Knowledge

Wedderburn–Artin theorem

Source 📝

963: 757: 1229: 2113: 549: 827: 1532: 838: 1282: 1118: 642: 1352: 1010: 1811: 1642: 238: 1602: 1126: 1559: 1068: 1037: 630: 579: 440: 2087: 1851: 1831: 1773: 1753: 1733: 1713: 1689: 1662: 1462: 1407: 1302: 599: 468: 413: 393: 2008: 476: 765: 2029: 2152: 1370:
Since a finite-dimensional algebra over a field is Artinian, the Wedderburn–Artin theorem implies that every finite-dimensional
1471: 2059: 958:{\displaystyle \mathrm {End} {\big (}I_{i}^{\oplus n_{i}}{\big )}\;\cong \;M_{n_{i}}{\big (}\mathrm {End} (I_{i}){\big )}} 752:{\displaystyle \mathrm {End} (R_{R})\;\cong \;\bigoplus _{i=1}^{m}\mathrm {End} {\big (}I_{i}^{\oplus n_{i}}{\big )}} 1433: 1237: 1073: 1918:. For Artinian rings, the two notions are equivalent, so "Artinian" is included here to eliminate that ambiguity. 1355: 1872: 1311: 971: 1668: 326: 39: 1778: 1607: 193: 1862: 830: 307: 1877: 447: 273: 1564: 2046: 369: 47: 2000: 1667:
Furthermore, the Wedderburn–Artin theorem reduces the problem of classifying finite-dimensional
1224:{\displaystyle R\;\cong \;\bigoplus _{i=1}^{m}M_{n_{i}}{\big (}\mathrm {End} (I_{i}){\big )}\,.} 2078: 2004: 1887: 1418: 1436:
is the field itself, the Wedderburn–Artin theorem has strong consequences in this case. Let
2130: 2122: 2096: 2038: 1915: 1305: 1040: 299: 55: 1537: 1046: 1015: 608: 557: 418: 2134: 1914:. However, some authors use "semisimple" differently, to mean that the ring has a trivial 1907: 1441: 159: 43: 1993: 1836: 1816: 1758: 1738: 1718: 1698: 1674: 1647: 1447: 1392: 1371: 1287: 584: 453: 398: 378: 353: 2146: 1911: 1426: 1359: 443: 372:
of the Wedderburn–Artin theorem. A common modern one takes the following approach.
241: 132: 117: 84: 1354:, but the proof would still go through. To see this proof in a larger context, see 1867: 633: 17: 1382: 357: 188: 128: 113: 80: 2108: 1882: 1422: 2100: 272:
There is also a version of the Wedderburn–Artin theorem for algebras over a
1444:
that is a finite-dimensional algebra over an algebraically closed field
2126: 2050: 544:{\displaystyle R_{R}\;\cong \;\bigoplus _{i=1}^{m}I_{i}^{\oplus n_{i}}} 265:, both of which are uniquely determined up to permutation of the index 108:, both of which are uniquely determined up to permutation of the index 31: 1755:. It implies that any finite-dimensional central simple algebra over 2082: 2042: 2114:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
1425:
later generalized this result to the case of simple left or right
822:{\displaystyle \mathrm {End} {\big (}I_{i}^{\oplus n_{i}}{\big )}} 2027:
Henderson, D.W. (1965). "A short proof of Wedderburn's theorem".
340:
is a finite-dimensional simple algebra over a division ring
1432:
Since the only finite-dimensional division algebra over an
50:. The theorem states that an (Artinian) semisimple ring 1527:{\displaystyle \textstyle \prod _{i=1}^{r}M_{n_{i}}(k)} 1833:
is a finite-dimensional central division algebra over
1782: 1475: 1839: 1819: 1781: 1761: 1741: 1721: 1701: 1677: 1650: 1610: 1567: 1540: 1474: 1450: 1395: 1314: 1290: 1240: 1129: 1076: 1049: 1018: 974: 841: 768: 645: 611: 587: 560: 479: 456: 421: 401: 381: 196: 1937: 1935: 1358:. For the proof of an important special case, see 1992: 1845: 1825: 1805: 1767: 1747: 1727: 1707: 1683: 1656: 1636: 1596: 1553: 1526: 1456: 1401: 1346: 1296: 1276: 1223: 1112: 1062: 1031: 1004: 957: 821: 751: 624: 593: 573: 543: 462: 434: 407: 387: 232: 2111:(1927). "Zur Theorie der hyperkomplexen Zahlen". 1691:to the problem of classifying finite-dimensional 356:are finite-dimensional simple algebras over the 162:. Then the Wedderburn–Artin theorem states that 27:Classification of semi-simple rings and algebras 2060:"A short proof of the Wedderburn–Artin theorem" 298:in the above statement is a finite-dimensional 2088:Proceedings of the London Mathematical Society 1385:over some finite-dimensional division algebra 1212: 1178: 950: 916: 887: 855: 814: 782: 744: 712: 8: 1277:{\displaystyle R\cong \mathrm {End} (R_{R})} 1113:{\displaystyle R\cong \mathrm {End} (R_{R})} 166:is isomorphic to a product of finitely many 1417:are uniquely determined. This was shown by 1995:Introductory Lectures on Rings and Modules 1137: 1133: 896: 892: 677: 673: 494: 490: 1963: 1952: 1838: 1818: 1787: 1780: 1760: 1740: 1720: 1700: 1676: 1649: 1628: 1615: 1609: 1577: 1572: 1566: 1545: 1539: 1506: 1501: 1491: 1480: 1473: 1449: 1394: 1332: 1330: 1315: 1313: 1289: 1265: 1247: 1239: 1217: 1211: 1210: 1201: 1183: 1177: 1176: 1168: 1163: 1153: 1142: 1128: 1101: 1083: 1075: 1054: 1048: 1023: 1017: 993: 975: 973: 949: 948: 939: 921: 915: 914: 906: 901: 886: 885: 877: 869: 864: 854: 853: 842: 840: 813: 812: 804: 796: 791: 781: 780: 769: 767: 743: 742: 734: 726: 721: 711: 710: 699: 693: 682: 664: 646: 644: 616: 610: 586: 565: 559: 533: 525: 520: 510: 499: 484: 478: 455: 426: 420: 400: 380: 221: 206: 201: 195: 2020:Basic Algebra: Groups, Rings, and Fields 581:are mutually nonisomorphic simple right 442:is isomorphic to a finite direct sum of 1931: 1899: 1347:{\displaystyle \mathrm {End} ({}_{R}R)} 1999:. Cambridge University Press. p.  1941: 352:. For example, matrix rings over the 1005:{\displaystyle \mathrm {End} (I_{i})} 446:(which are the same as minimal right 7: 1974: 1806:{\displaystyle \textstyle M_{n}(D)} 1234:Here we used right modules because 605:th one appearing with multiplicity 283:is a finite-dimensional semisimple 1775:is isomorphic to a matrix algebra 1715:: that is, division algebras over 1322: 1319: 1316: 1254: 1251: 1248: 1190: 1187: 1184: 1090: 1087: 1084: 982: 979: 976: 928: 925: 922: 849: 846: 843: 776: 773: 770: 706: 703: 700: 653: 650: 647: 25: 2030:The American Mathematical Monthly 1637:{\displaystyle n_{i}\times n_{i}} 1374:over a field is isomorphic to an 632:. This gives an isomorphism of 233:{\displaystyle M_{n_{i}}(D_{i})} 2058:Nicholson, William K. (1993). 1799: 1793: 1591: 1585: 1520: 1514: 1341: 1326: 1271: 1258: 1207: 1194: 1107: 1094: 999: 986: 945: 932: 670: 657: 395:is semisimple. Then the right 227: 214: 1: 1906:By the definition used here, 470:). Write this direct sum as 1597:{\displaystyle M_{n_{i}}(k)} 968:where the endomorphism ring 1304:would be isomorphic to the 2169: 1561:are positive integers and 1434:algebraically closed field 1284:; if we used left modules 2083:"On Hypercomplex Numbers" 1356:Decomposition of a module 348:need not be contained in 146:are uniquely determined. 1991:Beachy, John A. (1999). 1873:Jacobson density theorem 36:Wedderburn–Artin theorem 2153:Theorems in ring theory 1695:division algebras over 1669:central simple algebras 2101:10.1112/plms/s2-6.1.77 1847: 1827: 1807: 1769: 1749: 1729: 1709: 1685: 1658: 1638: 1598: 1555: 1528: 1496: 1458: 1403: 1348: 1298: 1278: 1225: 1158: 1114: 1064: 1039:is a division ring by 1033: 1006: 959: 823: 753: 698: 626: 595: 575: 545: 515: 464: 436: 409: 389: 234: 112:. In particular, any 40:classification theorem 1848: 1828: 1808: 1770: 1750: 1730: 1710: 1686: 1659: 1639: 1599: 1556: 1554:{\displaystyle n_{i}} 1529: 1476: 1459: 1404: 1349: 1299: 1279: 1226: 1138: 1115: 1065: 1063:{\displaystyle I_{i}} 1034: 1032:{\displaystyle I_{i}} 1007: 960: 824: 754: 678: 627: 625:{\displaystyle n_{i}} 596: 576: 574:{\displaystyle I_{i}} 546: 495: 465: 437: 435:{\displaystyle R_{R}} 410: 390: 235: 2018:Cohn, P. M. (2003). 1837: 1817: 1779: 1759: 1739: 1719: 1699: 1675: 1648: 1608: 1565: 1538: 1472: 1468:is a finite product 1448: 1393: 1360:Simple Artinian ring 1312: 1288: 1238: 1127: 1074: 1047: 1016: 972: 839: 766: 762:and we can identify 643: 609: 585: 558: 477: 454: 419: 399: 379: 287:-algebra, then each 254:, for some integers 194: 120:is isomorphic to an 97:, for some integers 2067:New Zealand J. Math 2022:. pp. 137–139. 1878:Hypercomplex number 1070:is simple. Since 884: 811: 741: 540: 54:is isomorphic to a 48:semisimple algebras 18:Semisimple Artinian 2127:10.1007/BF02952526 2079:Wedderburn, J.H.M. 1910:are automatically 1843: 1823: 1803: 1802: 1765: 1745: 1725: 1705: 1681: 1654: 1634: 1604:is the algebra of 1594: 1551: 1524: 1523: 1454: 1399: 1344: 1294: 1274: 1221: 1110: 1060: 1029: 1002: 955: 860: 819: 787: 749: 717: 622: 591: 571: 541: 516: 460: 432: 405: 385: 368:There are various 230: 2010:978-0-521-64407-5 1888:Joseph Wedderburn 1863:Maschke's theorem 1846:{\displaystyle k} 1826:{\displaystyle D} 1768:{\displaystyle k} 1748:{\displaystyle k} 1728:{\displaystyle k} 1708:{\displaystyle k} 1684:{\displaystyle k} 1657:{\displaystyle k} 1457:{\displaystyle k} 1419:Joseph Wedderburn 1402:{\displaystyle k} 1297:{\displaystyle R} 594:{\displaystyle R} 463:{\displaystyle R} 408:{\displaystyle R} 388:{\displaystyle R} 375:Suppose the ring 58:of finitely many 16:(Redirected from 2160: 2138: 2104: 2074: 2064: 2054: 2023: 2014: 1998: 1977: 1972: 1966: 1961: 1955: 1950: 1944: 1939: 1919: 1916:Jacobson radical 1908:semisimple rings 1904: 1852: 1850: 1849: 1844: 1832: 1830: 1829: 1824: 1812: 1810: 1809: 1804: 1792: 1791: 1774: 1772: 1771: 1766: 1754: 1752: 1751: 1746: 1735:whose center is 1734: 1732: 1731: 1726: 1714: 1712: 1711: 1706: 1690: 1688: 1687: 1682: 1663: 1661: 1660: 1655: 1643: 1641: 1640: 1635: 1633: 1632: 1620: 1619: 1603: 1601: 1600: 1595: 1584: 1583: 1582: 1581: 1560: 1558: 1557: 1552: 1550: 1549: 1533: 1531: 1530: 1525: 1513: 1512: 1511: 1510: 1495: 1490: 1467: 1463: 1461: 1460: 1455: 1439: 1408: 1406: 1405: 1400: 1353: 1351: 1350: 1345: 1337: 1336: 1331: 1325: 1306:opposite algebra 1303: 1301: 1300: 1295: 1283: 1281: 1280: 1275: 1270: 1269: 1257: 1230: 1228: 1227: 1222: 1216: 1215: 1206: 1205: 1193: 1182: 1181: 1175: 1174: 1173: 1172: 1157: 1152: 1119: 1117: 1116: 1111: 1106: 1105: 1093: 1069: 1067: 1066: 1061: 1059: 1058: 1038: 1036: 1035: 1030: 1028: 1027: 1011: 1009: 1008: 1003: 998: 997: 985: 964: 962: 961: 956: 954: 953: 944: 943: 931: 920: 919: 913: 912: 911: 910: 891: 890: 883: 882: 881: 868: 859: 858: 852: 828: 826: 825: 820: 818: 817: 810: 809: 808: 795: 786: 785: 779: 758: 756: 755: 750: 748: 747: 740: 739: 738: 725: 716: 715: 709: 697: 692: 669: 668: 656: 631: 629: 628: 623: 621: 620: 604: 600: 598: 597: 592: 580: 578: 577: 572: 570: 569: 550: 548: 547: 542: 539: 538: 537: 524: 514: 509: 489: 488: 469: 467: 466: 461: 441: 439: 438: 433: 431: 430: 414: 412: 411: 406: 394: 392: 391: 386: 339: 332: 327:finite extension 325:; it could be a 324: 320: 305: 300:division algebra 297: 286: 282: 278: 268: 264: 253: 239: 237: 236: 231: 226: 225: 213: 212: 211: 210: 187: 176: 165: 158:be a (Artinian) 157: 111: 107: 96: 79: 68: 44:semisimple rings 21: 2168: 2167: 2163: 2162: 2161: 2159: 2158: 2157: 2143: 2142: 2141: 2107: 2077: 2062: 2057: 2043:10.2307/2313499 2026: 2017: 2011: 1990: 1986: 1981: 1980: 1973: 1969: 1962: 1958: 1951: 1947: 1940: 1933: 1928: 1923: 1922: 1905: 1901: 1896: 1859: 1835: 1834: 1815: 1814: 1783: 1777: 1776: 1757: 1756: 1737: 1736: 1717: 1716: 1697: 1696: 1673: 1672: 1646: 1645: 1624: 1611: 1606: 1605: 1573: 1568: 1563: 1562: 1541: 1536: 1535: 1502: 1497: 1470: 1469: 1465: 1446: 1445: 1442:semisimple ring 1437: 1391: 1390: 1368: 1329: 1310: 1309: 1286: 1285: 1261: 1236: 1235: 1197: 1164: 1159: 1125: 1124: 1097: 1072: 1071: 1050: 1045: 1044: 1019: 1014: 1013: 989: 970: 969: 935: 902: 897: 873: 837: 836: 829:with a ring of 800: 764: 763: 730: 660: 641: 640: 612: 607: 606: 602: 583: 582: 561: 556: 555: 529: 480: 475: 474: 452: 451: 422: 417: 416: 397: 396: 377: 376: 366: 354:complex numbers 337: 330: 322: 319: 311: 303: 296: 288: 284: 280: 276: 266: 263: 255: 252: 244: 217: 202: 197: 192: 191: 186: 178: 175: 167: 163: 160:semisimple ring 155: 152: 109: 106: 98: 95: 87: 78: 70: 67: 59: 28: 23: 22: 15: 12: 11: 5: 2166: 2164: 2156: 2155: 2145: 2144: 2140: 2139: 2105: 2075: 2055: 2037:(4): 385–386. 2024: 2015: 2009: 1987: 1985: 1982: 1979: 1978: 1967: 1964:Nicholson 1993 1956: 1953:Henderson 1965 1945: 1930: 1929: 1927: 1924: 1921: 1920: 1912:Artinian rings 1898: 1897: 1895: 1892: 1891: 1890: 1885: 1880: 1875: 1870: 1865: 1858: 1855: 1842: 1822: 1801: 1798: 1795: 1790: 1786: 1764: 1744: 1724: 1704: 1680: 1653: 1644:matrices over 1631: 1627: 1623: 1618: 1614: 1593: 1590: 1587: 1580: 1576: 1571: 1548: 1544: 1522: 1519: 1516: 1509: 1505: 1500: 1494: 1489: 1486: 1483: 1479: 1453: 1427:Artinian rings 1398: 1372:simple algebra 1367: 1364: 1343: 1340: 1335: 1328: 1324: 1321: 1318: 1293: 1273: 1268: 1264: 1260: 1256: 1253: 1250: 1246: 1243: 1232: 1231: 1220: 1214: 1209: 1204: 1200: 1196: 1192: 1189: 1186: 1180: 1171: 1167: 1162: 1156: 1151: 1148: 1145: 1141: 1136: 1132: 1109: 1104: 1100: 1096: 1092: 1089: 1086: 1082: 1079: 1057: 1053: 1026: 1022: 1001: 996: 992: 988: 984: 981: 978: 966: 965: 952: 947: 942: 938: 934: 930: 927: 924: 918: 909: 905: 900: 895: 889: 880: 876: 872: 867: 863: 857: 851: 848: 845: 816: 807: 803: 799: 794: 790: 784: 778: 775: 772: 760: 759: 746: 737: 733: 729: 724: 720: 714: 708: 705: 702: 696: 691: 688: 685: 681: 676: 672: 667: 663: 659: 655: 652: 649: 619: 615: 601:-modules, the 590: 568: 564: 552: 551: 536: 532: 528: 523: 519: 513: 508: 505: 502: 498: 493: 487: 483: 459: 444:simple modules 429: 425: 404: 384: 365: 362: 315: 292: 259: 248: 242:division rings 229: 224: 220: 216: 209: 205: 200: 182: 171: 151: 148: 116:left or right 102: 91: 85:division rings 74: 63: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2165: 2154: 2151: 2150: 2148: 2136: 2132: 2128: 2124: 2120: 2116: 2115: 2110: 2106: 2102: 2098: 2094: 2090: 2089: 2084: 2080: 2076: 2072: 2068: 2061: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2031: 2025: 2021: 2016: 2012: 2006: 2002: 1997: 1996: 1989: 1988: 1983: 1976: 1971: 1968: 1965: 1960: 1957: 1954: 1949: 1946: 1943: 1938: 1936: 1932: 1925: 1917: 1913: 1909: 1903: 1900: 1893: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1860: 1856: 1854: 1840: 1820: 1796: 1788: 1784: 1762: 1742: 1722: 1702: 1694: 1678: 1671:over a field 1670: 1665: 1651: 1629: 1625: 1621: 1616: 1612: 1588: 1578: 1574: 1569: 1546: 1542: 1517: 1507: 1503: 1498: 1492: 1487: 1484: 1481: 1477: 1451: 1443: 1435: 1430: 1428: 1424: 1420: 1416: 1412: 1409:, where both 1396: 1388: 1384: 1381: 1377: 1373: 1365: 1363: 1361: 1357: 1338: 1333: 1307: 1291: 1266: 1262: 1244: 1241: 1218: 1202: 1198: 1169: 1165: 1160: 1154: 1149: 1146: 1143: 1139: 1134: 1130: 1123: 1122: 1121: 1102: 1098: 1080: 1077: 1055: 1051: 1042: 1041:Schur's lemma 1024: 1020: 994: 990: 940: 936: 907: 903: 898: 893: 878: 874: 870: 865: 861: 835: 834: 833: 832: 805: 801: 797: 792: 788: 735: 731: 727: 722: 718: 694: 689: 686: 683: 679: 674: 665: 661: 639: 638: 637: 635: 617: 613: 588: 566: 562: 534: 530: 526: 521: 517: 511: 506: 503: 500: 496: 491: 485: 481: 473: 472: 471: 457: 449: 445: 427: 423: 402: 382: 373: 371: 363: 361: 359: 355: 351: 347: 343: 336:Note that if 334: 328: 318: 314: 309: 301: 295: 291: 275: 270: 262: 258: 251: 247: 243: 222: 218: 207: 203: 198: 190: 185: 181: 174: 170: 161: 149: 147: 145: 141: 138:, where both 137: 134: 133:division ring 130: 127: 123: 119: 118:Artinian ring 115: 105: 101: 94: 90: 86: 82: 77: 73: 66: 62: 57: 53: 49: 45: 41: 37: 33: 19: 2118: 2112: 2092: 2086: 2070: 2066: 2034: 2028: 2019: 1994: 1970: 1959: 1948: 1902: 1868:Brauer group 1692: 1666: 1431: 1414: 1410: 1386: 1379: 1375: 1369: 1366:Consequences 1233: 1120:we conclude 967: 761: 634:endomorphism 553: 374: 367: 358:real numbers 349: 345: 341: 335: 321:need not be 316: 312: 293: 289: 271: 260: 256: 249: 245: 189:matrix rings 183: 179: 172: 168: 153: 143: 139: 135: 125: 121: 103: 99: 92: 88: 81:matrix rings 75: 71: 64: 60: 51: 35: 29: 2121:: 251–260. 1942:Beachy 1999 1383:matrix ring 129:matrix ring 2135:53.0114.03 2095:: 77–118. 1984:References 1883:Emil Artin 1534:where the 1423:Emil Artin 1043:, because 554:where the 2109:Artin, E. 1975:Cohn 2003 1926:Citations 1622:× 1478:∏ 1245:≅ 1140:⨁ 1135:≅ 1081:≅ 894:≅ 871:⊕ 798:⊕ 728:⊕ 680:⨁ 675:≅ 527:⊕ 497:⨁ 492:≅ 2147:Category 2081:(1908). 2073:: 83–86. 1857:See also 1464:. Then 831:matrices 415:-module 310:of each 2051:2313499 1693:central 306:. The 150:Theorem 131:over a 56:product 32:algebra 2133:  2049:  2007:  1813:where 636:rings 448:ideals 370:proofs 308:center 114:simple 34:, the 2063:(PDF) 2047:JSTOR 1894:Notes 1664:. 1440:be a 1389:over 364:Proof 302:over 279:. If 274:field 240:over 83:over 38:is a 2005:ISBN 1413:and 1378:-by- 177:-by- 154:Let 142:and 124:-by- 69:-by- 46:and 42:for 2131:JFM 2123:doi 2097:doi 2039:doi 2001:156 1429:. 1308:of 1012:of 450:of 329:of 269:. 30:In 2149:: 2129:. 2117:. 2091:. 2085:. 2071:22 2069:. 2065:. 2045:. 2035:72 2033:. 2003:. 1934:^ 1853:. 1421:. 1362:. 360:. 344:, 333:. 2137:. 2125:: 2119:5 2103:. 2099:: 2093:6 2053:. 2041:: 2013:. 1841:k 1821:D 1800:) 1797:D 1794:( 1789:n 1785:M 1763:k 1743:k 1723:k 1703:k 1679:k 1652:k 1630:i 1626:n 1617:i 1613:n 1592:) 1589:k 1586:( 1579:i 1575:n 1570:M 1547:i 1543:n 1521:) 1518:k 1515:( 1508:i 1504:n 1499:M 1493:r 1488:1 1485:= 1482:i 1466:R 1452:k 1438:R 1415:D 1411:n 1397:k 1387:D 1380:n 1376:n 1342:) 1339:R 1334:R 1327:( 1323:d 1320:n 1317:E 1292:R 1272:) 1267:R 1263:R 1259:( 1255:d 1252:n 1249:E 1242:R 1219:. 1213:) 1208:) 1203:i 1199:I 1195:( 1191:d 1188:n 1185:E 1179:( 1170:i 1166:n 1161:M 1155:m 1150:1 1147:= 1144:i 1131:R 1108:) 1103:R 1099:R 1095:( 1091:d 1088:n 1085:E 1078:R 1056:i 1052:I 1025:i 1021:I 1000:) 995:i 991:I 987:( 983:d 980:n 977:E 951:) 946:) 941:i 937:I 933:( 929:d 926:n 923:E 917:( 908:i 904:n 899:M 888:) 879:i 875:n 866:i 862:I 856:( 850:d 847:n 844:E 815:) 806:i 802:n 793:i 789:I 783:( 777:d 774:n 771:E 745:) 736:i 732:n 723:i 719:I 713:( 707:d 704:n 701:E 695:m 690:1 687:= 684:i 671:) 666:R 662:R 658:( 654:d 651:n 648:E 618:i 614:n 603:i 589:R 567:i 563:I 535:i 531:n 522:i 518:I 512:m 507:1 504:= 501:i 486:R 482:R 458:R 428:R 424:R 403:R 383:R 350:E 346:D 342:E 338:R 331:k 323:k 317:i 313:D 304:k 294:i 290:D 285:k 281:R 277:k 267:i 261:i 257:n 250:i 246:D 228:) 223:i 219:D 215:( 208:i 204:n 199:M 184:i 180:n 173:i 169:n 164:R 156:R 144:D 140:n 136:D 126:n 122:n 110:i 104:i 100:n 93:i 89:D 76:i 72:n 65:i 61:n 52:R 20:)

Index

Semisimple Artinian
algebra
classification theorem
semisimple rings
semisimple algebras
product
matrix rings
division rings
simple
Artinian ring
matrix ring
division ring
semisimple ring
matrix rings
division rings
field
division algebra
center
finite extension
complex numbers
real numbers
proofs
simple modules
ideals
endomorphism
matrices
Schur's lemma
opposite algebra
Decomposition of a module
Simple Artinian ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.