Knowledge

Siegel's theorem on integral points

Source đź“ť

254: 216: 280: 136: 39: 346: 314:
Corvaja, P. and Zannier, U. "A subspace theorem approach to integral points on curves", Compte Rendu Acad. Sci., 334, 2002, pp. 267–271
420: 219: 376: 146: 226:'s method in diophantine approximation also is ineffective in describing possible very good rational approximations to almost all 415: 338: 150: 154: 139: 101: 295: 158: 93: 49: 394: 89: 372: 342: 283: 233: 195: 382: 352: 315: 227: 181: 162: 71: 386: 356: 330: 173: 42: 259: 115: 96:
that depended only on the genus and not any special algebraic form of the equations. For
177: 319: 27:
Finitely many for a smooth algebraic curve of genus > 0 defined over a number field
409: 17: 63: 56: 371:. Grundlehren der mathematischen Wissenschaften. Vol. 231. pp. 128–153. 145:
In 1929, Siegel proved the theorem unconditionally by combining a version of the
31: 364: 223: 66:
in a given coordinate system, there are only finitely many points on
112:
In 1926, Siegel proved the theorem effectively in the special case
397:(1929). "Ăśber einige Anwendungen diophantischer Approximationen". 399:
Sitzungsberichte der Preussischen Akademie der Wissenschaften
138:, so that he proved this theorem conditionally, provided the 256:. Siegel proved it effectively only in the special case 282:
in 1926. Effective results in some cases derive from
262: 236: 198: 118: 180:
gave a new proof by using a new method based on the
274: 248: 210: 130: 161:(required in Weil's version, to apply to the 8: 337:. New Mathematical Monographs. Vol. 4. 261: 235: 197: 117: 88:The theorem was first proved in 1929 by 307: 369:Elliptic curves: Diophantine analysis 7: 192:Siegel's result was ineffective for 36:Siegel's theorem on integral points 220:effective results in number theory 92:and was the first major result on 25: 335:Heights in Diophantine Geometry 1: 320:10.1016/S1631-073X(02)02240-9 100:> 1 it was superseded by 437: 339:Cambridge University Press 421:Theorems in number theory 333:; Gubler, Walter (2006). 151:diophantine approximation 147:Thue–Siegel–Roth theorem 70:with coordinates in the 249:{\displaystyle d\geq 5} 211:{\displaystyle g\geq 2} 276: 250: 212: 132: 416:Diophantine equations 277: 251: 213: 133: 94:Diophantine equations 18:Siegel's theorem 296:Diophantine geometry 260: 234: 196: 159:diophantine geometry 155:Mordell–Weil theorem 140:Mordell's conjecture 116: 395:Siegel, Carl Ludwig 275:{\displaystyle g=1} 131:{\displaystyle g=1} 272: 246: 208: 188:Effective versions 128: 102:Faltings's theorem 90:Carl Ludwig Siegel 38:states that for a 348:978-0-521-71229-3 228:algebraic numbers 16:(Redirected from 428: 402: 390: 360: 331:Bombieri, Enrico 322: 312: 281: 279: 278: 273: 255: 253: 252: 247: 217: 215: 214: 209: 182:subspace theorem 163:Jacobian variety 137: 135: 134: 129: 72:ring of integers 21: 436: 435: 431: 430: 429: 427: 426: 425: 406: 405: 393: 379: 363: 349: 329: 326: 325: 313: 309: 304: 292: 258: 257: 232: 231: 194: 193: 190: 174:Umberto Zannier 114: 113: 110: 62:, presented in 55:defined over a 43:algebraic curve 28: 23: 22: 15: 12: 11: 5: 434: 432: 424: 423: 418: 408: 407: 404: 403: 391: 377: 361: 347: 324: 323: 306: 305: 303: 300: 299: 298: 291: 288: 284:Baker's method 271: 268: 265: 245: 242: 239: 207: 204: 201: 189: 186: 178:Pietro Corvaja 127: 124: 121: 109: 106: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 433: 422: 419: 417: 414: 413: 411: 400: 396: 392: 388: 384: 380: 378:3-540-08489-4 374: 370: 366: 362: 358: 354: 350: 344: 340: 336: 332: 328: 327: 321: 317: 311: 308: 301: 297: 294: 293: 289: 287: 285: 269: 266: 263: 243: 240: 237: 229: 225: 221: 205: 202: 199: 187: 185: 183: 179: 175: 170: 168: 164: 160: 156: 152: 148: 143: 141: 125: 122: 119: 107: 105: 103: 99: 95: 91: 86: 84: 80: 76: 73: 69: 65: 61: 58: 54: 51: 47: 44: 41: 37: 33: 19: 401:(in German). 398: 368: 334: 310: 191: 171: 166: 144: 111: 97: 87: 82: 78: 74: 67: 64:affine space 59: 57:number field 52: 45: 35: 29: 365:Lang, Serge 153:, with the 81:, provided 32:mathematics 410:Categories 387:0388.10001 357:1130.11034 302:References 230:of degree 241:≥ 222:), since 203:≥ 172:In 2002, 142:is true. 104:in 1983. 367:(1978). 290:See also 85:> 0. 149:, from 108:History 385:  375:  355:  345:  40:smooth 218:(see 157:from 50:genus 373:ISBN 343:ISBN 224:Thue 176:and 383:Zbl 353:Zbl 316:doi 169:). 165:of 77:of 48:of 30:In 412:: 381:. 351:. 341:. 286:. 184:. 34:, 389:. 359:. 318:: 270:1 267:= 264:g 244:5 238:d 206:2 200:g 167:C 126:1 123:= 120:g 98:g 83:g 79:K 75:O 68:C 60:K 53:g 46:C 20:)

Index

Siegel's theorem
mathematics
smooth
algebraic curve
genus
number field
affine space
ring of integers
Carl Ludwig Siegel
Diophantine equations
Faltings's theorem
Mordell's conjecture
Thue–Siegel–Roth theorem
diophantine approximation
Mordell–Weil theorem
diophantine geometry
Jacobian variety
Umberto Zannier
Pietro Corvaja
subspace theorem
effective results in number theory
Thue
algebraic numbers
Baker's method
Diophantine geometry
doi
10.1016/S1631-073X(02)02240-9
Bombieri, Enrico
Cambridge University Press
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑