the Peltier effect will occur. This
468:
that develops across two points of an electrically conducting material when there is a temperature difference between them. The emf is called the Seebeck emf (or thermo/thermal/thermoelectric emf). The ratio between the emf and temperature difference is the Seebeck coefficient. A
740:
to measure the locally shifted voltage will only partly succeed: it means another temperature gradient will appear inside of the electrode, and so the overall emf will depend on the difference in Seebeck coefficients between the electrode and the conductor it is attached to.
2049:
the two different metals and their junction region. The junction region is an inhomogeneous body, assumed to be stable, not suffering amalgamation by diffusion of matter. The surroundings are arranged to maintain two temperature reservoirs and two electric reservoirs.
1488:
Often, more than one of the above effects is involved in the operation of a real thermoelectric device. The Seebeck effect, Peltier effect, and Thomson effect can be gathered together in a consistent and rigorous way, described here; this also includes the effects of
1693: 726:
The Seebeck coefficients generally vary as function of temperature and depend strongly on the composition of the conductor. For ordinary materials at room temperature, the Seebeck coefficient may range in value from −100 μV/K to +1,000 μV/K (see
1260:) that varies with the square of current, the thermoelectric heating effect is linear in current (at least for small currents) but requires a cold sink to replenish with heat energy. This rapid reversing heating and cooling effect is used by many modern 951: 950: 1838: 473:
measures the difference in potential across a hot and cold end for two dissimilar materials. This potential difference is proportional to the temperature difference between the hot and cold ends. First discovered in 1794 by Italian scientist
2345:
measuring pairwise Seebeck coefficients in thermocouples containing the reference material and then adding back the absolute Seebeck coefficient of the reference material. For more details on absolute Seebeck coefficient determination, see
2082:
In 1854, Lord Kelvin found relationships between the three coefficients, implying that the Thomson, Peltier, and Seebeck effects are different manifestations of one effect (uniquely characterized by the Seebeck coefficient).
971:, who discovered it in 1834. When a current is made to flow through a junction between two conductors, A and B, heat may be generated or removed at the junction. The Peltier heat generated at the junction per unit time is 2595:(It's undoubtedly necessary to distinguish henceforth this new class of electrical circuits by an indicative name; and as such I propose the expression "thermo-electric circuits" or perhaps "thermelectric circuits" … ) 2735: 1553: 573: 944: 1218:
involves multiple junctions in series, through which a current is driven. Some of the junctions lose heat due to the Peltier effect, while others gain heat. Thermoelectric heat pumps exploit this phenomenon, as do
948: 947: 943: 942: 916:
are like a thermocouple/thermopile but instead draw some current from the generated voltage in order to extract power from heat differentials. They are optimized differently from thermocouples, using high quality
1366: 949: 2905:
bent into a bow and one end was heated in boiling water. When the ends of the iron bow were dipped into the two glasses, a thermoelectric current passed through the frog's legs and caused them to twitch. See:
2499:
Prunet, G.; Pawula, F.; Fleury, G.; Cloutet, E.; Robinson, A.J.; Hadziioannou, G.; Pakdel, A. (2021). "A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications".
1245:
is a refrigerator that is compact and has no circulating fluid or moving parts. Such refrigerators are useful in applications where their advantages outweigh the disadvantage of their very low efficiency.
1038: 321:, measure temperature or change the temperature of objects. Because the direction of heating and cooling is affected by the applied voltage, thermoelectric devices can be used as temperature controllers. 2142: 1591: 2273:, and it is worth noting that this second Thomson relation is only guaranteed for a time-reversal symmetric material; if the material is placed in a magnetic field or is itself magnetically ordered ( 1116:
is the electric current (from A to B). The total heat generated is not determined by the Peltier effect alone, as it may also be influenced by Joule heating and thermal-gradient effects (see below).
672: 946: 1119:
The Peltier coefficients represent how much heat is carried per unit charge. Since charge current must be continuous across a junction, the associated heat flow will develop a discontinuity if
2336: 1468: 1268:(PCR). PCR requires the cyclic heating and cooling of samples to specified temperatures. The inclusion of many thermocouples in a small space enables many samples to be amplified in parallel. 746:
involve two wires, each of a different material, that are electrically joined in a region of unknown temperature. The loose ends are measured in an open-circuit state (without any current,
1557:
To describe the Peltier and Thomson effects, we must consider the flow of energy. If temperature and charge change with time, the full thermoelectric equation for the energy accumulation,
1831: 336:(the Seebeck coefficient varies with temperature). The Seebeck and Peltier effects are different manifestations of the same physical process; textbooks may refer to this process as the 1759: 2064:
cannot be uniquely distinguished. This is more complicated than the often considered thermodynamic processes, in which just two respectively homogeneous subsystems are connected.
2057:
current. The two modes of energy transfer, as heat and by electric current, can be distinguished when there are three distinct bodies and a distinct arrangement of surroundings.
830: 1171: 1144: 1094: 1067: 2188: 1418:
flowing in the same direction as a thermal gradient, they liberate heat, decreasing their potential energy. The Thomson coefficient is related to the Seebeck coefficient as
1415: 772: 493:
needle would be deflected by a closed loop formed by two different metals joined in two places, with an applied temperature difference between the joints. Danish physicist
2028: 1797: 1305: 1584: 2863:
There is a generalized second Thomson relation relating anisotropic Peltier and Seebeck coefficients with reversed magnetic field and magnetic order. See, for example,
2674: 2585:"Il faudra sans doute désormais distinguer cette nouvelle classes de circuits électriques par une dénomination significative; et comme telle je propose l'expression de 2265: 2006: 1983: 1391: 721: 1715: 1205: 619: 921:
in a thermopile arrangement, to maximize the extracted power. Though not particularly efficient, these generators have the advantage of not having any moving parts.
1256:
Thermoelectric coolers are trivially reversible, in that they can be used as heaters by simply reversing the current. Unlike ordinary resistive electrical heating (
277: 2694: 2208: 2228: 2164: 1498: 1114: 902: 875: 855: 792: 694: 595: 517: 2366:– a thermoelectric phenomenon when a sample allowing electrical conduction in a magnetic field and a temperature gradient normal (perpendicular) to each other 2269:
This relation expresses a subtle and fundamental connection between the Peltier and Seebeck effects. It was not satisfactorily proven until the advent of the
1953:{\displaystyle -{\dot {q}}_{\text{ext}}=\nabla \cdot (\kappa \nabla T)+\mathbf {J} \cdot \left(\sigma ^{-1}\mathbf {J} \right)-T\mathbf {J} \cdot \nabla S.} 945: 1312: 976: 2091: 386:
in the material to diffuse from the hot side to the cold side. This is due to charge carrier particles having higher mean velocities (and thus
64: 2430:
As the "figure of merit" approaches infinity, the Peltier–Seebeck effect can drive a heat engine or refrigerator at closer and closer to the
306:. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, 244: 2230:
is the Seebeck coefficient. This relationship is easily shown given that the Thomson effect is a continuous version of the Peltier effect.
630: 1285:(William Thomson). It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density 2947:" … tuffava nell'acqua bollente un capo di tal arco per qualche mezzo minuto, … inetto de tutto ad eccitare le convulsioni dell'animale." 2939:(New memoir on animal electricity, divided into three letters, addressed to Abbot Antonio Maria Vassalli … First letter), pp. 197–206; 967:: the presence of heating or cooling at an electrified junction of two different conductors. The effect is named after French physicist 390:) at higher temperatures, leading them to migrate on average towards the colder side, in the process carrying heat across the material. 367: 270: 249: 2289: 3058: 3039: 2985: 2878: 2550: 1493:
and ordinary heat conduction. As stated above, the Seebeck effect generates an electromotive force, leading to the current equation
1282: 353: 130: 111: 910:
are formed from many thermocouples in series, zig-zagging back and forth between hot and cold. This multiplies the voltage output.
83: 2033:
If the material is not in a steady state, a complete description needs to include dynamic effects such as relating to electrical
2413: 393:
Depending on the material properties and nature of the charge carriers (whether they are positive holes in a bulk material or
2936:"Nuova memoria sull'elettricità animale, divisa in tre lettere, dirette al Signor Abate Anton Maria Vassalli … Lettera Prima" 2911:"Nuova memoria sull'elettricità animale del Sig. Don Alessandro Volta … in alcune lettere al Sig. Ab. Anton Maria Vassalli …" 2782: 263: 90: 68: 30:
This article is about the thermoelectric effect as a physical phenomenon. For applications of the thermoelectric effect, see
1173:
are different. The Peltier effect can be considered as the back-action counterpart to the Seebeck effect (analogous to the
2913:[New memoir on animal electricity from Don Alessandro Volta … in some letters to Abbot Antonio Maria Vassalli …]. 968: 341: 2378:– the creation of an electric polarization in a crystal after heating/cooling, an effect distinct from thermoelectricity 2270: 2073: 1421: 498: 97: 3139: 3124: 1174: 1688:{\displaystyle {\dot {e}}=\nabla \cdot (\kappa \nabla T)-\nabla \cdot (V+\Pi )\mathbf {J} +{\dot {q}}_{\text{ext}},} 409:
are often combined in series as they have opposite directions for heat transport, as specified by the sign of their
3149: 3144: 2537:
Goupil, Christophe; Ouerdane, Henni; Zabrocki, Knud; Seifert, Wolfgang; Hinsche, Nicki F.; Müller, Eckhard (2016).
79: 57: 1802: 1265: 794:
are nonlinearly temperature dependent and different for the two materials, the open-circuit condition means that
1474:). This equation, however, neglects Joule heating and ordinary thermal conductivity (see full equations below). 1307:
is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per unit volume.
913: 445: 318: 239: 219: 31: 2238: 494: 2600: 1728: 3113: 918: 880: 622: 2476: 2030:, this can be used to solve for the steady-state voltage and temperature profiles in a complicated system. 1232: 1220: 934: 441: 234: 35: 2924: 2910: 797: 2077: 2061: 1833:. Using these facts and the second Thomson relation (see below), the heat equation can be simplified to 1483: 1242: 483: 349: 152: 366:
material, is not generally termed a thermoelectric effect. The Peltier–Seebeck and Thomson effects are
2940: 2934: 2804: 2612: 2369: 2358: 1718: 1149: 1122: 1072: 1045: 406: 402: 363: 196: 2826: 2169: 1764:
If the material has reached a steady state, the charge and temperature distributions are stable, so
1396: 749: 436: 2969: 2384:- the production of electrical power from a galvanic cell with electrodes at different temperatures 2381: 2346: 728: 697: 505: 465: 410: 188: 104: 3003:
Jack, P.M. (2003). "Physical Space as a Quaternion Structure I: Maxwell Equations. A Brief Note".
2011: 1767: 1288: 3004: 2846: 2639:
The voltage in this case does not refer to electric potential but rather the "voltmeter" voltage
2462:
Any device that works at the Carnot efficiency is thermodynamically reversible, a consequence of
2392: 1722: 1560: 929: 625:. In general, the Seebeck effect is described locally by the creation of an electromotive field 2642: 877:
curves of the two materials, and of the reference temperature at the measured loose wire ends.
508:(EMF) and leads to measurable currents or voltages in the same way as any other EMF. The local 3064: 3054: 3035: 2991: 2981: 2874: 2778: 2711: 2570: 2546: 2453: 2278: 1988: 1965: 1373: 703: 1700: 1181: 963:, heat is generated at one junction and absorbed at the other junction. This is known as the 604: 3085: 3027: 2973: 2838: 2748: 2620: 2538: 2517: 2509: 2445: 490: 475: 2679: 2375: 2193: 1261: 509: 501:
being an indirect consequence, and so coined the more accurate term "thermoelectricity".
2616: 497:
noted that the temperature difference was in fact driving an electric current, with the
2463: 2213: 2149: 1099: 887: 860: 840: 777: 679: 580: 425: 387: 383: 421: 397:
of negative charge), heat can be carried in either direction with respect to voltage.
352:). The Thomson effect is an extension of the Peltier–Seebeck model and is credited to 324:
The term "thermoelectric effect" encompasses three separately identified effects: the
3133: 3020: 2850: 2363: 2274: 2042: 1490: 1257: 1250: 743: 479: 398: 359: 345: 311: 201: 2281:, etc.), then the second Thomson relation does not take the simple form shown here. 440:
A thermoelectric circuit composed of materials of different Seebeck coefficients (p-
2933:… . (in Italian) Florence (Firenze), (Italy): Guglielmo Piatti. vol. 2, part 1. 960: 833: 470: 453: 303: 224: 2395:- production of electrical power from thermal energy using the photovoltaic effect 837:
straightforward uncalibrated thermometer, provided knowledge of the difference in
2513: 2449: 2697: 2431: 2372:– thermoelectric phenomenon affecting current in a conductor in a magnetic field 2034: 907: 295: 46: 3076:
Thomson, William (1851). "On a mechanical theory of thermo-electric currents".
2603:[Notice of new electro-magnetic experiments of Mr. Seebeck in Berlin]. 2601:"Notiz von neuen electrisch-magnetischen Versuchen des Herrn Seebeck in Berlin" 1962:
The middle term is the Joule heating, and the last term includes both Peltier (
27:
Direct conversion of temperature differences to electric voltage and vice versa
3089: 3031: 2842: 2752: 2387: 2038: 429: 229: 17: 3068: 2915:
Annali di Chimica e Storia Naturale (Annals of Chemistry and Natural History)
2624: 340:(the separation derives from the independent discoveries by French physicist 2995: 2870: 1725:, and the second term shows the energy carried by currents. The third term, 1238: 1215: 449: 2457: 2977: 1548:{\displaystyle \mathbf {J} =\sigma (-{\boldsymbol {\nabla }}V-S\nabla T).} 568:{\displaystyle \mathbf {J} =\sigma (-\nabla V+\mathbf {E} _{\text{emf}}),} 2571:"Nouvelles expériences de M. Seebeck sur les actions électro-magnetiques" 394: 379: 3009: 2060:
But in the case of continuous variation in the media, heat transfer and
2052:
For an imagined, but not actually possible, thermodynamic equilibrium,
598: 299: 2573:[New experiments by Mr. Seebeck on electro-magnetic actions]. 2522: 2436:
Disalvo, F. J. (1999). "Thermoelectric Cooling and Power Generation".
2008:
in thermal gradient) effects. Combined with the Seebeck equation for
1361:{\displaystyle {\dot {q}}=-{\mathcal {K}}\mathbf {J} \cdot \nabla T,} 2714:[New experiments on the heat effects of electric currents]. 700:(also known as thermopower), a property of the local material, and 362:, the heat that is generated whenever a current is passed through a 2827:"On the dynamical theory of heat. Part V. Thermo-electric currents" 2284:
Now, using the second relation, the first Thomson relation becomes
939: 928: 489:
Seebeck observed what he called "thermomagnetic effect" wherein a
435: 420: 2712:"Nouvelles expériences sur la caloricité des courants électrique" 904:. This can help distinguish between different metals and alloys. 2053: 307: 314:
from one side to the other, creating a temperature difference.
1033:{\displaystyle {\dot {Q}}=(\Pi _{\text{A}}-\Pi _{\text{B}})I,} 40: 1761:, is the heat added from an external source (if applicable). 2341:
Seebeck or Peltier coefficients for an individual material.
2295: 2175: 2097: 1427: 1402: 1336: 3125:
A news article on the increases in thermal diode efficiency
2137:{\displaystyle {\mathcal {K}}\equiv {\frac {d\Pi }{dT}}-S,} 884:
approximate measurement of the unknown Seebeck coefficient
328:(temperature differences causes electromotive forces), the 2931:
Collezione dell'Opere del Cavaliere Conte Alessandro Volta
959:
When an electric current is passed through a circuit of a
2543:
Continuum Theory and Modeling of Thermoelectric Elements
1096:
are the Peltier coefficients of conductors A and B, and
448:. If the load resistor at the bottom is replaced with a 332:(thermocouples create temperature differences), and the 3051:
Semiconductor Thermoelements and Thermoelectric Cooling
3018:
Besançon, Robert M. (1985). Besançon, Robert M. (ed.).
2736:"4. On a Mechanical Theory of Thermo-Electric Currents" 3104: 2307: 1439: 452:, the circuit then functions as a temperature-sensing 3114:"2.3.3 Thermoelectric Effects: General Consideration" 2682: 2645: 2292: 2241: 2216: 2196: 2172: 2152: 2094: 2014: 1991: 1968: 1841: 1805: 1770: 1731: 1703: 1594: 1563: 1501: 1424: 1399: 1376: 1315: 1291: 1184: 1152: 1125: 1102: 1075: 1048: 979: 890: 863: 843: 800: 780: 752: 706: 682: 667:{\displaystyle \mathbf {E} _{\text{emf}}=-S\nabla T,} 633: 607: 583: 520: 71:. Unsourced material may be challenged and removed. 3019: 2734: 2688: 2668: 2330: 2259: 2222: 2202: 2182: 2158: 2136: 2022: 2000: 1977: 1952: 1825: 1791: 1753: 1709: 1687: 1578: 1547: 1462: 1409: 1385: 1360: 1299: 1199: 1165: 1138: 1108: 1088: 1061: 1032: 896: 869: 849: 824: 786: 766: 715: 688: 666: 613: 589: 567: 2331:{\displaystyle {\mathcal {K}}=T{\tfrac {dS}{dT}}} 1463:{\displaystyle {\mathcal {K}}=T{\tfrac {dS}{dT}}} 1264:, laboratory devices used to amplify DNA by the 774:). Although the materials' Seebeck coefficients 2414:"The Peltier Effect and Thermoelectric Cooling" 2831:Transactions of the Royal Society of Edinburgh 504:The Seebeck effect is a classic example of an 3078:Proceedings of the Royal Society of Edinburgh 2741:Proceedings of the Royal Society of Edinburgh 444:and n-doped semiconductors), configured as a 271: 8: 1281:was predicted and later observed in 1851 by 955:Video from thermal camera of peltier element 1826:{\displaystyle \nabla \cdot \mathbf {J} =0} 1237:The Peltier effect can be used to create a 2777:. Boca Raton New York London : CRC press. 278: 264: 151: 142: 3008: 2681: 2658: 2644: 2521: 2306: 2294: 2293: 2291: 2240: 2215: 2195: 2174: 2173: 2171: 2151: 2105: 2096: 2095: 2093: 2015: 2013: 1990: 1967: 1933: 1917: 1908: 1891: 1858: 1847: 1846: 1840: 1812: 1804: 1772: 1771: 1769: 1745: 1734: 1733: 1730: 1702: 1676: 1665: 1664: 1655: 1596: 1595: 1593: 1565: 1564: 1562: 1519: 1502: 1500: 1438: 1426: 1425: 1423: 1401: 1400: 1398: 1375: 1341: 1335: 1334: 1317: 1316: 1314: 1292: 1290: 1183: 1157: 1151: 1130: 1124: 1101: 1080: 1074: 1053: 1047: 1015: 1002: 981: 980: 978: 889: 862: 842: 799: 779: 753: 751: 705: 681: 640: 635: 632: 606: 582: 553: 548: 521: 519: 131:Learn how and when to remove this message 2929:Reprinted in: Volta, Alessandro (1816) 3026:(3rd ed.). Van Nostrand Reinhold. 2897: 2867:Thermoelectrics Handbook: Macro to Nano 2405: 1754:{\displaystyle {\dot {q}}_{\text{ext}}} 1178:connection between their coefficients: 145: 2966:Thermoelectrics Handbook:Macro to Nano 2798: 2796: 2794: 2539:"Thermodynamics and thermoelectricity" 1471: 1208: 478:, it is named after the Russian born, 2545:. New York: Wiley-VCH. pp. 2–3. 2078:Heat transfer physics § Electron 1484:Heat transfer physics § Electron 1249:Other heat pump applications such as 245:Radioisotope thermoelectric generator 7: 3106:International Thermoelectric Society 933:The Seebeck circuit configured as a 69:adding citations to reliable sources 825:{\displaystyle \nabla V=-S\nabla T} 378:At the atomic scale, a temperature 250:Automotive thermoelectric generator 2242: 2197: 2111: 1992: 1969: 1941: 1879: 1867: 1806: 1649: 1634: 1622: 1610: 1533: 1377: 1349: 1185: 1154: 1127: 1077: 1050: 1012: 999: 816: 801: 707: 655: 538: 25: 1393:is the temperature gradient, and 1253:may also use Peltier heat pumps. 2803:Leon van Dommelen (2002-02-01). 2747:. Cambridge Univ. Press: 91–98. 2716:Annales de Chimie et de Physique 2210:is the Peltier coefficient, and 2016: 1934: 1918: 1892: 1813: 1656: 1520: 1503: 1342: 1293: 1223:devices found in refrigerators. 754: 636: 549: 522: 370:, whereas Joule heating is not. 45: 2775:CRC Handbook of Thermoelectrics 2541:. In Goupil, Christophe (ed.). 2233:The second Thomson relation is 1166:{\displaystyle \Pi _{\text{B}}} 1139:{\displaystyle \Pi _{\text{A}}} 1089:{\displaystyle \Pi _{\text{B}}} 1062:{\displaystyle \Pi _{\text{A}}} 832:everywhere. Therefore (see the 731:article for more information). 432:made from iron and copper wires 56:needs additional citations for 2183:{\displaystyle {\mathcal {K}}} 2086:The first Thomson relation is 1885: 1873: 1652: 1640: 1628: 1616: 1539: 1513: 1410:{\displaystyle {\mathcal {K}}} 1021: 995: 767:{\displaystyle \mathbf {J} =0} 559: 532: 1: 2945:From (Volta, 1794), p. 139: 2805:"A.11 Thermoelectric effects" 2166:is the absolute temperature, 1723:Fourier's heat conduction law 1478:Full thermoelectric equations 969:Jean Charles Athanase Peltier 723:is the temperature gradient. 486:who rediscovered it in 1821. 342:Jean Charles Athanase Peltier 2773:Rowe, David Michael (1994). 2514:10.1016/j.mtphys.2021.100402 2450:10.1126/science.285.5428.703 2190:is the Thomson coefficient, 2074:Onsager reciprocal relations 2023:{\displaystyle \mathbf {J} } 1792:{\displaystyle {\dot {e}}=0} 1300:{\displaystyle \mathbf {J} } 499:generation of magnetic field 368:thermodynamically reversible 294:is the direct conversion of 3022:The Encyclopedia of Physics 2587:circuits thermo-électriques 317:This effect can be used to 3166: 2909:Volta, Alessandro (1794). 2577:. 2nd series (in French). 2477:"THERMOELECTRIC PHENOMENA" 2071: 1985:at junction) and Thomson ( 1579:{\displaystyle {\dot {e}}} 1481: 1230: 29: 3112:Föll, Helmut (Oct 2019). 3090:10.1017/S0370164600027310 3084:(published 1857): 91–98. 3032:10.1007/978-1-4615-6902-2 2865:Rowe, D. M., ed. (2010). 2843:10.1017/S0080456800032014 2825:Thomson, William (1857). 2753:10.1017/S0370164600027310 2733:Thomson, William (1857). 2669:{\displaystyle V=-\mu /e} 1266:polymerase chain reaction 914:Thermoelectric generators 466:electromotive force (emf) 2964:Rowe, D.M., ed. (2006). 2625:10.1002/andp.18230730410 2464:classical thermodynamics 2260:{\displaystyle \Pi =TS.} 2001:{\displaystyle \nabla S} 1978:{\displaystyle \nabla S} 1721:. The first term is the 1386:{\displaystyle \nabla T} 919:thermoelectric materials 716:{\displaystyle \nabla T} 446:thermoelectric generator 298:differences to electric 240:Thermoelectric generator 220:Thermoelectric materials 32:Thermoelectric materials 2502:Materials Today Physics 1710:{\displaystyle \kappa } 1241:. Notably, the Peltier 1200:{\displaystyle \Pi =TS} 614:{\displaystyle \sigma } 80:"Thermoelectric effect" 2690: 2670: 2332: 2261: 2224: 2204: 2184: 2160: 2138: 2024: 2002: 1979: 1954: 1827: 1793: 1755: 1711: 1689: 1580: 1549: 1464: 1411: 1387: 1362: 1301: 1233:Thermoelectric cooling 1221:thermoelectric cooling 1201: 1167: 1140: 1110: 1090: 1063: 1034: 956: 937: 898: 881:Thermoelectric sorting 871: 851: 826: 788: 768: 717: 690: 668: 615: 591: 569: 457: 433: 338:Peltier–Seebeck effect 235:Thermoelectric cooling 36:Thermoelectric cooling 3120:. University of Kiel. 2978:10.1201/9781420038903 2691: 2671: 2333: 2262: 2225: 2205: 2185: 2161: 2139: 2025: 2003: 1980: 1955: 1828: 1794: 1756: 1712: 1690: 1581: 1550: 1465: 1412: 1388: 1363: 1302: 1243:thermoelectric cooler 1202: 1168: 1141: 1111: 1091: 1064: 1035: 954: 935:thermoelectric cooler 932: 899: 872: 852: 827: 789: 769: 718: 691: 669: 616: 592: 570: 495:Hans Christian Ørsted 484:Thomas Johann Seebeck 439: 424: 350:Thomas Johann Seebeck 302:and vice versa via a 292:thermoelectric effect 168:Thermoelectric effect 146:Thermoelectric effect 3118:Electronic Materials 3049:Ioffe, A.F. (1957). 2970:Taylor & Francis 2689:{\displaystyle \mu } 2680: 2643: 2418:ffden-2.phys.uaf.edu 2370:Ettingshausen effect 2359:Barocaloric material 2290: 2239: 2214: 2203:{\displaystyle \Pi } 2194: 2170: 2150: 2092: 2012: 1989: 1966: 1839: 1803: 1768: 1729: 1719:thermal conductivity 1701: 1592: 1561: 1499: 1422: 1397: 1374: 1313: 1289: 1182: 1150: 1123: 1100: 1073: 1046: 977: 888: 861: 841: 798: 778: 750: 704: 680: 631: 605: 581: 518: 411:Seebeck coefficients 319:generate electricity 197:Ettingshausen effect 65:improve this article 2617:1823AnP....73..430O 2583:From pp. 199–200: 2382:Thermogalvanic cell 2347:Seebeck coefficient 729:Seebeck coefficient 698:Seebeck coefficient 506:electromotive force 189:Seebeck coefficient 3140:Physical phenomena 2807:. eng.famu.fsu.edu 2686: 2666: 2605:Annalen der Physik 2393:Thermophotovoltaic 2328: 2326: 2257: 2220: 2200: 2180: 2156: 2134: 2062:thermodynamic work 2020: 1998: 1975: 1950: 1823: 1789: 1751: 1707: 1685: 1576: 1545: 1460: 1458: 1407: 1383: 1358: 1297: 1214:A typical Peltier 1197: 1163: 1136: 1106: 1086: 1059: 1030: 957: 938: 894: 867: 847: 822: 784: 764: 713: 686: 664: 611: 587: 565: 458: 434: 3150:Thermoelectricity 3145:Energy conversion 2575:Annales de chimie 2444:(5428): 703–706. 2432:Carnot efficiency 2325: 2279:antiferromagnetic 2271:Onsager relations 2223:{\displaystyle S} 2159:{\displaystyle T} 2123: 2068:Thomson relations 1861: 1855: 1780: 1748: 1742: 1679: 1673: 1604: 1573: 1457: 1325: 1160: 1133: 1109:{\displaystyle I} 1083: 1056: 1018: 1005: 989: 952: 897:{\displaystyle S} 870:{\displaystyle T} 850:{\displaystyle S} 787:{\displaystyle S} 689:{\displaystyle S} 643: 590:{\displaystyle V} 556: 288: 287: 141: 140: 133: 115: 16:(Redirected from 3157: 3121: 3093: 3072: 3045: 3025: 3014: 3012: 2999: 2950: 2922: 2902: 2885: 2884: 2861: 2855: 2854: 2822: 2816: 2815: 2813: 2812: 2800: 2789: 2788: 2770: 2764: 2763: 2761: 2759: 2738: 2730: 2724: 2723: 2710:Peltier (1834). 2707: 2701: 2695: 2693: 2692: 2687: 2675: 2673: 2672: 2667: 2662: 2637: 2631: 2628: 2599:Oersted (1823). 2591:thermélectriques 2582: 2563: 2557: 2556: 2534: 2528: 2527: 2525: 2496: 2490: 2489: 2487: 2486: 2481: 2473: 2467: 2461: 2428: 2422: 2421: 2410: 2337: 2335: 2334: 2329: 2327: 2324: 2316: 2308: 2299: 2298: 2266: 2264: 2263: 2258: 2229: 2227: 2226: 2221: 2209: 2207: 2206: 2201: 2189: 2187: 2186: 2181: 2179: 2178: 2165: 2163: 2162: 2157: 2143: 2141: 2140: 2135: 2124: 2122: 2114: 2106: 2101: 2100: 2029: 2027: 2026: 2021: 2019: 2007: 2005: 2004: 1999: 1984: 1982: 1981: 1976: 1959: 1957: 1956: 1951: 1937: 1926: 1922: 1921: 1916: 1915: 1895: 1863: 1862: 1859: 1857: 1856: 1848: 1832: 1830: 1829: 1824: 1816: 1798: 1796: 1795: 1790: 1782: 1781: 1773: 1760: 1758: 1757: 1752: 1750: 1749: 1746: 1744: 1743: 1735: 1716: 1714: 1713: 1708: 1694: 1692: 1691: 1686: 1681: 1680: 1677: 1675: 1674: 1666: 1659: 1606: 1605: 1597: 1585: 1583: 1582: 1577: 1575: 1574: 1566: 1554: 1552: 1551: 1546: 1523: 1506: 1469: 1467: 1466: 1461: 1459: 1456: 1448: 1440: 1431: 1430: 1416: 1414: 1413: 1408: 1406: 1405: 1392: 1390: 1389: 1384: 1367: 1365: 1364: 1359: 1345: 1340: 1339: 1327: 1326: 1318: 1306: 1304: 1303: 1298: 1296: 1206: 1204: 1203: 1198: 1172: 1170: 1169: 1164: 1162: 1161: 1158: 1145: 1143: 1142: 1137: 1135: 1134: 1131: 1115: 1113: 1112: 1107: 1095: 1093: 1092: 1087: 1085: 1084: 1081: 1068: 1066: 1065: 1060: 1058: 1057: 1054: 1039: 1037: 1036: 1031: 1020: 1019: 1016: 1007: 1006: 1003: 991: 990: 982: 953: 903: 901: 900: 895: 876: 874: 873: 868: 856: 854: 853: 848: 831: 829: 828: 823: 793: 791: 790: 785: 773: 771: 770: 765: 757: 722: 720: 719: 714: 695: 693: 692: 687: 673: 671: 670: 665: 645: 644: 641: 639: 620: 618: 617: 612: 596: 594: 593: 588: 574: 572: 571: 566: 558: 557: 554: 552: 525: 491:magnetic compass 476:Alessandro Volta 280: 273: 266: 191: 184: 179: 174: 155: 143: 136: 129: 125: 122: 116: 114: 73: 49: 41: 21: 3165: 3164: 3160: 3159: 3158: 3156: 3155: 3154: 3130: 3129: 3111: 3101: 3096: 3075: 3061: 3048: 3042: 3017: 3010:math-ph/0307038 3002: 2988: 2963: 2959: 2957:Further reading 2954: 2953: 2908: 2903: 2899: 2894: 2889: 2888: 2881: 2864: 2862: 2858: 2824: 2823: 2819: 2810: 2808: 2802: 2801: 2792: 2785: 2772: 2771: 2767: 2757: 2755: 2732: 2731: 2727: 2709: 2708: 2704: 2678: 2677: 2641: 2640: 2638: 2634: 2598: 2569:Œrsted (1823). 2568: 2564: 2560: 2553: 2536: 2535: 2531: 2498: 2497: 2493: 2484: 2482: 2479: 2475: 2474: 2470: 2435: 2429: 2425: 2412: 2411: 2407: 2402: 2376:Pyroelectricity 2355: 2317: 2309: 2288: 2287: 2237: 2236: 2212: 2211: 2192: 2191: 2168: 2167: 2148: 2147: 2115: 2107: 2090: 2089: 2080: 2070: 2010: 2009: 1987: 1986: 1964: 1963: 1904: 1903: 1899: 1845: 1837: 1836: 1801: 1800: 1766: 1765: 1732: 1727: 1726: 1699: 1698: 1663: 1590: 1589: 1559: 1558: 1497: 1496: 1486: 1480: 1449: 1441: 1420: 1419: 1395: 1394: 1372: 1371: 1311: 1310: 1287: 1286: 1274: 1262:thermal cyclers 1235: 1229: 1180: 1179: 1153: 1148: 1147: 1126: 1121: 1120: 1098: 1097: 1076: 1071: 1070: 1049: 1044: 1043: 1011: 998: 975: 974: 940: 927: 886: 885: 859: 858: 839: 838: 796: 795: 776: 775: 748: 747: 737: 702: 701: 678: 677: 634: 629: 628: 603: 602: 579: 578: 547: 516: 515: 510:current density 419: 384:charge carriers 376: 284: 255: 254: 215: 207: 206: 187: 182: 177: 172: 163: 137: 126: 120: 117: 74: 72: 62: 50: 39: 28: 23: 22: 15: 12: 11: 5: 3163: 3161: 3153: 3152: 3147: 3142: 3132: 3131: 3128: 3127: 3122: 3109: 3100: 3099:External links 3097: 3095: 3094: 3073: 3059: 3053:. Infosearch. 3046: 3040: 3015: 3000: 2986: 2960: 2958: 2955: 2952: 2951: 2944: 2943: 2927: 2917:(in Italian). 2896: 2895: 2893: 2890: 2887: 2886: 2879: 2856: 2817: 2790: 2783: 2765: 2725: 2702: 2685: 2665: 2661: 2657: 2654: 2651: 2648: 2632: 2630: 2629: 2611:(4): 430–432. 2596: 2558: 2551: 2529: 2491: 2468: 2423: 2404: 2403: 2401: 2398: 2397: 2396: 2390: 2385: 2379: 2373: 2367: 2361: 2354: 2351: 2323: 2320: 2315: 2312: 2305: 2302: 2297: 2256: 2253: 2250: 2247: 2244: 2219: 2199: 2177: 2155: 2133: 2130: 2127: 2121: 2118: 2113: 2110: 2104: 2099: 2069: 2066: 2018: 1997: 1994: 1974: 1971: 1949: 1946: 1943: 1940: 1936: 1932: 1929: 1925: 1920: 1914: 1911: 1907: 1902: 1898: 1894: 1890: 1887: 1884: 1881: 1878: 1875: 1872: 1869: 1866: 1854: 1851: 1844: 1822: 1819: 1815: 1811: 1808: 1788: 1785: 1779: 1776: 1741: 1738: 1706: 1684: 1672: 1669: 1662: 1658: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1603: 1600: 1572: 1569: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1522: 1518: 1515: 1512: 1509: 1505: 1479: 1476: 1455: 1452: 1447: 1444: 1437: 1434: 1429: 1404: 1382: 1379: 1357: 1354: 1351: 1348: 1344: 1338: 1333: 1330: 1324: 1321: 1295: 1279:Thomson effect 1273: 1272:Thomson effect 1270: 1231:Main article: 1228: 1225: 1196: 1193: 1190: 1187: 1156: 1129: 1105: 1079: 1052: 1029: 1026: 1023: 1014: 1010: 1001: 997: 994: 988: 985: 965:Peltier effect 926: 925:Peltier effect 923: 893: 866: 846: 821: 818: 815: 812: 809: 806: 803: 783: 763: 760: 756: 736: 733: 712: 709: 685: 663: 660: 657: 654: 651: 648: 638: 610: 586: 564: 561: 551: 546: 543: 540: 537: 534: 531: 528: 524: 462:Seebeck effect 426:Seebeck effect 418: 417:Seebeck effect 415: 399:Semiconductors 388:kinetic energy 375: 372: 334:Thomson effect 330:Peltier effect 326:Seebeck effect 286: 285: 283: 282: 275: 268: 260: 257: 256: 253: 252: 247: 242: 237: 232: 227: 222: 216: 213: 212: 209: 208: 205: 204: 199: 194: 193: 192: 185: 183:Thomson effect 180: 178:Peltier effect 175: 173:Seebeck effect 164: 161: 160: 157: 156: 148: 147: 139: 138: 53: 51: 44: 26: 24: 18:Seebeck effect 14: 13: 10: 9: 6: 4: 3: 2: 3162: 3151: 3148: 3146: 3143: 3141: 3138: 3137: 3135: 3126: 3123: 3119: 3115: 3110: 3108: 3107: 3103: 3102: 3098: 3091: 3087: 3083: 3079: 3074: 3070: 3066: 3062: 3060:0-85086-039-3 3056: 3052: 3047: 3043: 3041:0-442-25778-3 3037: 3033: 3029: 3024: 3023: 3016: 3011: 3006: 3001: 2997: 2993: 2989: 2987:0-8493-2264-2 2983: 2979: 2975: 2971: 2967: 2962: 2961: 2956: 2948: 2942: 2938: 2937: 2932: 2928: 2926: 2920: 2916: 2912: 2907: 2906: 2901: 2898: 2891: 2882: 2880:9781420038903 2876: 2872: 2868: 2860: 2857: 2852: 2848: 2844: 2840: 2836: 2832: 2828: 2821: 2818: 2806: 2799: 2797: 2795: 2791: 2786: 2780: 2776: 2769: 2766: 2754: 2750: 2746: 2742: 2737: 2729: 2726: 2721: 2718:(in French). 2717: 2713: 2706: 2703: 2699: 2683: 2663: 2659: 2655: 2652: 2649: 2646: 2636: 2633: 2626: 2622: 2618: 2614: 2610: 2607:(in German). 2606: 2602: 2597: 2594: 2590: 2589:ou peut-être 2586: 2580: 2576: 2572: 2567: 2566: 2562: 2559: 2554: 2552:9783527413379 2548: 2544: 2540: 2533: 2530: 2524: 2519: 2515: 2511: 2507: 2503: 2495: 2492: 2478: 2472: 2469: 2465: 2459: 2455: 2451: 2447: 2443: 2439: 2433: 2427: 2424: 2419: 2415: 2409: 2406: 2399: 2394: 2391: 2389: 2386: 2383: 2380: 2377: 2374: 2371: 2368: 2365: 2364:Nernst effect 2362: 2360: 2357: 2356: 2352: 2350: 2348: 2342: 2338: 2321: 2318: 2313: 2310: 2303: 2300: 2285: 2282: 2280: 2276: 2275:ferromagnetic 2272: 2267: 2254: 2251: 2248: 2245: 2234: 2231: 2217: 2153: 2144: 2131: 2128: 2125: 2119: 2116: 2108: 2102: 2087: 2084: 2079: 2075: 2067: 2065: 2063: 2058: 2055: 2050: 2046: 2044: 2043:heat capacity 2040: 2036: 2031: 1995: 1972: 1960: 1947: 1944: 1938: 1930: 1927: 1923: 1912: 1909: 1905: 1900: 1896: 1888: 1882: 1876: 1870: 1864: 1852: 1849: 1842: 1834: 1820: 1817: 1809: 1786: 1783: 1777: 1774: 1762: 1739: 1736: 1724: 1720: 1704: 1695: 1682: 1670: 1667: 1660: 1646: 1643: 1637: 1631: 1625: 1619: 1613: 1607: 1601: 1598: 1587: 1570: 1567: 1555: 1542: 1536: 1530: 1527: 1524: 1516: 1510: 1507: 1494: 1492: 1491:Joule heating 1485: 1477: 1475: 1473: 1453: 1450: 1445: 1442: 1435: 1432: 1380: 1368: 1355: 1352: 1346: 1331: 1328: 1322: 1319: 1308: 1284: 1280: 1271: 1269: 1267: 1263: 1259: 1258:Joule heating 1254: 1252: 1251:dehumidifiers 1247: 1244: 1240: 1234: 1226: 1224: 1222: 1217: 1212: 1210: 1194: 1191: 1188: 1176: 1117: 1103: 1040: 1027: 1024: 1008: 992: 986: 983: 972: 970: 966: 962: 936: 931: 924: 922: 920: 915: 911: 909: 905: 891: 882: 878: 864: 844: 835: 819: 813: 810: 807: 804: 781: 761: 758: 745: 744:Thermocouples 741: 734: 732: 730: 724: 710: 699: 683: 674: 661: 658: 652: 649: 646: 626: 624: 621:is the local 608: 600: 597:is the local 584: 575: 562: 544: 541: 535: 529: 526: 513: 511: 507: 502: 500: 496: 492: 487: 485: 481: 480:Baltic German 477: 472: 467: 463: 455: 451: 447: 443: 438: 431: 427: 423: 416: 414: 412: 408: 404: 400: 396: 391: 389: 385: 381: 373: 371: 369: 365: 361: 360:Joule heating 357: 355: 351: 347: 346:Baltic German 343: 339: 335: 331: 327: 322: 320: 315: 313: 309: 305: 301: 297: 293: 281: 276: 274: 269: 267: 262: 261: 259: 258: 251: 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 217: 211: 210: 203: 202:Nernst effect 200: 198: 195: 190: 186: 181: 176: 171: 170: 169: 166: 165: 159: 158: 154: 150: 149: 144: 135: 132: 124: 121:November 2019 113: 110: 106: 103: 99: 96: 92: 89: 85: 82: –  81: 77: 76:Find sources: 70: 66: 60: 59: 54:This article 52: 48: 43: 42: 37: 33: 19: 3117: 3105: 3081: 3077: 3050: 3021: 2965: 2946: 2935: 2930: 2918: 2914: 2900: 2866: 2859: 2834: 2830: 2820: 2809:. Retrieved 2774: 2768: 2756:. Retrieved 2744: 2740: 2728: 2719: 2715: 2705: 2635: 2608: 2604: 2592: 2588: 2584: 2578: 2574: 2561: 2542: 2532: 2505: 2501: 2494: 2483:. Retrieved 2471: 2441: 2437: 2426: 2417: 2408: 2343: 2339: 2286: 2283: 2268: 2235: 2232: 2145: 2088: 2085: 2081: 2059: 2051: 2047: 2032: 1961: 1835: 1763: 1696: 1588: 1556: 1495: 1487: 1369: 1309: 1278: 1275: 1255: 1248: 1236: 1227:Applications 1213: 1118: 1041: 973: 964: 961:thermocouple 958: 912: 906: 879: 834:thermocouple 742: 738: 735:Applications 725: 675: 627: 623:conductivity 576: 514: 512:is given by 503: 488: 471:thermocouple 461: 459: 454:thermocouple 392: 377: 358: 337: 333: 329: 325: 323: 316: 304:thermocouple 291: 289: 225:Thermocouple 214:Applications 167: 127: 118: 108: 101: 94: 87: 75: 63:Please help 58:verification 55: 2941:see p. 202. 2925:see p. 139. 2837:: 123–171. 2698:Fermi level 2035:capacitance 1283:Lord Kelvin 908:Thermopiles 354:Lord Kelvin 312:transferred 296:temperature 3134:Categories 2921:: 132–144. 2811:2022-11-23 2784:0849301467 2758:7 February 2722:: 371–386. 2581:: 199–201. 2523:2262/98609 2508:: 100402. 2485:2024-08-13 2400:References 2388:Thermopile 2072:See also: 2039:inductance 1482:See also: 482:physicist 430:thermopile 364:conductive 348:physicist 230:Thermopile 162:Principles 91:newspapers 3069:600476276 2871:CRC Press 2851:120018011 2684:μ 2656:μ 2653:− 2243:Π 2198:Π 2126:− 2112:Π 2103:≡ 1993:∇ 1970:∇ 1942:∇ 1939:⋅ 1928:− 1910:− 1906:σ 1897:⋅ 1880:∇ 1877:κ 1871:⋅ 1868:∇ 1853:˙ 1843:− 1810:⋅ 1807:∇ 1778:˙ 1740:˙ 1705:κ 1671:˙ 1650:Π 1638:⋅ 1635:∇ 1632:− 1623:∇ 1620:κ 1614:⋅ 1611:∇ 1602:˙ 1571:˙ 1534:∇ 1528:− 1521:∇ 1517:− 1511:σ 1378:∇ 1350:∇ 1347:⋅ 1332:− 1323:˙ 1239:heat pump 1216:heat pump 1186:Π 1155:Π 1128:Π 1078:Π 1051:Π 1013:Π 1009:− 1000:Π 987:˙ 817:∇ 811:− 802:∇ 708:∇ 656:∇ 650:− 609:σ 539:∇ 536:− 530:σ 450:voltmeter 395:electrons 2996:70217582 2676:, where 2458:10426986 2353:See also 1175:back-EMF 380:gradient 2696:is the 2613:Bibcode 2438:Science 1717:is the 696:is the 599:voltage 464:is the 382:causes 300:voltage 105:scholar 3067:  3057:  3038:  2994:  2984:  2877:  2849:  2781:  2549:  2456:  2146:where 1697:where 1370:where 1042:where 676:where 601:, and 577:where 407:p-type 403:n-type 374:Origin 107:  100:  93:  86:  78:  3005:arXiv 2892:Notes 2847:S2CID 2565:See: 2480:(PDF) 1586:, is 1472:below 1470:(see 1209:below 1207:(see 442:doped 428:in a 112:JSTOR 98:books 3065:OCLC 3055:ISBN 3036:ISBN 2992:OCLC 2982:ISBN 2875:ISBN 2779:ISBN 2760:2022 2547:ISBN 2454:PMID 2076:and 2054:heat 2041:and 1799:and 1146:and 1069:and 857:-vs- 460:The 405:and 344:and 308:heat 290:The 84:news 34:and 3086:doi 3028:doi 2974:doi 2839:doi 2749:doi 2621:doi 2593:… " 2518:hdl 2510:doi 2446:doi 2442:285 1860:ext 1747:ext 1678:ext 1211:). 642:emf 555:emf 401:of 310:is 67:by 3136:: 3116:. 3080:. 3063:. 3034:. 2990:. 2980:. 2972:. 2968:. 2923:; 2873:. 2869:. 2845:. 2835:21 2833:. 2829:. 2793:^ 2743:. 2739:. 2720:56 2619:. 2609:73 2579:22 2516:. 2506:18 2504:. 2452:. 2440:. 2434:. 2416:. 2349:. 2277:, 2045:. 2037:, 413:. 356:. 3092:. 3088:: 3082:3 3071:. 3044:. 3030:: 3013:. 3007:: 2998:. 2976:: 2919:5 2883:. 2853:. 2841:: 2814:. 2787:. 2762:. 2751:: 2745:3 2700:. 2664:e 2660:/ 2650:= 2647:V 2627:. 2623:: 2615:: 2555:. 2526:. 2520:: 2512:: 2488:. 2466:. 2460:. 2448:: 2420:. 2322:T 2319:d 2314:S 2311:d 2304:T 2301:= 2296:K 2255:. 2252:S 2249:T 2246:= 2218:S 2176:K 2154:T 2132:, 2129:S 2120:T 2117:d 2109:d 2098:K 2017:J 1996:S 1973:S 1948:. 1945:S 1935:J 1931:T 1924:) 1919:J 1913:1 1901:( 1893:J 1889:+ 1886:) 1883:T 1874:( 1865:= 1850:q 1821:0 1818:= 1814:J 1787:0 1784:= 1775:e 1737:q 1683:, 1668:q 1661:+ 1657:J 1653:) 1647:+ 1644:V 1641:( 1629:) 1626:T 1617:( 1608:= 1599:e 1568:e 1543:. 1540:) 1537:T 1531:S 1525:V 1514:( 1508:= 1504:J 1454:T 1451:d 1446:S 1443:d 1436:T 1433:= 1428:K 1403:K 1381:T 1356:, 1353:T 1343:J 1337:K 1329:= 1320:q 1294:J 1195:S 1192:T 1189:= 1159:B 1132:A 1104:I 1082:B 1055:A 1028:, 1025:I 1022:) 1017:B 1004:A 996:( 993:= 984:Q 892:S 865:T 845:S 820:T 814:S 808:= 805:V 782:S 762:0 759:= 755:J 711:T 684:S 662:, 659:T 653:S 647:= 637:E 585:V 563:, 560:) 550:E 545:+ 542:V 533:( 527:= 523:J 456:. 279:e 272:t 265:v 134:) 128:( 123:) 119:( 109:· 102:· 95:· 88:· 61:. 38:. 20:)

Index

Seebeck effect
Thermoelectric materials
Thermoelectric cooling

verification
improve this article
adding citations to reliable sources
"Thermoelectric effect"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Thermoelectric effect
Seebeck coefficient
Ettingshausen effect
Nernst effect
Thermoelectric materials
Thermocouple
Thermopile
Thermoelectric cooling
Thermoelectric generator
Radioisotope thermoelectric generator
Automotive thermoelectric generator
v
t
e
temperature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.