Knowledge (XXG)

Selenium cycle

Source đź“ť

17: 1294: 649: 101: 806: 744:
processes. The first process is oxidation and methylation of inorganic and organic selenium by plant roots and microorganisms. The second process is biological mixing and associated oxidation of sediments from the burrowing of benthic invertebrates and feeding of fish and wildlife. The third
75:
Evidence for a selenium cycle is found through the study of selenium accumulator plants. These plants are found in semi-arid, seleniferous soils. The plants biosynthesize forms of organic selenium compounds and release the compounds into the soil when they decay. If the compounds were not
26:
Overview of selenium species, pathways and transformations in soil, water, atmosphere and their interfaces. Abiotic and biotic fluxes and transformations are indicated in italics at the corresponding arrows. Potential immobilization processes in soils are listed in the
745:
process is represented by physical movement and chemical oxidation from water circulation and mixing, such as current, wind, precipitation, and upwelling. The fourth process is from oxidation by plant photosynthesis.
701:
or sediments; or 3. it can remain in free solution. Over time, most of the selenium is taken in by organisms or bound to other solids. As the suspended material settles, the selenium accumulates in the top layer of
731:
by chemical or microbial activity in the water and sediment or by direct release from plants. Immobilization processes effectively remove selenium from the ecosystem, especially in slow-moving or still-water areas.
722:
or settling. After selenium is in the sediment, other chemical and microbial reduction may occur, causing insoluble organic, mineral, elemental, or adsorbed selenium. Some organic forms may be released into the
714:
Selenium can be removed from the ecosystem and bound in sediment through natural processes of chemical and microbial reduction of the selenate form to the selenite form. The reduction is followed by
680: 973: 920:
Lemly, A. Dennis (1999). "Selenium Transport and Bioaccumulation in Aquatic Ecosystems: A Proposal for Water Quality Criteria Based on Hydrological Units".
1208: 196: 189: 706:. Due to the dynamic flow in an aquatic ecosystem, selenium is usually only in the sediments temporarily before being cycled back into the system. 666: 1140: 632: 157: 1244: 1120: 966: 608: 228: 673: 1269: 265: 1318: 1297: 959: 653: 1003: 311: 1249: 1104: 333: 325: 238: 47:
form of the element and different organisms complete the cycle by oxidizing the reduced element to the initial state.
1237: 1232: 401: 396: 152: 76:
oxidized, then an increase in organic selenium would be seen, but selenium in these areas is mainly inorganic.
1171: 762:
Winkel, Lenny; Vriens, Bas; Jones, Gerrad; Schneider, Leila; Pilon-Smits, Elizabeth; Bañuelos, Gary (2015).
555: 1060: 505: 16: 1264: 248: 1279: 1183: 1013: 990: 982: 832: 588: 417: 169: 162: 92: 39:
similar to the cycles of carbon, nitrogen, and sulfur. Within the cycle, there are organisms which
1274: 1215: 576: 386: 277: 894: 856: 515: 52: 50:
In the selenium cycle it has been found that bacteria, fungi, and plants, especially species of
1323: 1259: 1227: 1161: 1008: 937: 882: 848: 795: 694: 545: 391: 243: 179: 1178: 1166: 1097: 1067: 929: 840: 785: 775: 698: 562: 550: 260: 123: 1198: 1156: 906: 719: 540: 495: 359: 342: 836: 1050: 1045: 1025: 1020: 790: 763: 728: 567: 465: 455: 450: 425: 364: 347: 223: 218: 210: 69: 61: 1312: 1254: 1040: 1035: 881:. United States: National Fisheries Contaminant Research Center, Columbia, MO (USA). 500: 490: 445: 440: 430: 378: 301: 233: 1087: 1082: 1055: 998: 860: 475: 460: 306: 272: 255: 147: 139: 1203: 1193: 1188: 1092: 741: 435: 352: 184: 174: 118: 110: 810: 100: 1072: 1030: 724: 715: 520: 485: 480: 470: 293: 764:"Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review" 1220: 1125: 613: 581: 941: 933: 852: 799: 72:
may be able to oxidize selenium of valence zero to selenium of valence +6.
703: 65: 57: 44: 36: 951: 740:
Selenium is made available to the food chain through four oxidation and
697:: 1. it can be absorbed or ingested by organisms; 2. it can bind with 805: 886: 844: 780: 1130: 622: 40: 15: 809:
Material was copied from this source, which is available under a
1135: 627: 955: 879:
Aquatic cycling of selenium: implications for fish and wildlife
811:
Creative Commons Attribution 4.0 International License
1149: 1113: 989: 823:Shrift, A. (1964). "A Selenium Cycle in Nature?". 693:There are three fates of dissolved selenium in an 56:, metabolize the most oxidized forms of selenium, 967: 674: 8: 974: 960: 952: 681: 667: 83: 789: 779: 718:to clay, reaction with iron species, and 754: 91: 922:Ecotoxicology and Environmental Safety 902: 892: 22:Selenium pathways and transformations 7: 872: 870: 589:Biogeochemical planetary boundaries 1245:Human impact on the nitrogen cycle 14: 877:Lemly, A.D.; Smith, G.L. (1988). 1293: 1292: 804: 648: 647: 99: 1: 1250:Lichens and nitrogen cycling 1105:Marine biogeochemical cycles 334:Marine biogeochemical cycles 68:. It is also thought that 1340: 1288: 35:is a biological cycle of 1238:Arctic methane emissions 1233:clathrate gun hypothesis 1004:carbonate–silicate cycle 710:Immobilization processes 402:Arctic methane emissions 397:clathrate gun hypothesis 312:Carbonate–silicate cycle 1270:Phosphorus assimilation 1172:environmental chemistry 556:environmental chemistry 934:10.1006/eesa.1998.1737 736:Mobilization processes 28: 1265:Nitrogen assimilation 983:Biogeochemical cycles 93:Biogeochemical cycles 19: 1319:Biogeochemical cycle 1280:Planetary boundaries 1184:carbon sequestration 1014:oceanic carbon cycle 239:nitrogen and lichens 1275:Sulfur assimilation 1216:Ocean acidification 837:1964Natur.201.1304S 831:(4926): 1304–1305. 577:Ocean acidification 387:Atmospheric methane 87:Part of a series on 80:Aquatic ecosystems 29: 1306: 1305: 1260:Nitrogen fixation 1228:Methane clathrate 1209:mycorrhizal fungi 1162:geochemical cycle 1009:deep carbon cycle 845:10.1038/2011304a0 781:10.3390/nu7064199 695:aquatic ecosystem 691: 690: 546:geochemical cycle 392:Methane clathrate 190:mycorrhizal fungi 180:deep carbon cycle 1331: 1296: 1295: 1179:Biosequestration 1167:chemical cycling 1098:deep water cycle 1068:Phosphorus cycle 976: 969: 962: 953: 946: 945: 917: 911: 910: 904: 900: 898: 890: 874: 865: 864: 820: 814: 808: 803: 793: 783: 774:(6): 4199–4239. 759: 699:suspended solids 683: 676: 669: 656: 651: 650: 563:Biosequestration 551:chemical cycling 261:Phosphorus cycle 124:deep water cycle 103: 84: 1339: 1338: 1334: 1333: 1332: 1330: 1329: 1328: 1309: 1308: 1307: 1302: 1284: 1199:biological pump 1157:Biogeochemistry 1145: 1114:Research groups 1109: 985: 980: 950: 949: 919: 918: 914: 901: 891: 876: 875: 868: 822: 821: 817: 761: 760: 756: 751: 738: 720:coprecipitation 712: 687: 646: 639: 638: 637: 618: 603: 602:Research groups 595: 594: 593: 572: 541:Biogeochemistry 535: 527: 526: 525: 420: 410: 409: 408: 381: 371: 370: 369: 360:Calcareous ooze 343:Biological pump 338: 328: 318: 317: 316: 296: 286: 285: 284: 213: 203: 202: 201: 142: 132: 131: 130: 113: 82: 25: 12: 11: 5: 1337: 1335: 1327: 1326: 1321: 1311: 1310: 1304: 1303: 1301: 1300: 1289: 1286: 1285: 1283: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1241: 1240: 1235: 1225: 1224: 1223: 1213: 1212: 1211: 1206: 1201: 1196: 1191: 1186: 1176: 1175: 1174: 1169: 1164: 1153: 1151: 1150:Related topics 1147: 1146: 1144: 1143: 1138: 1133: 1128: 1123: 1117: 1115: 1111: 1110: 1108: 1107: 1102: 1101: 1100: 1090: 1085: 1080: 1078:Selenium cycle 1075: 1070: 1065: 1064: 1063: 1053: 1051:Nutrient cycle 1048: 1046:Nitrogen cycle 1043: 1038: 1033: 1028: 1026:Hydrogen cycle 1023: 1021:Chlorine cycle 1018: 1017: 1016: 1011: 1006: 995: 993: 987: 986: 981: 979: 978: 971: 964: 956: 948: 947: 928:(2): 150–156. 912: 866: 815: 753: 752: 750: 747: 737: 734: 729:volatilization 711: 708: 689: 688: 686: 685: 678: 671: 663: 660: 659: 658: 657: 641: 640: 636: 635: 630: 625: 619: 617: 616: 611: 605: 604: 601: 600: 597: 596: 592: 591: 586: 585: 584: 573: 571: 570: 568:Deep biosphere 565: 560: 559: 558: 553: 548: 537: 536: 534:Related topics 533: 532: 529: 528: 524: 523: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 458: 453: 448: 443: 438: 433: 428: 422: 421: 416: 415: 412: 411: 407: 406: 405: 404: 399: 389: 383: 382: 377: 376: 373: 372: 368: 367: 365:Siliceous ooze 362: 357: 356: 355: 350: 348:microbial loop 339: 337: 336: 330: 329: 324: 323: 320: 319: 315: 314: 309: 304: 298: 297: 292: 291: 288: 287: 283: 282: 281: 280: 270: 269: 268: 258: 253: 252: 251: 246: 241: 236: 231: 224:Nitrogen cycle 221: 219:Hydrogen cycle 215: 214: 211:Nutrient cycle 209: 208: 205: 204: 200: 199: 197:Boreal forests 194: 193: 192: 187: 182: 177: 167: 166: 165: 160: 155: 144: 143: 138: 137: 134: 133: 129: 128: 127: 126: 115: 114: 109: 108: 105: 104: 96: 95: 89: 88: 81: 78: 70:microorganisms 33:selenium cycle 20: 13: 10: 9: 6: 4: 3: 2: 1336: 1325: 1322: 1320: 1317: 1316: 1314: 1299: 1291: 1290: 1287: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1255:Nitrification 1253: 1251: 1248: 1246: 1243: 1239: 1236: 1234: 1231: 1230: 1229: 1226: 1222: 1219: 1218: 1217: 1214: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1181: 1180: 1177: 1173: 1170: 1168: 1165: 1163: 1160: 1159: 1158: 1155: 1154: 1152: 1148: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1118: 1116: 1112: 1106: 1103: 1099: 1096: 1095: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1062: 1059: 1058: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1041:Mineral cycle 1039: 1037: 1036:Mercury cycle 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 1000: 997: 996: 994: 992: 988: 984: 977: 972: 970: 965: 963: 958: 957: 954: 943: 939: 935: 931: 927: 923: 916: 913: 908: 896: 888: 884: 880: 873: 871: 867: 862: 858: 854: 850: 846: 842: 838: 834: 830: 826: 819: 816: 812: 807: 801: 797: 792: 787: 782: 777: 773: 769: 765: 758: 755: 748: 746: 743: 735: 733: 730: 726: 721: 717: 709: 707: 705: 700: 696: 684: 679: 677: 672: 670: 665: 664: 662: 661: 655: 645: 644: 643: 642: 634: 631: 629: 626: 624: 621: 620: 615: 612: 610: 607: 606: 599: 598: 590: 587: 583: 580: 579: 578: 575: 574: 569: 566: 564: 561: 557: 554: 552: 549: 547: 544: 543: 542: 539: 538: 531: 530: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 427: 424: 423: 419: 414: 413: 403: 400: 398: 395: 394: 393: 390: 388: 385: 384: 380: 379:Methane cycle 375: 374: 366: 363: 361: 358: 354: 351: 349: 346: 345: 344: 341: 340: 335: 332: 331: 327: 322: 321: 313: 310: 308: 305: 303: 302:Calcium cycle 300: 299: 295: 290: 289: 279: 276: 275: 274: 271: 267: 264: 263: 262: 259: 257: 254: 250: 247: 245: 242: 240: 237: 235: 234:nitrification 232: 230: 227: 226: 225: 222: 220: 217: 216: 212: 207: 206: 198: 195: 191: 188: 186: 183: 181: 178: 176: 173: 172: 171: 170:Sequestration 168: 164: 161: 159: 156: 154: 151: 150: 149: 146: 145: 141: 136: 135: 125: 122: 121: 120: 117: 116: 112: 107: 106: 102: 98: 97: 94: 90: 86: 85: 79: 77: 73: 71: 67: 63: 59: 55: 54: 48: 46: 42: 38: 34: 23: 18: 1088:Sulfur cycle 1083:Silica cycle 1077: 1056:Oxygen cycle 999:Carbon cycle 925: 921: 915: 878: 828: 824: 818: 771: 767: 757: 739: 713: 692: 510: 506:ozone–oxygen 418:Other cycles 326:Marine cycle 307:Silica cycle 278:assimilation 273:Sulfur cycle 266:assimilation 256:Oxygen cycle 249:assimilation 229:human impact 140:Carbon cycle 74: 51: 49: 32: 30: 27:frame-inset. 21: 1204:viral shunt 1194:soil carbon 1189:carbon sink 1093:Water cycle 903:|work= 742:methylation 353:viral shunt 185:soil carbon 175:carbon sink 158:terrestrial 153:atmospheric 119:Water cycle 111:Water cycle 1313:Categories 1073:Rock cycle 1031:Iron cycle 749:References 725:atmosphere 716:adsorption 294:Rock cycle 53:Astragalus 1221:acid rain 1126:GEOTRACES 905:ignored ( 895:cite book 768:Nutrients 614:GEOTRACES 582:acid rain 496:manganese 43:the most 1324:Selenium 1298:Category 942:10051364 853:14151413 800:26035246 704:sediment 654:Category 516:vanadium 511:selenium 466:fluorine 456:chromium 451:chlorine 426:aluminum 244:fixation 66:selenide 62:selenite 58:selenate 45:oxidized 37:selenium 887:7253805 861:4169144 833:Bibcode 791:4488781 501:mercury 491:lithium 446:cadmium 441:bromine 431:arsenic 163:oceanic 24:  991:Cycles 940:  885:  859:  851:  825:Nature 798:  788:  652:  476:iodine 461:copper 148:Global 41:reduce 1141:SOLAS 1131:IMBER 1061:ozone 857:S2CID 727:from 633:SOLAS 623:IMBER 436:boron 64:, to 1136:NOBM 1121:DAAC 938:PMID 907:help 883:OSTI 849:PMID 796:PMID 628:NOBM 609:DAAC 521:zinc 486:lead 481:iron 471:gold 31:The 930:doi 841:doi 829:201 786:PMC 776:doi 60:or 1315:: 936:. 926:42 924:. 899:: 897:}} 893:{{ 869:^ 855:. 847:. 839:. 827:. 794:. 784:. 770:. 766:. 975:e 968:t 961:v 944:. 932:: 909:) 889:. 863:. 843:: 835:: 813:. 802:. 778:: 772:7 682:e 675:t 668:v

Index


selenium
reduce
oxidized
Astragalus
selenate
selenite
selenide
microorganisms
Biogeochemical cycles

Water cycle
Water cycle
deep water cycle
Carbon cycle
Global
atmospheric
terrestrial
oceanic
Sequestration
carbon sink
deep carbon cycle
soil carbon
mycorrhizal fungi
Boreal forests
Nutrient cycle
Hydrogen cycle
Nitrogen cycle
human impact
nitrification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑