Knowledge

Short circuit ratio (electrical grid)

Source đź“ť

369:
the 69kV lines was disconnected, the SCR dropped to 2 or less, leading to unfavorable, poorly damped, or un-damped voltage oscillations that were documented by PMUs at the Point of Interconnection (POI) of the wind plant. After a thorough investigation, it was determined that the aggressive voltage control used by the WPP was not appropriate for a weak grid environment and was the primary cause of the oscillatory response. Due to the low short circuit level detected by the wind generator voltage controller and the high voltage control gain, the oscillation occurred. When compared to the normal grid with high SCR, the closed loop voltage control would have a faster response under weak grid conditions. To replicate the oscillatory response, the event was simulated using a detailed dynamic model representing the WPP.
1003: 1582: 337:, voltage-source-based converters or capacitor-commutated converters are utilized in applications with SCR near one. Failing to use these technologies will require special studies to determine the impact and take measures to prevent or minimize the adverse effects, as low levels of SCR can cause problems such as high over-voltages, low-frequency resonances, and instability in 381:. A point on a grid having a number of machines with an SCR above a number between 1 and 1.5 has less vulnerability to voltage instability. Hence, such a grid is known strong grid or power system. A power system (grid) having a lower SCR has more vulnerability to grid voltage instability. Hence such a grid or system is known as a weak grid or a weak power system. 318:
to perform effectively depends on the system's strength, which measures the system variables' sensitivity to disturbances. The short circuit ratio (SCR) is an indicator of the strength of a network bus about the rated power of a device and is frequently used as a measure of system strength. A higher
152:
power injection and consumption). On a simplified level, a high SCR indicates that the particular generator represents a small portion of the power available at the point of its connection to the grid, and therefore the generator problems cannot affect the grid in a significant way. SCMVA is defined
368:
in early 21st century provides a prime example of how the wind turbine's performance is affected by a weak system strength. The wind power plant, linked to the ERCOT grid through two 69kV transmission lines, worked efficiently when the SCR was around 4 during normal operations. However, when one of
351:
that arise from incorporating large-scale wind power into vulnerable systems are crucial issues that require attention. Some wind turbines have specific minimum system strength criteria. GE indicates that the standard parameters of their wind turbine model are appropriate for systems with a Short
352:
Circuit Ratio (SCR) of five or higher. However, if connecting to weaker systems, it is necessary to carry out further analysis to guarantee that the model parameters are adequately adjusted. Specifically designed control methods for wind turbines or dynamic reactive compensation devices, such as
319:
SCR value indicates a stronger system, meaning that the impact of disturbances on voltage and other variables will be minimized. A strong system is defined as having an SCR above three, and the SCRs of weak and very weak systems range between three and two and below two, respectively.
200:
Strong grids provide a reliable reference for power sources to synchronize. In a very stiff system the voltage does not change with variations of the power injected by a particular generator, making its control simpler. In a traditional grid dominated by
153:
as a product of the voltage before the 3LG fault and the current that would flow after the fault (this worst-case combination will not happen in practice, but provides a useful estimation of the capacity of the circuit). SCMVA is also called a
46:
at the location in the grid where some generator is connected to the power rating of the generator itself (GMW). Since the power that can be delivered by the grid varies by location, frequently a location is indicated, for example, at the
244:
the grid protection devices are designed to be triggered by a sufficient level of overcurrent. In a weak system the short circuit current might be hard to distinguish from a normal transient overcurrent encountered during the load
304:(SCRIF), have been proposed for the grids with multiple adjacent IBRs to avoid an overestimation of the grid strength (an IBR relies on grid strength to synchronize its operation and does not have much overcurrent capacity). 662: 193:
of the system as observed from these terminals (the strength is inversely proportional to the resistance). SCR and its variations provide a convenient way to calculate this impedance under normal or
139: 325:
often encounter issues related to SCR, particularly in renewable energy systems that use power converters to connect to power grids. When connecting HVDC/FACTs devices based on
237:
transients during the large load changes will cause large variations of the grid voltage, causing problems with the loads (e.g., some motors might not be able to start in the
854: 653: 625: 1527: 285:, for a relatively long time (minutes), while the component limitations of the IBRs result in overcurrent limits of less than 2 p.u. (usually 1.1-1.2 p.u.). 288:
The original SCR definition above was intended for a system with predominantly synchronous generation, so multiple alternative metrics, including
185:
as the generator's current injection varies. Therefore, the quantification of the system strength can be done through finding the equivalent (
753: 716: 589: 558: 634: 606: 1585: 20: 1424: 181:”). From the side of an electrical generator, the system strength is related to the changes of voltage the generator encounters on its 1532: 1002: 847: 1152: 765:"Grid Strengthening IBR: An Inverter-Based Resource Enhanced by a Co-Located Synchronous Condenser for High Overcurrent Capability" 314:
Integrating renewable energy sources often raises concerns about the system's strength. The ability of different components in a
1315: 1240: 1111: 807: 1487: 1419: 1409: 1285: 1185: 840: 322: 194: 57: 548: 1340: 1300: 877: 307:
Henderson et al. argue that in case of IBRs the SCR and system strength are in fact decoupled and propose a new metric,
1567: 1562: 1280: 1255: 1245: 1221: 1216: 922: 663:"Grid Strength Impedance Metric: An Alternative to SCR for Evaluating System Strength in Converter Dominated Systems" 260:
might be needed to energize the system components. For example, if some loads in a weak system remain connected, an
1606: 1482: 1200: 1170: 947: 1537: 1026: 987: 326: 1611: 1512: 1320: 1260: 917: 205:, a strong grid with SCR greater than 3.0 will have the desired voltage stability and active power reserves. A 347:
are commonly linked to less robust network sections away from the main power consumption areas. Problems with
186: 177:) is used to describe the resiliency of the grid to the small changes in the vicinity of the grid location (“ 48: 1451: 1441: 1431: 274: 261: 230: 1372: 1235: 1018: 907: 182: 1507: 1275: 1270: 1250: 385: 202: 732:
Zhang, Yang; Huang, Shun-Hsien Fred; Schmall, John; Conto, Jose; Billo, Jeffrey; Rehman, Ehsan (2014).
348: 233:. Lack of overcurrent capability (low SCR) in a weak grid creates a multitude of problems, including: 1101: 863: 190: 1472: 1305: 1205: 1180: 1133: 942: 932: 897: 277:(IBRs) reduced the short circuit level: a typical synchronous generator can deliver a significant 1346: 957: 794: 693: 647: 619: 1497: 1377: 982: 786: 749: 712: 706: 685: 585: 554: 144:
SCR is used to quantify the system strength of the grid (its ability to deal with changes in
1446: 1387: 1091: 1086: 1063: 972: 912: 776: 741: 677: 43: 1477: 1436: 1414: 1295: 1265: 1230: 1190: 992: 378: 338: 330: 282: 210: 27: 661:
Henderson, Callum; Egea-Alvarez, Agusti; Kneuppel, Thyge; Yang, Guangya; Xu, Lie (2023).
161:), although sometimes the term SCL is used to designate just the short-circuit current. 1502: 1492: 1290: 902: 257: 149: 39: 1600: 1522: 1310: 1195: 1175: 1106: 1096: 1053: 937: 892: 798: 733: 697: 1542: 1517: 1382: 1351: 1165: 967: 333:, particular technologies must be employed to overcome SCR of less than three. For 315: 253: 238: 145: 197:
conditions (these estimates are not intended for the actual short-circuit state).
579: 1367: 1335: 1128: 1116: 1036: 962: 952: 882: 450: 448: 446: 444: 442: 278: 249: 226: 781: 764: 745: 681: 1330: 1325: 1138: 1121: 977: 344: 790: 689: 1046: 1041: 927: 887: 636:
Integrating Inverter-Based Resources into Low Short Circuit Strength Systems
1160: 1081: 1071: 832: 353: 808:"Challenges and Possible Solutions for the Power System of the Future" 1076: 775:. Institute of Electrical and Electronics Engineers (IEEE): 535–548. 676:. Institute of Electrical and Electronics Engineers (IEEE): 386–396. 486: 484: 482: 530: 528: 734:"Evaluating system strength for large-scale wind plant integration" 818: 365: 454: 1031: 738:
2014 IEEE PES General Meeting | Conference & Exposition
334: 836: 584:. EPRI power system engineering series. McGraw-Hill Education. 433: 705:
Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. (2001).
503: 501: 499: 534: 490: 469: 467: 465: 463: 60: 134:{\displaystyle SCR_{POI}={\frac {SCMVA_{POI}}{GMW}}} 1551: 1461: 1398: 1360: 1214: 1151: 1062: 1017: 1010: 870: 405: 403: 401: 213:and control problems. A grid with SCR below 2.0 is 209:(with SCR values between 2.0 and 3.0) can exhibit 133: 550:HVDC for Grid Services in Electric Power Systems 421: 377:The SCR can be calculated for each point on an 356:, are required to ensure optimal performance. 848: 384:Grid strength can be increased by installing 8: 806:Ramasubramanian, Deepak (November 8, 2019). 578:Kundur, P.; Balu, N.J.; Lauby, M.G. (1994). 302:short circuit ratio with interaction factors 763:Li, Haiguo; Nie, Cheng; Wang, Fred (2022). 1014: 855: 841: 833: 652:: CS1 maint: location missing publisher ( 624:: CS1 maint: location missing publisher ( 608:Short-Circuit Modeling and System Strength 780: 507: 105: 86: 71: 59: 229:capabilities that are essential for the 225:Grid strength is also important for its 397: 769:IEEE Open Journal of Power Electronics 645: 617: 298:equivalent circuit short circuit ratio 7: 519: 473: 409: 269:Presence of inverter-based resources 38:) is the ratio of the short circuit 21:Short circuit ratio (disambiguation) 670:IEEE Transactions on Power Delivery 1533:Renewable energy commercialization 581:Power System Stability and Control 14: 44:line-line-line-ground (3LG) fault 1581: 1580: 1001: 16:Term in electrical engineering 1: 1528:Renewable Energy Certificates 1488:Cost of electricity by source 1410:Arc-fault circuit interrupter 1286:High-voltage shore connection 323:Power electronic applications 294:composite short circuit ratio 1543:Spark/Dark/Quark/Bark spread 1341:Transmission system operator 1301:Mains electricity by country 878:Automatic generation control 290:weighted short circuit ratio 1568:List of electricity sectors 1563:Electric energy consumption 1281:High-voltage direct current 1256:Electric power transmission 1246:Electric power distribution 923:Energy return on investment 547:Jang, Gilsoo (2019-11-18). 264:might not be able to start. 1628: 1483:Carbon offsets and credits 1201:Three-phase electric power 782:10.1109/ojpel.2022.3194849 746:10.1109/pesgm.2014.6939043 682:10.1109/tpwrd.2022.3233455 18: 1576: 1538:Renewable Energy Payments 1027:Fossil fuel power station 999: 711:. John Wiley & Sons. 327:current source converters 273:Large penetration of the 221:Importance of overcurrent 42:(SCMVA) in the case of a 1321:Single-wire earth return 1261:Electrical busbar system 918:Energy demand management 275:inverter-based resources 49:point of interconnection 1452:Residual-current device 1442:Power system protection 1432:Generator interlock kit 508:Li, Nie & Wang 2022 309:grid strength impedance 262:inverter-based resource 231:power system operations 1236:Distributed generation 908:Electric power quality 740:. IEEE. pp. 1–5. 633:NERC (December 2017). 605:NERC (February 2018). 386:synchronous condensers 203:synchronous generators 135: 1508:Fossil fuel phase-out 1276:Electricity retailing 1271:Electrical substation 1251:Electric power system 455:Henderson et al. 2023 136: 864:Electricity delivery 708:Wind Energy Handbook 422:Ramasubramanian 2019 191:electrical impedance 58: 19:For other uses, see 1473:Availability factor 1425:Sulfur hexafluoride 1306:Overhead power line 1206:Virtual power plant 1181:Induction generator 1134:Sustainable biofuel 943:Home energy storage 933:Grid energy storage 898:Droop speed control 211:voltage instability 155:short circuit level 32:short circuit ratio 1347:Transmission tower 958:Nameplate capacity 434:Burton et al. 2001 252:operation after a 131: 1607:Power engineering 1594: 1593: 1498:Environmental tax 1378:Cascading failure 1147: 1146: 983:Utility frequency 755:978-1-4799-6415-4 718:978-0-471-48997-9 591:978-0-07-035958-1 560:978-3-03921-762-5 535:Zhang et al. 2014 491:Zhang et al. 2014 364:An experience at 349:voltage stability 129: 1619: 1584: 1583: 1493:Energy subsidies 1447:Protective relay 1388:Rolling blackout 1015: 1005: 973:Power-flow study 913:Electrical fault 857: 850: 843: 834: 829: 827: 825: 812: 802: 784: 759: 728: 726: 725: 701: 667: 657: 651: 643: 641: 629: 623: 615: 613: 601: 599: 598: 565: 564: 544: 538: 532: 523: 517: 511: 505: 494: 488: 477: 471: 458: 452: 437: 431: 425: 419: 413: 407: 140: 138: 137: 132: 130: 128: 117: 116: 115: 87: 82: 81: 1627: 1626: 1622: 1621: 1620: 1618: 1617: 1616: 1612:Electrical grid 1597: 1596: 1595: 1590: 1572: 1556: 1554: 1547: 1478:Capacity factor 1466: 1464: 1457: 1437:Numerical relay 1415:Circuit breaker 1403: 1401: 1394: 1356: 1296:Load management 1266:Electrical grid 1231:Demand response 1224: 1219: 1210: 1191:Microgeneration 1143: 1058: 1006: 997: 993:Vehicle-to-grid 866: 861: 823: 821: 810: 805: 762: 756: 731: 723: 721: 719: 704: 665: 660: 644: 639: 632: 616: 611: 604: 596: 594: 592: 577: 574: 569: 568: 561: 546: 545: 541: 533: 526: 518: 514: 506: 497: 489: 480: 472: 461: 453: 440: 432: 428: 420: 416: 408: 399: 394: 379:electrical grid 375: 362: 339:control systems 331:weak AC systems 271: 223: 175:system strength 167: 118: 101: 88: 67: 56: 55: 28:electrical grid 24: 17: 12: 11: 5: 1625: 1623: 1615: 1614: 1609: 1599: 1598: 1592: 1591: 1589: 1588: 1577: 1574: 1573: 1571: 1570: 1565: 1559: 1557: 1553:Statistics and 1552: 1549: 1548: 1546: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1503:Feed-in tariff 1500: 1495: 1490: 1485: 1480: 1475: 1469: 1467: 1462: 1459: 1458: 1456: 1455: 1449: 1444: 1439: 1434: 1429: 1428: 1427: 1422: 1412: 1406: 1404: 1399: 1396: 1395: 1393: 1392: 1391: 1390: 1380: 1375: 1370: 1364: 1362: 1358: 1357: 1355: 1354: 1349: 1344: 1338: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1291:Interconnector 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1241:Dynamic demand 1238: 1233: 1227: 1225: 1215: 1212: 1211: 1209: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1171:Combined cycle 1168: 1163: 1157: 1155: 1149: 1148: 1145: 1144: 1142: 1141: 1136: 1131: 1126: 1125: 1124: 1119: 1114: 1109: 1104: 1094: 1089: 1084: 1079: 1074: 1068: 1066: 1060: 1059: 1057: 1056: 1051: 1050: 1049: 1044: 1039: 1034: 1023: 1021: 1012: 1008: 1007: 1000: 998: 996: 995: 990: 985: 980: 975: 970: 965: 960: 955: 950: 948:Load-following 945: 940: 935: 930: 925: 920: 915: 910: 905: 903:Electric power 900: 895: 890: 885: 880: 874: 872: 868: 867: 862: 860: 859: 852: 845: 837: 831: 830: 815:cigre-usnc.org 803: 760: 754: 729: 717: 702: 658: 642:. Atlanta, GA. 630: 614:. Atlanta, GA. 602: 590: 573: 570: 567: 566: 559: 539: 524: 512: 510:, p. 536. 495: 478: 476:, p. vii. 459: 438: 436:, p. 572. 426: 414: 396: 395: 393: 390: 374: 373:Impact on grid 371: 361: 358: 270: 267: 266: 265: 258:inrush current 246: 242: 222: 219: 179:grid stiffness 166: 163: 142: 141: 127: 124: 121: 114: 111: 108: 104: 100: 97: 94: 91: 85: 80: 77: 74: 70: 66: 63: 40:apparent power 15: 13: 10: 9: 6: 4: 3: 2: 1624: 1613: 1610: 1608: 1605: 1604: 1602: 1587: 1579: 1578: 1575: 1569: 1566: 1564: 1561: 1560: 1558: 1550: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1523:Pigouvian tax 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1470: 1468: 1460: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1426: 1423: 1421: 1420:Earth-leakage 1418: 1417: 1416: 1413: 1411: 1408: 1407: 1405: 1397: 1389: 1386: 1385: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1365: 1363: 1361:Failure modes 1359: 1353: 1350: 1348: 1345: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1311:Power station 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1228: 1226: 1223: 1218: 1213: 1207: 1204: 1202: 1199: 1197: 1196:Rankine cycle 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1176:Cooling tower 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1158: 1156: 1154: 1150: 1140: 1137: 1135: 1132: 1130: 1127: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1099: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1069: 1067: 1065: 1061: 1055: 1052: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1029: 1028: 1025: 1024: 1022: 1020: 1019:Non-renewable 1016: 1013: 1009: 1004: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 938:Grid strength 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 893:Demand factor 891: 889: 886: 884: 881: 879: 876: 875: 873: 869: 865: 858: 853: 851: 846: 844: 839: 838: 835: 820: 816: 809: 804: 800: 796: 792: 788: 783: 778: 774: 770: 766: 761: 757: 751: 747: 743: 739: 735: 730: 720: 714: 710: 709: 703: 699: 695: 691: 687: 683: 679: 675: 671: 664: 659: 655: 649: 638: 637: 631: 627: 621: 610: 609: 603: 593: 587: 583: 582: 576: 575: 571: 562: 556: 552: 551: 543: 540: 536: 531: 529: 525: 521: 516: 513: 509: 504: 502: 500: 496: 492: 487: 485: 483: 479: 475: 470: 468: 466: 464: 460: 456: 451: 449: 447: 445: 443: 439: 435: 430: 427: 423: 418: 415: 411: 406: 404: 402: 398: 391: 389: 387: 382: 380: 372: 370: 367: 359: 357: 355: 350: 346: 342: 340: 336: 332: 328: 324: 320: 317: 312: 310: 305: 303: 299: 295: 291: 286: 284: 280: 276: 268: 263: 259: 255: 251: 247: 243: 240: 236: 235: 234: 232: 228: 220: 218: 216: 212: 208: 204: 198: 196: 192: 188: 184: 180: 176: 172: 171:grid strength 165:Grid strength 164: 162: 160: 156: 151: 147: 125: 122: 119: 112: 109: 106: 102: 98: 95: 92: 89: 83: 78: 75: 72: 68: 64: 61: 54: 53: 52: 50: 45: 41: 37: 33: 29: 22: 1518:Net metering 1465:and policies 1383:Power outage 1352:Utility pole 1316:Pumped hydro 1222:distribution 1217:Transmission 1166:Cogeneration 968:Power factor 822:. Retrieved 814: 772: 768: 737: 722:. Retrieved 707: 673: 669: 635: 607: 595:. Retrieved 580: 549: 542: 522:, p. 2. 515: 493:, p. 1. 457:, p. 1. 429: 424:, p. 6. 417: 412:, p. 1. 383: 376: 363: 343: 321: 316:power system 313: 308: 306: 301: 300:(ESCR), and 297: 293: 289: 287: 272: 254:power outage 239:undervoltage 224: 214: 206: 199: 178: 174: 170: 168: 158: 154: 143: 35: 31: 25: 1513:Load factor 1368:Black start 1336:Transformer 1037:Natural gas 988:Variability 963:Peak demand 953:Merit order 883:Backfeeding 279:overcurrent 250:black start 241:condition); 227:overcurrent 195:contingency 1601:Categories 1555:production 1400:Protective 1331:Super grid 1326:Smart grid 1153:Generation 1087:Geothermal 978:Repowering 724:2023-06-30 597:2023-06-12 392:References 345:Wind farms 1463:Economics 1186:Micro CHP 1064:Renewable 1047:Petroleum 1042:Oil shale 928:Grid code 888:Base load 799:251194445 791:2644-1314 698:255660560 690:0885-8977 648:cite book 620:cite book 520:NERC 2017 474:NERC 2017 410:NERC 2017 248:during a 215:very weak 207:weak grid 183:terminals 169:The term 1586:Category 1373:Brownout 1161:AC power 871:Concepts 553:. MDPI. 296:(CSCR), 292:(WSCR), 256:, large 245:changes; 187:ThĂ©venin 150:reactive 1402:devices 1112:Thermal 1107:Osmotic 1102:Current 1082:Biomass 1072:Biofuel 1054:Nuclear 1011:Sources 572:Sources 360:Example 354:STATCOM 51:(POI): 1097:Marine 1077:Biogas 824:9 July 797:  789:  752:  715:  696:  688:  588:  557:  281:, 2-5 173:(also 146:active 30:, the 26:In an 1454:(GFI) 1343:(TSO) 1129:Solar 1117:Tidal 1092:Hydro 819:CIGRE 811:(PDF) 795:S2CID 694:S2CID 666:(PDF) 640:(PDF) 612:(PDF) 366:ERCOT 1220:and 1139:Wind 1122:Wave 1032:Coal 826:2023 787:ISSN 750:ISBN 713:ISBN 686:ISSN 654:link 626:link 586:ISBN 555:ISBN 335:HVDC 283:p.u. 148:and 34:(or 777:doi 742:doi 678:doi 329:to 159:SCL 36:SCR 1603:: 817:. 813:. 793:. 785:. 771:. 767:. 748:. 736:. 692:. 684:. 674:39 672:. 668:. 650:}} 646:{{ 622:}} 618:{{ 527:^ 498:^ 481:^ 462:^ 441:^ 400:^ 388:. 341:. 311:. 217:. 189:) 856:e 849:t 842:v 828:. 801:. 779:: 773:3 758:. 744:: 727:. 700:. 680:: 656:) 628:) 600:. 563:. 537:. 157:( 126:W 123:M 120:G 113:I 110:O 107:P 103:A 99:V 96:M 93:C 90:S 84:= 79:I 76:O 73:P 69:R 65:C 62:S 23:.

Index

Short circuit ratio (disambiguation)
electrical grid
apparent power
line-line-line-ground (3LG) fault
point of interconnection
active
reactive
terminals
Thévenin
electrical impedance
contingency
synchronous generators
voltage instability
overcurrent
power system operations
undervoltage
black start
power outage
inrush current
inverter-based resource
inverter-based resources
overcurrent
p.u.
power system
Power electronic applications
current source converters
weak AC systems
HVDC
control systems
Wind farms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑