Knowledge (XXG)

Silicon quantum dot

Source 📝

154:
bands that dominate silicon quantum dot properties. Long-lived luminescence excited states (S-band, slow decay rate) are typically associated with size-dependent photoluminescence ranging from yellow/orange to the near-infrared. Short-lived luminescent excited states (F-band, fast decay rate) are typically associated with size-independent blue photoluminescence and in some cases nitrogen impurities have been implicated in these processes. The S-band is typically attributed to the size-dependent band gap of the silicon quantum dots. This emission can be tuned from yellow (600 nm) into the infrared (1000 to 1100 nm) by changing the diameter of the silicon quantum dots from about 2 to 8 nm. Some reports also describe the preparation of green-emitting silicon quantum dots prepared by decreasing the size, however, these materials are challenging to isolate and require further development. Silicon quantum dot luminescence may also be tuned by defining their surface chemistry. Attaching different surface species allows tuning of silicon quantum dot luminescence throughout the visible spectrum while the silicon quantum dot dimensions remain unchanged. This surface tuning is typically accompanied by the appearance of nanosecond lifetimes like those seen for F-band luminescence. Silicon quantum dot photoluminescence
252:. Much of the developed surface chemistry draws on well-established procedures used to modify the surface of porous silicon and silicon wafers.  Hydrosilylation, which involves the formal addition of a Si-H bond across a C-C double or triple bond, is commonly used to introduce alkenes and alkynes to silicon quantum dot surfaces and also provides access to useful terminal functional groups (e.g., carboxylic acid, ester, silanes) that can define solvent compatibility and provide locations for further derivatization. The 218:(s).  These methods reliably provide high quality SiQDs exhibiting size/band gap dependent (S-band) photoluminescence. Top-down methods, such as laser ablation and ball-milling have also been reported. Several solution-based methods have also been presented that often result in materials exhibiting F-band luminescence. Recently, it has been determined that some of these methods do not provide silicon quantum dots, but rather luminescent 279:
and the luminescence detection, this allows fluorophores with short lifetimes to relax, thus highlighting those with long lifetimes. This type of fluorescence imaging is useful for biological imaging as many tissues exhibit autofluorescence that can interfere with imaging. By using this technique, the signal to background ratio for imaging SiQDs can be increased up to 3x over conventional steady-state imaging techniques.
162:
biological compatibility of silicon quantum dots enables time-gated biological imaging. The large Stokes shift allows them to convert photons from the ultraviolet range into the visible or infrared range and is particularly beneficial in the design and implementation of luminescent solar concentrators because it limits self-absorption while down converting the light.
377:
peroxide that quenches luminescence. Another method uses ratiometric sensing, where a fluorescent molecule is used as a control and the relative intensities of the two fluorescent labels are compared. This method was used to detect organophosphate nerve agents visually at a lower concentration than can be observed for SiQD quenching alone.
321:, while making them suitable as replacements for windows in buildings. To do this effectively, the surface of the silicon quantum dots can be modified with various ligands to improve polymer compatibility. It is also desirable to push the absorbance of the SiQDs into the visible to correspond better with the 230:
Defining the size of silicon quantum dots is essential because it influences their optical properties (especially S-band luminescence). Typically, the size of the silicon quantum dots is defined by controlling material synthesis. For example, silicon quantum dot size can be controlled by the reaction
340:
of the silicon quantum dots. By changing the size of the SiQDs, the LED emission can be tuned from deep red (680 nm) to orange/yellow (625 nm). Despite promising initial results and advances towards improving the external quantum efficiency of the resulting LEDs, future work is required to
376:
Alternative methods of detection via quenching of the SiQD core have also been explored. By functionalizing the quantum dots with enzymes, various biologically relevant materials can be sensed due to the formation of metabolites. Using this method, glucose can be detected via the formation hydrogen
316:
of the silicon quantum dots to convert light into electricity. The large Stokes shift allows the SiQDs to convert UV light into red/near infrared light that is effectively absorbed by silicon solar cells, while having limited self absorption. The LSCs are designed to collect light and use the glass
278:
in biological systems. Due to this promise, silicon quantum dots have been applied for both in vitro and in vivo imaging. While steady-state imaging is traditionally used, the keen advantage of silicon comes into play for time-gated imaging. Time-gated imaging employs a delay between the excitation
161:
The long-lived excited state of silicon quantum dot S-band luminescence that starkly contrasts photoemission from conventional quantum dots is often attributed to the inherent indirect band gap of silicon and lends itself to unique material applications. Combining long-lived excited states with the
153:
Silicon quantum dots (SiQDs) possess size-tunable photoluminescence that is similar to that observed for conventional quantum dots. The luminescence is routinely tuned throughout the visible and into the near-infrared region by defining particle size. In general, there are two distinct luminescence
265:
Silicon quantum dots have been used in prototype applications owing to their biocompatibility and the ubiquitous nature of silicon, compared to other types of quantum dots. In addition to these fundamental properties, the unique optical properties of silicon quantum dots (i.e., long-lived excited
247:
The synthesis methods used to prepare SiQDs often result in reactive surfaces. Hydride-terminated SiQDs require post synthesis modification because they tend to oxidize under ambient conditions and exhibit limited solution processability. These surfaces are often passivated with organic molecules
317:
to waveguide the re-emitted light towards the edges of the glass, where the solar cells collect the light and convert it to electricity. By designing the LSC carefully, the silicon quantum dots can be prepared as a transparent film over the glass limiting losses due to
136:
from freestanding oxidized silicon quantum dots. Recognizing the vast potential of their unique optical properties, many researchers explored, and developed methods to synthesize silicon quantum dots. Once these materials could be prepared reliably, methods to
266:
states, large Stokes shift and tunable luminescence) can be advantageous for certain applications. Owing to these (and other) properties, the potential applications of SiQDs are diverse, spanning medical, sensing, defense, and energy related fields.
508: 412:
Clark, Rhett J.; Aghajamali, Maryam; Gonzalez, Christina M.; Hadidi, Lida; Islam, Muhammad Amirul; Javadi, Morteza; Mobarok, Md Hosnay; Purkait, Tapas K.; Robidillo, Christopher Jay T.; Sinelnikov, Regina; Thiessen, Alyxandra N. (2017-01-10).
145:. Many of these surface passivation methods draw inspiration from methods that were first developed for silicon wafers and porous silicon. Currently, silicon quantum dots are being commercialized by Applied Quantum Materials Inc. (Canada). 365:) as the method of quenching. Hazardous high energy materials, such as nitroaromatic compounds (i.e., TNT and DNT), can be detected at nanogram levels via electron transfer. In the electron transfer method, the energy level of 1486:
Pramanik, Sunipa; Hill, Samantha K. E.; Zhi, Bo; Hudson-Smith, Natalie V.; Wu, Jeslin J.; White, Jacob N.; McIntire, Eileen A.; Kondeti, V. S. Santosh K.; Lee, Amani L.; Bruggeman, Peter J.; Kortshagen, Uwe R. (2018).
256:
between the surface groups and the silicon quantum dot is robust and is not readily exchangeable – this is very different from the ionic bonding commonly used to tether surface groups to other types of quantum dots.
1632:
Mastronardi, Melanie L.; Hennrich, Frank; Henderson, Eric J.; Maier-Flaig, Florian; Blum, Carolin; Reichenbach, Judith; Lemmer, Uli; Kübel, Christian; Wang, Di; Kappes, Manfred M.; Ozin, Geoffrey A. (2011-08-10).
357:. Photochemical sensors based on silicon quantum dots have been used to sense a wide variety of analytes, including pesticides, antibiotics, nerve agents, heavy metals, ethanol, and pH, often employing either 46:, and solution protocols have been used to prepare silicon quantum dots, however it is important to note that some solution-based protocols for preparing luminescent silicon quantum dots actually yield 1141:
Shirahata, Naoto; Nakamura, Jin; Inoue, Jun-ichi; Ghosh, Batu; Nemoto, Kazuhiro; Nemoto, Yoshihiro; Takeguchi, Masaki; Masuda, Yoshitake; Tanaka, Masahiko; Ozin, Geoffrey A. (2020-03-11).
373:
of the electron hole pair. This also works when the HOMO of the analyte is just above the conduction band of the SiQD, enabling the electron to transfer from the analyte to the SiQD.
3212:
Robidillo, Christopher Jay T.; Islam, Muhammad Amirul; Aghajamali, Maryam; Faramus, Angelique; Sinelnikov, Regina; Zhang, Xiyu; Boekhoven, Job; Veinot, Jonathan G. C. (2018-05-14).
369:
of the molecule is between the valence and conduction bands of the silicon quantum dots, enabling the transfer of an excited state electron to the LUMO, and, therefore, preventing
2420:
Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio (2017-03-01).
2937:
Robidillo, Christopher Jay T.; Wandelt, Sophia; Dalangin, Rochelin; Zhang, Lijuan; Yu, Haoyang; Meldrum, Alkiviathes; Campbell, Robert E.; Veinot, Jonathan G. C. (2019-09-11).
2036:
Erogbogbo, Folarin; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Law, Wing-Cheung; Zhao, Weiwei; Ding, Hong; Wu, Fang; Kumar, Rajiv; Swihart, Mark T.; Prasad, Paras N. (2011-01-25).
1389:
Erogbogbo, Folarin; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Law, Wing-Cheung; Zhao, Weiwei; Ding, Hong; Wu, Fang; Kumar, Rajiv; Swihart, Mark T.; Prasad, Paras N. (2010-12-07).
1076:
Wen, Xiaoming; Zhang, Pengfei; Smith, Trevor A.; Anthony, Rebecca J.; Kortshagen, Uwe R.; Yu, Pyng; Feng, Yu; Shrestha, Santosh; Coniber, Gavin; Huang, Shujuan (2015-07-22).
2730:
Maier-Flaig, Florian; Rinck, Julia; Stephan, Moritz; Bocksrocker, Tobias; Bruns, Michael; Kübel, Christian; Powell, Annie K.; Ozin, Geoffrey A.; Lemmer, Uli (2013-02-13).
1489:"Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models Shewanella oneidensis and Bacillus subtilis" 1971:
Romano, Francesco; Angeloni, Sara; Morselli, Giacomo; Mazzaro, Raffaello; Morandi, Vittorio; Shell, Jennifer R.; Cao, Xu; Pogue, Brian W.; Ceroni, Paola (2020-04-09).
81:
has found extensive use in electronic devices; however, bulk Si has limited optical applications. This is largely due to the vertical optical transition between the
2579:
Mazzaro, Raffaello; Gradone, Alessandro; Angeloni, Sara; Morselli, Giacomo; Cozzi, Pier Giorgio; Romano, Francesco; Vomiero, Alberto; Ceroni, Paola (2019-09-18).
1439:
Liu, Jianwei; Erogbogbo, Folarin; Yong, Ken-Tye; Ye, Ling; Liu, Jing; Hu, Rui; Chen, Hongyan; Hu, Yazhuo; Yang, Yi; Yang, Jinghui; Roy, Indrajit (2013-07-15).
282:
Other modes of imaging have also been explored for silicon nanomaterials. For example, the silicon core of large silicon nanoparticles has been used for Si
193:) found "no signs of toxicity clearly attributable to SiQDs." In bacteria, SiQDs have been shown to be less toxic than both CdSe and CdSe/ZnS quantum dots. 988:
Buriak, Jillian M.; Stewart, Michael P.; Geders, Todd W.; Allen, Matthew J.; Choi, Hee Cheul; Smith, Jay; Raftery, Daniel; Canham, Leigh T. (1999-12-01).
2524:
Hill, Samantha K. E.; Connell, Ryan; Held, Jacob; Peterson, Colin; Francis, Lorraine; Hillmyer, Marc A.; Ferry, Vivian E.; Kortshagen, Uwe (2020-01-29).
248:(e.g., alkyl chains) to render SiQDs resistant to oxidation and compatible with common solvents. This can then be passivated through methods, such as 30:
emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their
3157:
Gonzalez, Christina M.; Iqbal, Muhammad; Dasog, Mita; Piercey, Davin G.; Lockwood, Ross; Klapötke, Thomas M.; Veinot, Jonathan G. C. (2014-02-13).
1578: 274:
The biocompatibility of silicon quantum dots along with their long luminescent lifetimes and near-infrared emission makes them well-suited for
2992:
Campos, B. B.; Algarra, M.; Alonso, B.; Casado, C. M.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; Esteves da Silva, J. C. G. (2015-11-01).
3289: 2360:
Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M. (2012-06-26).
1921:
Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N.; Swihart, Mark T. (2010-08-25).
2525: 2421: 1772:"Diazonium Salts as Grafting Agents and Efficient Radical-Hydrosilylation Initiators for Freestanding Photoluminescent Silicon Nanocrystals" 370: 2526:"Poly(methyl methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators" 1534:
Hofmeister, H.; Huisken, F.; Kohn, B. (1999). "Lattice contraction in nanosized silicon particles produced by laser pyrolysis of silane".
362: 2485:
Hill, Samantha K. E.; Connell, Ryan; Peterson, Colin; Hollinger, Jon; Hillmyer, Marc A.; Kortshagen, Uwe; Ferry, Vivian E. (2019-01-16).
2939:"Ratiometric Detection of Nerve Agents by Coupling Complementary Properties of Silicon-Based Quantum Dots and Green Fluorescent Protein" 2083:
Gu, Luo; Hall, David J.; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J.; Howell, Stephen B.; Sailor, Michael J. (2013).
336:
utilize quantum dots to produce pure monochromatic light. Most of the work designing LEDs based on silicon quantum dots have focused on
1725:"Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study" 50:
instead of the reported silicon. The unique properties of silicon quantum dots lend themselves to an array of potential applications:
2683:
Angı, Arzu; Loch, Marius; Sinelnikov, Regina; Veinot, Jonathan G. C.; Becherer, Markus; Lugli, Paolo; Rieger, Bernhard (2018-06-07).
2629: 206:
Silicon quantum dots can be synthesized using a variety of methods, including thermal disproportionation of silicon suboxides (e.g.,
3264: 1876:"Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels" 1269:"Size vs Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals Across the Visible Spectrum via Surface Groups" 2148:
Tu, Chang-Ching; Awasthi, Kamlesh; Chen, Kuang-Po; Lin, Chih-Hsiang; Hamada, Morihiko; Ohta, Nobuhiro; Li, Yaw-Kuen (2017-06-21).
182: 3042: 2487:"Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators" 2038:"In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals" 1391:"In Vivo Targeted Cancer Imaging, Sentinel Lymph Node Mapping and Multi-Channel Imaging with Biocompatible Silicon Nanocrystals" 2179:
Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M. (2013-02-26).
1028: 236: 55: 1770:
Höhlein, Ignaz M. D.; Kehrle, Julian; Helbich, Tobias; Yang, Zhenyu; Veinot, Jonathan G. C.; Rieger, Bernhard (2014-03-24).
1723:
Yang, Zhenyu; Gonzalez, Christina M.; Purkait, Tapas K.; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G. C. (2015-09-29).
1923:"Biocompatible Magnetofluorescent Probes: Luminescent Silicon Quantum Dots Coupled with Superparamagnetic Iron(III) Oxide" 457:
Kortshagen, Uwe R.; Sankaran, R. Mohan; Pereira, Rui N.; Girshick, Steven L.; Wu, Jeslin J.; Aydil, Eray S. (2016-09-28).
31: 792:"Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures" 3269: 2840:
Yi, Yinhui; Zhu, Gangbing; Liu, Chang; Huang, Yan; Zhang, Youyu; Li, Haitao; Zhao, Jiangna; Yao, Shouzhuo (2013-12-03).
567:"Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution" 287: 82: 1204:
Pi, X. D.; Liptak, R. W.; Deneen Nowak, J.; Wells, N. P.; Carter, C. B.; Campbell, S. A.; Kortshagen, U. (2008-06-18).
177:. During in vitro studies, SiQDs have been found to exhibit limited toxicity in concentrations up to 72 μg/mL in 1206:"Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach" 3294: 283: 158:
are typically in the range of 10 to 40%, with a handful of synthetic protocols providing values in excess of 70%.
1267:
Dasog, Mita; De los Reyes, Glenda B.; Titova, Lyubov V.; Hegmann, Frank A.; Veinot, Jonathan G. C. (2014-09-23).
2422:"Highly efficient luminescent solar concentrators based on earth-Abundant indirect-bandgap silicon quantum dots" 3284: 3279: 1817:
Erogbogbo, Folarin; Yong, Ken-Tye; Roy, Indrajit; Xu, GaiXia; Prasad, Paras N.; Swihart, Mark T. (2008-05-01).
386: 350: 169:(e.g., cadmium, indium, lead). The biological compatibility of these materials has been carefully studied both 2150:"Time-Gated Imaging on Live Cancer Cells Using Silicon Quantum Dot Nanoparticles with Long-Lived Fluorescence" 565:
Tan, Dezhi; Ma, Zhijun; Xu, Beibei; Dai, Ye; Ma, Guohong; He, Min; Jin, Zuanming; Qiu, Jianrong (2011-11-11).
2842:"A Label-Free Silicon Quantum Dots-Based Photoluminescence Sensor for Ultrasensitive Detection of Pesticides" 207: 138: 93:
after being subjected to electrochemical and chemical dissolution. The light emission was attributed to the
1340:
Li, Zhaohan; Mahajan, Advitiya; Andaraarachchi, Himashi P.; Lee, Yeonjoo; Kortshagen, Uwe R. (2022-01-17).
1579:"The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling" 509:"The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling" 141:
the surfaces were critical to rendering these materials solution processable and minimize the effects of
3274: 507:
Shen, T. D.; Koch, C. C.; McCormick, T. L.; Nemanich, R. J.; Huang, J. Y.; Huang, J. G. (January 1995).
1342:"Water-Soluble Luminescent Silicon Nanocrystals by Plasma-Induced Acrylic Acid Grafting and PEGylation" 3170: 2900: 2743: 2641: 2433: 2096: 2085:"In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles" 1887: 1590: 1543: 1217: 1154: 1089: 907: 803: 751: 686: 578: 520: 275: 59: 3158: 3119: 2888: 2684: 2303:
Tu, Chuqiao; Ma, Xuchu; Pantazis, Periklis; Kauzlarich, Susan M.; Louie, Angelique Y. (2010-02-17).
1972: 566: 3159:"Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors" 2685:"The influence of surface functionalization methods on the performance of silicon nanocrystal LEDs" 949:
Linford, Matthew R.; Fenter, Paul; Eisenberger, Peter M.; Chidsey, Christopher E. D. (March 1995).
337: 333: 219: 126: 67: 47: 1681: 459:"Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications" 2974: 2822: 2610: 2561: 2506: 2467: 2305:"Paramagnetic, silicon quantum dots for magnetic resonance and two photon imaging of macrophages" 2192: 2018: 1614: 1559: 1249: 1186: 931: 837: 720: 673:
Wilbrink, Jonathan L.; Huang, Chia-Ching; Dohnalova, Katerina; Paulusse, Jos M. J. (2020-06-24).
652: 544: 155: 51: 39: 1973:"Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging" 1577:
Shen, T. D.; Koch, C. C.; McCormick, T. L.; Nemanich, R. J.; Huang, J. Y.; Huang, J. G. (1995).
235:
in non-thermal plasma methods is a key factor. Alternatively, post-synthetic protocols, such as
16:
Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence.
2581:"Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators" 2246:
Tu, Chuqiao; Ma, Xuchu; House, Adrian; Kauzlarich, Susan M.; Louie, Angelique Y. (2011-01-27).
2181:"Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging" 3241: 3233: 3194: 3186: 3139: 3097: 3058: 3023: 3015: 2966: 2958: 2916: 2869: 2861: 2814: 2806: 2767: 2759: 2712: 2704: 2665: 2657: 2553: 2545: 2459: 2399: 2381: 2342: 2324: 2285: 2267: 2228: 2210: 2130: 2112: 2065: 2057: 2010: 2002: 1950: 1942: 1903: 1856: 1838: 1799: 1791: 1752: 1744: 1705: 1697: 1662: 1654: 1606: 1516: 1508: 1468: 1460: 1418: 1410: 1371: 1298: 1290: 1241: 1233: 1178: 1170: 1123: 1105: 1009: 970: 923: 876: 829: 821: 767: 740:"Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers" 712: 704: 644: 602: 594: 536: 486: 478: 434: 358: 27: 1635:"Preparation of Monodisperse Silicon Nanocrystals Using Density Gradient Ultracentrifugation" 3225: 3178: 3131: 3089: 3050: 3043:"Detection of ethanol and water vapor with silicon quantum dots coupled to an optical fiber" 3005: 2994:"Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers" 2950: 2908: 2853: 2798: 2751: 2696: 2649: 2600: 2592: 2537: 2498: 2449: 2441: 2389: 2373: 2332: 2316: 2275: 2259: 2218: 2202: 2161: 2120: 2104: 2049: 1992: 1984: 1934: 1895: 1846: 1830: 1783: 1736: 1689: 1646: 1598: 1551: 1500: 1452: 1402: 1361: 1353: 1280: 1225: 1162: 1113: 1097: 1029:"Thermal hydrosilylation of undecylenic acid with porous silicon - NRC Publications Archive" 1001: 962: 915: 895: 868: 855:
Littau, K. A.; Szajowski, P. J.; Muller, A. J.; Kortan, A. R.; Brus, L. E. (February 1993).
811: 759: 694: 636: 586: 528: 470: 426: 1682:"Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals" 3214:"Functional Bioinorganic Hybrids from Enzymes and Luminescent Silicon-Based Nanoparticles" 2889:"Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics" 249: 1316: 1229: 3174: 2904: 2747: 2645: 2628:
Cheng, Kai Yuan; Anthony, Rebecca; Kortshagen, Uwe R.; Holmes, Russell J. (2011-05-11).
2437: 2100: 1891: 1594: 1547: 1221: 1158: 1093: 911: 807: 755: 690: 582: 524: 231:
temperature during thermal disproportionation of silsesquioxanes. Similarly, the plasma
2394: 2361: 2337: 2304: 2280: 2223: 2180: 2125: 2084: 1851: 1366: 1118: 623:
Oliinyk, Bohdan V.; Korytko, Dmytro; Lysenko, Vladimir; Alekseev, Sergei (2019-09-24).
290:
imaging is also accessible. Further, doping with paramagnetic centers show promise for
232: 211: 190: 98: 94: 3258: 2978: 2826: 2614: 2565: 2510: 2471: 2022: 1618: 1190: 951:"Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon" 841: 724: 656: 548: 366: 349:
Photochemical sensors take advantage of the silicon quantum dot photoluminescence by
253: 102: 1563: 935: 1441:"Assessing Clinical Prospects of Silicon Quantum Dots: Studies in Mice and Monkeys" 1253: 950: 857:"A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction" 856: 313: 166: 133: 132:
The first reports of silicon quantum dots emerged in the early 1990s demonstrating
106: 86: 35: 3213: 3010: 2993: 919: 640: 430: 3229: 2596: 2502: 2165: 1740: 1166: 739: 675:"Critical assessment of wet-chemical oxidation synthesis of silicon quantum dots" 624: 474: 414: 23: 3077: 2580: 2486: 2149: 1142: 286:
in mice models. By modifying the surface with a ligand that can coordinate Cu,
101:. This early work provided a foundation for several different types of silicon 3093: 3054: 625:"Are Fluorescent Silicon Nanoparticles Formed in a One-Pot Aqueous Synthesis?" 458: 318: 3237: 3190: 3143: 3101: 3062: 3019: 2962: 2920: 2865: 2810: 2763: 2708: 2661: 2549: 2463: 2385: 2328: 2271: 2214: 2116: 2061: 2006: 1946: 1907: 1842: 1795: 1748: 1701: 1658: 1610: 1512: 1464: 1414: 1294: 1237: 1174: 1109: 1013: 974: 927: 896:"Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals" 880: 825: 771: 708: 648: 598: 540: 482: 438: 185:). In vivo studies assessing biological compatibility of SiQDs undertaken in 3076:
Feng, Yanling; Liu, Yufei; Su, Chen; Ji, Xinghu; He, Zhike (November 2014).
2787:"Designing Efficient Si Quantum Dots and LEDs by Quantifying Ligand Effects" 2037: 1819:"Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells" 1771: 1724: 1205: 114: 43: 3245: 3198: 3027: 2970: 2954: 2873: 2818: 2802: 2771: 2716: 2669: 2557: 2541: 2445: 2403: 2362:"Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents" 2346: 2289: 2232: 2134: 2069: 2014: 1954: 1860: 1803: 1787: 1756: 1709: 1666: 1472: 1422: 1375: 1357: 1302: 1245: 1182: 1127: 833: 716: 606: 490: 1602: 1555: 532: 2938: 2786: 2785:
Ono, Taisei; Xu, Yuping; Sakata, Toshiki; Saitow, Ken-ichi (2022-01-12).
1341: 1078:"Tunability Limit of Photoluminescence in Colloidal Silicon Nanocrystals" 322: 170: 118: 110: 2605: 2454: 1997: 1488: 1143:"Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots" 966: 872: 3182: 3135: 2912: 2700: 2247: 2108: 1988: 1922: 1875: 1818: 1504: 1440: 1390: 1077: 816: 791: 699: 674: 590: 354: 174: 122: 78: 2857: 2755: 2653: 2377: 2320: 2263: 2206: 2053: 1938: 1899: 1834: 1650: 1520: 1456: 1406: 1285: 1268: 1101: 1005: 1693: 763: 415:"From Hydrogen Silsesquioxane to Functionalized Silicon Nanocrystals" 215: 63: 2841: 2731: 1634: 989: 3041:
Zhang, Z. H.; Lockwood, R.; Veinot, J. G. C.; Meldrum, A. (2013).
2197: 239:, can be used to narrow the size distribution through separation. 186: 165:
Importantly, SiQDs are biologically compatible and do not contain
142: 90: 2248:"PET Imaging and Biodistribution of Silicon Quantum Dots in Mice" 3078:"New fluorescent pH sensor based on label-free silicon nanodots" 990:"Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces" 894:
Wilson, William L.; Szajowski, P. F.; Brus, L. E. (1993-11-19).
178: 3120:"Silicon nanocrystals for the development of sensing platforms" 1052: 3118:
Gonzalez, Christina M.; Veinot, Jonathan G. C. (2016-06-02).
2630:"High-efficiency silicon nanocrystal light-emitting devices" 312:
Luminescent solar concentrators take advantage of the large
34:, including long-lived luminescent excited-states and large 214:
derivative), and laser and plasma-induced decomposition of
85:
being forbidden because of its indirect band gap. In 1990,
1027:
Canada, Government of Canada National Research Council.
2732:"Multicolor Silicon Light-Emitting Diodes (SiLEDs)" 1966: 1964: 1729:Langmuir: The ACS Journal of Surfaces and Colloids 325:, which can be accomplished by adding a dye. 8: 181:and 30 μg/mL in epithelial-like cells ( 361:or fluorescence resonance energy transfer ( 2887:Lin, Jintai; Wang, Qianming (2015-03-16). 341:overcome the broad luminescence emission. 3009: 2604: 2453: 2393: 2336: 2279: 2222: 2196: 2124: 1996: 1874:Li, Z. F.; Ruckenstein, E. (2004-06-18). 1850: 1365: 1284: 1117: 815: 698: 2309:Journal of the American Chemical Society 1639:Journal of the American Chemical Society 994:Journal of the American Chemical Society 955:Journal of the American Chemical Society 397: 353:photon emission in the presence of the 22:are metal-free biologically compatible 3113: 3111: 2943:ACS Applied Materials & Interfaces 2791:ACS Applied Materials & Interfaces 2932: 2930: 2415: 2413: 1680:Veinot, Jonathan G. C. (2006-10-09). 1434: 1432: 7: 3047:Sensors & Actuators: B. Chemical 2530:ACS Applied Materials and Interfaces 785: 783: 781: 668: 666: 618: 616: 560: 558: 502: 500: 452: 450: 448: 407: 405: 403: 401: 243:Surface passivation and modification 237:density gradient ultracentrifugation 89:showed that silicon wafers can emit 571:Physical Chemistry Chemical Physics 14: 3082:Sensors and Actuators B: Chemical 861:The Journal of Physical Chemistry 3124:Journal of Materials Chemistry C 83:conduction band and valence band 2252:ACS Medicinal Chemistry Letters 1536:The European Physical Journal D 1053:"Applied Quantum Materials Inc" 308:Luminescent solar concentrators 56:luminescent solar concentrators 1776:Chemistry - A European Journal 1230:10.1088/0957-4484/19/24/245603 1: 3011:10.1016/j.talanta.2015.07.038 1583:Journal of Materials Research 1317:"Welcome to the Veinot Group" 920:10.1126/science.262.5137.1242 641:10.1021/acs.chemmater.9b01067 513:Journal of Materials Research 431:10.1021/acs.chemmater.6b02667 3290:Nanoparticles by composition 3230:10.1021/acs.langmuir.8b01119 2597:10.1021/acsphotonics.9b00802 2503:10.1021/acsphotonics.8b01346 2166:10.1021/acsphotonics.7b00188 1741:10.1021/acs.langmuir.5b02307 1167:10.1021/acs.nanolett.9b03157 738:Canham, L. T. (1990-09-03). 3049:. Complete (181): 523–528. 1493:Environmental Science: Nano 475:10.1021/acs.chemrev.6b00039 3311: 1033:nrc-publications.canada.ca 3094:10.1016/j.snb.2014.07.050 3055:10.1016/j.snb.2013.01.070 1346:ACS Applied Bio Materials 3265:Semiconductor structures 387:Cadmium-free quantum dot 109:(quantum dots), silicon 97:effect in the resulting 1686:Chemical Communications 744:Applied Physics Letters 371:radiative recombination 208:hydrogen silsesquioxane 2955:10.1021/acsami.9b10996 2803:10.1021/acsami.1c18779 2542:10.1021/acsami.9b22903 2446:10.1038/nphoton.2017.5 1788:10.1002/chem.201400114 1358:10.1021/acsabm.1c00885 790:Canham, Leigh (2020). 629:Chemistry of Materials 419:Chemistry of Materials 2089:Nature Communications 1603:10.1557/JMR.1995.0139 1556:10.1007/S100530050413 533:10.1557/JMR.1995.0139 329:Light-emitting diodes 60:light emitting diodes 2846:Analytical Chemistry 1321:www.chem.ualberta.ca 334:Quantum dot displays 276:fluorescence imaging 20:Silicon quantum dots 3270:Quantum electronics 3175:2014Nanos...6.2608G 2949:(36): 33478–33488. 2905:2015RSCAd...527458L 2899:(35): 27458–27463. 2852:(23): 11464–11470. 2748:2013NanoL..13..475M 2695:(22): 10337–10342. 2646:2011NanoL..11.1952C 2438:2017NaPho..11..177M 2101:2013NatCo...4.2326G 1892:2004NanoL...4.1463L 1735:(38): 10540–10548. 1645:(31): 11928–11931. 1595:1995JMatR..10..139S 1548:1999EPJD....9..137H 1222:2008Nanot..19x5603P 1159:2020NanoL..20.1491S 1094:2015NatSR...512469W 1000:(49): 11491–11502. 967:10.1021/ja00116a019 912:1993Sci...262.1242W 906:(5137): 1242–1244. 873:10.1021/j100108a019 808:2020FaDi..222...10C 796:Faraday Discussions 756:1990ApPhL..57.1046C 691:2020FaDi..222..149W 679:Faraday Discussions 583:2011PCCP...1320255T 577:(45): 20255–20261. 525:1995JMatR..10..139S 469:(18): 11061–11127. 338:electroluminescence 220:carbon quantum dots 95:quantum confinement 68:lithium-ion battery 48:carbon quantum dots 3183:10.1039/C3NR06271F 3136:10.1039/C6TC01159D 2913:10.1039/C5RA01769F 2701:10.1039/C7NR09525B 2109:10.1038/ncomms3326 1989:10.1039/D0NR00814A 1505:10.1039/c8en00332g 1082:Scientific Reports 817:10.1039/d0fd00018c 700:10.1039/C9FD00099B 591:10.1039/C1CP21366K 270:Biological imaging 105:including silicon 52:biological imaging 40:disproportionation 3295:Silicon photonics 3224:(22): 6556–6569. 3130:(22): 4836–4846. 2858:10.1021/ac403257p 2756:10.1021/nl3038689 2654:10.1021/nl2001692 2378:10.1021/nn301536n 2321:10.1021/ja909303g 2264:10.1021/ml1002844 2207:10.1021/nn305462y 2054:10.1021/nn1018945 1983:(14): 7921–7926. 1939:10.1021/nn101016f 1900:10.1021/nl0492436 1835:10.1021/nn700319z 1782:(15): 4212–4216. 1688:(40): 4160–4168. 1651:10.1021/ja204865t 1457:10.1021/nn4029234 1407:10.1021/nn1018945 1286:10.1021/nn504109a 1102:10.1038/srep12469 1006:10.1021/ja992188w 961:(11): 3145–3155. 750:(10): 1046–1048. 635:(18): 7167–7172. 359:electron transfer 202:Synthesis methods 32:indirect band gap 28:photoluminescence 3302: 3250: 3249: 3209: 3203: 3202: 3169:(5): 2608–2612. 3154: 3148: 3147: 3115: 3106: 3105: 3073: 3067: 3066: 3038: 3032: 3031: 3013: 2989: 2983: 2982: 2934: 2925: 2924: 2884: 2878: 2877: 2837: 2831: 2830: 2797:(1): 1373–1388. 2782: 2776: 2775: 2727: 2721: 2720: 2680: 2674: 2673: 2640:(5): 1952–1956. 2625: 2619: 2618: 2608: 2591:(9): 2303–2311. 2576: 2570: 2569: 2536:(4): 4572–4578. 2521: 2515: 2514: 2482: 2476: 2475: 2457: 2426:Nature Photonics 2417: 2408: 2407: 2397: 2372:(6): 5596–5604. 2357: 2351: 2350: 2340: 2315:(6): 2016–2023. 2300: 2294: 2293: 2283: 2243: 2237: 2236: 2226: 2200: 2191:(2): 1609–1617. 2176: 2170: 2169: 2160:(6): 1306–1315. 2145: 2139: 2138: 2128: 2080: 2074: 2073: 2033: 2027: 2026: 2000: 1968: 1959: 1958: 1933:(9): 5131–5138. 1918: 1912: 1911: 1886:(8): 1463–1467. 1871: 1865: 1864: 1854: 1814: 1808: 1807: 1767: 1761: 1760: 1720: 1714: 1713: 1694:10.1039/B607476F 1677: 1671: 1670: 1629: 1623: 1622: 1574: 1568: 1567: 1542:(1–4): 137–140. 1531: 1525: 1524: 1499:(8): 1890–1901. 1483: 1477: 1476: 1451:(8): 7303–7310. 1436: 1427: 1426: 1386: 1380: 1379: 1369: 1337: 1331: 1330: 1328: 1327: 1313: 1307: 1306: 1288: 1279:(9): 9636–9648. 1264: 1258: 1257: 1201: 1195: 1194: 1153:(3): 1491–1498. 1138: 1132: 1131: 1121: 1073: 1067: 1066: 1064: 1063: 1049: 1043: 1042: 1040: 1039: 1024: 1018: 1017: 985: 979: 978: 946: 940: 939: 891: 885: 884: 867:(6): 1224–1230. 852: 846: 845: 819: 787: 776: 775: 764:10.1063/1.103561 735: 729: 728: 702: 670: 661: 660: 620: 611: 610: 562: 553: 552: 504: 495: 494: 463:Chemical Reviews 454: 443: 442: 409: 304:weighted H MRI. 254:covalent bonding 3310: 3309: 3305: 3304: 3303: 3301: 3300: 3299: 3285:Nanoelectronics 3280:Optoelectronics 3255: 3254: 3253: 3211: 3210: 3206: 3156: 3155: 3151: 3117: 3116: 3109: 3075: 3074: 3070: 3040: 3039: 3035: 2991: 2990: 2986: 2936: 2935: 2928: 2886: 2885: 2881: 2839: 2838: 2834: 2784: 2783: 2779: 2729: 2728: 2724: 2682: 2681: 2677: 2627: 2626: 2622: 2578: 2577: 2573: 2523: 2522: 2518: 2484: 2483: 2479: 2419: 2418: 2411: 2359: 2358: 2354: 2302: 2301: 2297: 2245: 2244: 2240: 2178: 2177: 2173: 2147: 2146: 2142: 2082: 2081: 2077: 2035: 2034: 2030: 1970: 1969: 1962: 1920: 1919: 1915: 1873: 1872: 1868: 1816: 1815: 1811: 1769: 1768: 1764: 1722: 1721: 1717: 1679: 1678: 1674: 1631: 1630: 1626: 1576: 1575: 1571: 1533: 1532: 1528: 1485: 1484: 1480: 1438: 1437: 1430: 1388: 1387: 1383: 1339: 1338: 1334: 1325: 1323: 1315: 1314: 1310: 1266: 1265: 1261: 1203: 1202: 1198: 1140: 1139: 1135: 1075: 1074: 1070: 1061: 1059: 1051: 1050: 1046: 1037: 1035: 1026: 1025: 1021: 987: 986: 982: 948: 947: 943: 893: 892: 888: 854: 853: 849: 789: 788: 779: 737: 736: 732: 672: 671: 664: 622: 621: 614: 564: 563: 556: 506: 505: 498: 456: 455: 446: 411: 410: 399: 395: 383: 347: 331: 310: 302: 295: 272: 263: 250:hydrosilylation 245: 228: 204: 199: 191:rhesus macaques 151: 76: 38:. A variety of 17: 12: 11: 5: 3308: 3306: 3298: 3297: 3292: 3287: 3282: 3277: 3272: 3267: 3257: 3256: 3252: 3251: 3204: 3149: 3107: 3068: 3033: 2984: 2926: 2879: 2832: 2777: 2742:(2): 475–480. 2722: 2675: 2620: 2571: 2516: 2497:(1): 170–180. 2477: 2432:(3): 177–185. 2409: 2352: 2295: 2258:(4): 285–288. 2238: 2171: 2140: 2075: 2048:(1): 413–423. 2028: 1960: 1913: 1866: 1829:(5): 873–878. 1809: 1762: 1715: 1672: 1624: 1589:(1): 139–148. 1569: 1526: 1478: 1428: 1401:(1): 413–423. 1381: 1352:(1): 105–112. 1332: 1308: 1259: 1216:(24): 245603. 1210:Nanotechnology 1196: 1133: 1068: 1044: 1019: 980: 941: 886: 847: 777: 730: 662: 612: 554: 519:(1): 139–148. 496: 444: 396: 394: 391: 390: 389: 382: 379: 346: 343: 330: 327: 323:solar spectrum 309: 306: 300: 293: 271: 268: 262: 259: 244: 241: 233:residence time 227: 224: 212:silsesquioxane 203: 200: 198: 195: 156:quantum yields 150: 147: 103:nanostructures 99:porous silicon 75: 72: 15: 13: 10: 9: 6: 4: 3: 2: 3307: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3262: 3260: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3215: 3208: 3205: 3200: 3196: 3192: 3188: 3184: 3180: 3176: 3172: 3168: 3164: 3160: 3153: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3114: 3112: 3108: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3072: 3069: 3064: 3060: 3056: 3052: 3048: 3044: 3037: 3034: 3029: 3025: 3021: 3017: 3012: 3007: 3003: 2999: 2995: 2988: 2985: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2940: 2933: 2931: 2927: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2883: 2880: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2836: 2833: 2828: 2824: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2788: 2781: 2778: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2726: 2723: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2679: 2676: 2671: 2667: 2663: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2631: 2624: 2621: 2616: 2612: 2607: 2602: 2598: 2594: 2590: 2586: 2585:ACS Photonics 2582: 2575: 2572: 2567: 2563: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2520: 2517: 2512: 2508: 2504: 2500: 2496: 2492: 2491:ACS Photonics 2488: 2481: 2478: 2473: 2469: 2465: 2461: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2416: 2414: 2410: 2405: 2401: 2396: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2356: 2353: 2348: 2344: 2339: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2299: 2296: 2291: 2287: 2282: 2277: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2242: 2239: 2234: 2230: 2225: 2220: 2216: 2212: 2208: 2204: 2199: 2194: 2190: 2186: 2182: 2175: 2172: 2167: 2163: 2159: 2155: 2154:ACS Photonics 2151: 2144: 2141: 2136: 2132: 2127: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2076: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2032: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 1999: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1965: 1961: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1924: 1917: 1914: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1870: 1867: 1862: 1858: 1853: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1813: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1766: 1763: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1719: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1628: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1573: 1570: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1527: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1433: 1429: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1385: 1382: 1377: 1373: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1333: 1322: 1318: 1312: 1309: 1304: 1300: 1296: 1292: 1287: 1282: 1278: 1274: 1270: 1263: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1137: 1134: 1129: 1125: 1120: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1072: 1069: 1058: 1054: 1048: 1045: 1034: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 999: 995: 991: 984: 981: 976: 972: 968: 964: 960: 956: 952: 945: 942: 937: 933: 929: 925: 921: 917: 913: 909: 905: 901: 897: 890: 887: 882: 878: 874: 870: 866: 862: 858: 851: 848: 843: 839: 835: 831: 827: 823: 818: 813: 809: 805: 801: 797: 793: 786: 784: 782: 778: 773: 769: 765: 761: 757: 753: 749: 745: 741: 734: 731: 726: 722: 718: 714: 710: 706: 701: 696: 692: 688: 684: 680: 676: 669: 667: 663: 658: 654: 650: 646: 642: 638: 634: 630: 626: 619: 617: 613: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 561: 559: 555: 550: 546: 542: 538: 534: 530: 526: 522: 518: 514: 510: 503: 501: 497: 492: 488: 484: 480: 476: 472: 468: 464: 460: 453: 451: 449: 445: 440: 436: 432: 428: 424: 420: 416: 408: 406: 404: 402: 398: 392: 388: 385: 384: 380: 378: 374: 372: 368: 364: 360: 356: 352: 344: 342: 339: 335: 328: 326: 324: 320: 315: 307: 305: 303: 296: 289: 285: 280: 277: 269: 267: 260: 258: 255: 251: 242: 240: 238: 234: 225: 223: 221: 217: 213: 209: 201: 196: 194: 192: 189:and monkeys ( 188: 184: 180: 176: 172: 168: 163: 159: 157: 148: 146: 144: 140: 135: 130: 128: 124: 120: 116: 112: 108: 107:nanoparticles 104: 100: 96: 92: 88: 84: 80: 73: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 36:Stokes shifts 33: 29: 25: 21: 3275:Quantum dots 3221: 3217: 3207: 3166: 3162: 3152: 3127: 3123: 3085: 3081: 3071: 3046: 3036: 3001: 2997: 2987: 2946: 2942: 2896: 2893:RSC Advances 2892: 2882: 2849: 2845: 2835: 2794: 2790: 2780: 2739: 2736:Nano Letters 2735: 2725: 2692: 2688: 2678: 2637: 2634:Nano Letters 2633: 2623: 2606:11585/714769 2588: 2584: 2574: 2533: 2529: 2519: 2494: 2490: 2480: 2455:10281/147955 2429: 2425: 2369: 2365: 2355: 2312: 2308: 2298: 2255: 2251: 2241: 2188: 2184: 2174: 2157: 2153: 2143: 2092: 2088: 2078: 2045: 2041: 2031: 1998:11585/786143 1980: 1976: 1930: 1926: 1916: 1883: 1880:Nano Letters 1879: 1869: 1826: 1822: 1812: 1779: 1775: 1765: 1732: 1728: 1718: 1685: 1675: 1642: 1638: 1627: 1586: 1582: 1572: 1539: 1535: 1529: 1496: 1492: 1481: 1448: 1444: 1398: 1394: 1384: 1349: 1345: 1335: 1324:. Retrieved 1320: 1311: 1276: 1272: 1262: 1213: 1209: 1199: 1150: 1147:Nano Letters 1146: 1136: 1088:(1): 12469. 1085: 1081: 1071: 1060:. Retrieved 1056: 1047: 1036:. Retrieved 1032: 1022: 997: 993: 983: 958: 954: 944: 903: 899: 889: 864: 860: 850: 799: 795: 747: 743: 733: 682: 678: 632: 628: 574: 570: 516: 512: 466: 462: 425:(1): 80–89. 422: 418: 375: 348: 332: 314:Stokes shift 311: 298: 291: 281: 273: 264: 261:Applications 246: 229: 226:Size control 205: 167:heavy metals 164: 160: 152: 134:luminescence 131: 87:Leigh Canham 77: 24:quantum dots 19: 18: 3088:: 795–801. 3004:: 862–867. 1057:aqmaterials 685:: 149–165. 3259:Categories 1326:2022-02-16 1062:2022-02-16 1038:2022-02-16 393:References 319:scattering 183:MDA-MB-231 179:HeLa cells 149:Properties 127:mesoporous 121:, silicon 117:, silicon 115:nanoshells 113:, silicon 3238:0743-7463 3191:2040-3372 3163:Nanoscale 3144:2050-7534 3102:0925-4005 3063:0925-4005 3020:1873-3573 2979:199662270 2963:1944-8244 2921:2046-2069 2866:0003-2700 2827:245566979 2811:1944-8244 2764:1530-6984 2709:2040-3372 2689:Nanoscale 2662:1530-6984 2615:199673319 2566:210086178 2550:1944-8244 2511:125935448 2472:125764896 2464:1749-4885 2386:1936-0851 2329:0002-7863 2272:1948-5875 2215:1936-0851 2198:1305.0368 2117:2041-1723 2062:1936-086X 2023:214750695 2007:2040-3372 1977:Nanoscale 1947:1936-0851 1908:1530-6984 1843:1936-0851 1796:0947-6539 1749:1520-5827 1702:1364-548X 1659:0002-7863 1619:137024851 1611:0884-2914 1513:2051-8153 1465:1936-0851 1415:1936-0851 1295:1936-0851 1238:0957-4484 1191:211086790 1175:1530-6984 1110:2045-2322 1014:0002-7863 975:0002-7863 928:0036-8075 881:0022-3654 842:219170328 826:1359-6640 802:: 10–81. 772:0003-6951 725:209705531 709:1364-5498 657:198369601 649:0897-4756 599:1463-9084 549:137024851 541:2044-5326 483:0009-2665 439:0897-4756 351:quenching 197:Synthesis 143:oxidation 139:passivate 129:silicon. 119:nanotubes 111:nanowires 44:pyrolysis 3246:29758156 3218:Langmuir 3199:24481004 3028:26452901 2971:31414591 2874:24160846 2819:34967610 2772:23320768 2717:29683161 2670:21462935 2558:31909959 2404:22616623 2366:ACS Nano 2347:20092250 2290:21546997 2233:23350651 2185:ACS Nano 2135:23933660 2095:: 2326. 2070:21138323 2042:ACS Nano 2015:32232243 1955:20738120 1927:ACS Nano 1861:19206483 1823:ACS Nano 1804:24664787 1757:26351966 1710:17031422 1667:21740050 1564:54221721 1473:23841561 1445:ACS Nano 1423:21138323 1395:ACS Nano 1376:35014827 1303:25183018 1273:ACS Nano 1246:21825815 1183:32046494 1128:26198209 936:29770915 834:32478768 717:32104860 607:21993573 491:27550744 381:See also 171:in vitro 123:aerogels 70:anodes. 3171:Bibcode 2998:Talanta 2901:Bibcode 2744:Bibcode 2642:Bibcode 2434:Bibcode 2395:3383901 2338:2836323 2281:3086380 2224:3612549 2126:4154512 2097:Bibcode 1888:Bibcode 1852:2676166 1591:Bibcode 1544:Bibcode 1521:1787951 1367:9721497 1254:8197325 1218:Bibcode 1155:Bibcode 1119:4510486 1090:Bibcode 908:Bibcode 900:Science 804:Bibcode 752:Bibcode 687:Bibcode 579:Bibcode 521:Bibcode 355:analyte 345:Sensing 175:in vivo 79:Silicon 74:History 64:sensors 3244:  3236:  3197:  3189:  3142:  3100:  3061:  3026:  3018:  2977:  2969:  2961:  2919:  2872:  2864:  2825:  2817:  2809:  2770:  2762:  2715:  2707:  2668:  2660:  2613:  2564:  2556:  2548:  2509:  2470:  2462:  2402:  2392:  2384:  2345:  2335:  2327:  2288:  2278:  2270:  2231:  2221:  2213:  2133:  2123:  2115:  2068:  2060:  2021:  2013:  2005:  1953:  1945:  1906:  1859:  1849:  1841:  1802:  1794:  1755:  1747:  1708:  1700:  1665:  1657:  1617:  1609:  1562:  1519:  1511:  1471:  1463:  1421:  1413:  1374:  1364:  1301:  1293:  1252:  1244:  1236:  1189:  1181:  1173:  1126:  1116:  1108:  1012:  973:  934:  926:  879:  840:  832:  824:  770:  723:  715:  707:  655:  647:  605:  597:  547:  539:  489:  481:  437:  216:silane 125:, and 66:, and 2975:S2CID 2823:S2CID 2611:S2CID 2562:S2CID 2507:S2CID 2468:S2CID 2193:arXiv 2019:S2CID 1615:S2CID 1560:S2CID 1250:S2CID 1187:S2CID 932:S2CID 838:S2CID 721:S2CID 653:S2CID 545:S2CID 91:light 26:with 3242:PMID 3234:ISSN 3195:PMID 3187:ISSN 3140:ISSN 3098:ISSN 3059:ISSN 3024:PMID 3016:ISSN 2967:PMID 2959:ISSN 2917:ISSN 2870:PMID 2862:ISSN 2815:PMID 2807:ISSN 2768:PMID 2760:ISSN 2713:PMID 2705:ISSN 2666:PMID 2658:ISSN 2554:PMID 2546:ISSN 2460:ISSN 2400:PMID 2382:ISSN 2343:PMID 2325:ISSN 2286:PMID 2268:ISSN 2229:PMID 2211:ISSN 2131:PMID 2113:ISSN 2066:PMID 2058:ISSN 2011:PMID 2003:ISSN 1951:PMID 1943:ISSN 1904:ISSN 1857:PMID 1839:ISSN 1800:PMID 1792:ISSN 1753:PMID 1745:ISSN 1706:PMID 1698:ISSN 1663:PMID 1655:ISSN 1607:ISSN 1517:OSTI 1509:ISSN 1469:PMID 1461:ISSN 1419:PMID 1411:ISSN 1372:PMID 1299:PMID 1291:ISSN 1242:PMID 1234:ISSN 1179:PMID 1171:ISSN 1124:PMID 1106:ISSN 1010:ISSN 971:ISSN 924:ISSN 877:ISSN 830:PMID 822:ISSN 768:ISSN 713:PMID 705:ISSN 645:ISSN 603:PMID 595:ISSN 537:ISSN 487:PMID 479:ISSN 435:ISSN 367:LUMO 363:FRET 297:and 210:, a 187:mice 173:and 3226:doi 3179:doi 3132:doi 3090:doi 3086:203 3051:doi 3006:doi 3002:144 2951:doi 2909:doi 2854:doi 2799:doi 2752:doi 2697:doi 2650:doi 2601:hdl 2593:doi 2538:doi 2499:doi 2450:hdl 2442:doi 2390:PMC 2374:doi 2333:PMC 2317:doi 2313:132 2276:PMC 2260:doi 2219:PMC 2203:doi 2162:doi 2121:PMC 2105:doi 2050:doi 1993:hdl 1985:doi 1935:doi 1896:doi 1847:PMC 1831:doi 1784:doi 1737:doi 1690:doi 1647:doi 1643:133 1599:doi 1552:doi 1501:doi 1453:doi 1403:doi 1362:PMC 1354:doi 1281:doi 1226:doi 1163:doi 1114:PMC 1098:doi 1002:doi 998:121 963:doi 959:117 916:doi 904:262 869:doi 812:doi 800:222 760:doi 695:doi 683:222 637:doi 587:doi 529:doi 471:doi 467:116 427:doi 288:PET 284:MRI 3261:: 3240:. 3232:. 3222:34 3220:. 3216:. 3193:. 3185:. 3177:. 3165:. 3161:. 3138:. 3126:. 3122:. 3110:^ 3096:. 3084:. 3080:. 3057:. 3045:. 3022:. 3014:. 3000:. 2996:. 2973:. 2965:. 2957:. 2947:11 2945:. 2941:. 2929:^ 2915:. 2907:. 2895:. 2891:. 2868:. 2860:. 2850:85 2848:. 2844:. 2821:. 2813:. 2805:. 2795:14 2793:. 2789:. 2766:. 2758:. 2750:. 2740:13 2738:. 2734:. 2711:. 2703:. 2693:10 2691:. 2687:. 2664:. 2656:. 2648:. 2638:11 2636:. 2632:. 2609:. 2599:. 2587:. 2583:. 2560:. 2552:. 2544:. 2534:12 2532:. 2528:. 2505:. 2493:. 2489:. 2466:. 2458:. 2448:. 2440:. 2430:11 2428:. 2424:. 2412:^ 2398:. 2388:. 2380:. 2368:. 2364:. 2341:. 2331:. 2323:. 2311:. 2307:. 2284:. 2274:. 2266:. 2254:. 2250:. 2227:. 2217:. 2209:. 2201:. 2187:. 2183:. 2156:. 2152:. 2129:. 2119:. 2111:. 2103:. 2091:. 2087:. 2064:. 2056:. 2044:. 2040:. 2017:. 2009:. 2001:. 1991:. 1981:12 1979:. 1975:. 1963:^ 1949:. 1941:. 1929:. 1925:. 1902:. 1894:. 1882:. 1878:. 1855:. 1845:. 1837:. 1825:. 1821:. 1798:. 1790:. 1780:20 1778:. 1774:. 1751:. 1743:. 1733:31 1731:. 1727:. 1704:. 1696:. 1684:. 1661:. 1653:. 1641:. 1637:. 1613:. 1605:. 1597:. 1587:10 1585:. 1581:. 1558:. 1550:. 1538:. 1515:. 1507:. 1495:. 1491:. 1467:. 1459:. 1447:. 1443:. 1431:^ 1417:. 1409:. 1397:. 1393:. 1370:. 1360:. 1348:. 1344:. 1319:. 1297:. 1289:. 1275:. 1271:. 1248:. 1240:. 1232:. 1224:. 1214:19 1212:. 1208:. 1185:. 1177:. 1169:. 1161:. 1151:20 1149:. 1145:. 1122:. 1112:. 1104:. 1096:. 1084:. 1080:. 1055:. 1031:. 1008:. 996:. 992:. 969:. 957:. 953:. 930:. 922:. 914:. 902:. 898:. 875:. 865:97 863:. 859:. 836:. 828:. 820:. 810:. 798:. 794:. 780:^ 766:. 758:. 748:57 746:. 742:. 719:. 711:. 703:. 693:. 681:. 677:. 665:^ 651:. 643:. 633:31 631:. 627:. 615:^ 601:. 593:. 585:. 575:13 573:. 569:. 557:^ 543:. 535:. 527:. 517:10 515:. 511:. 499:^ 485:. 477:. 465:. 461:. 447:^ 433:. 423:29 421:. 417:. 400:^ 222:. 62:, 58:, 54:, 42:, 3248:. 3228:: 3201:. 3181:: 3173:: 3167:6 3146:. 3134:: 3128:4 3104:. 3092:: 3065:. 3053:: 3030:. 3008:: 2981:. 2953:: 2923:. 2911:: 2903:: 2897:5 2876:. 2856:: 2829:. 2801:: 2774:. 2754:: 2746:: 2719:. 2699:: 2672:. 2652:: 2644:: 2617:. 2603:: 2595:: 2589:6 2568:. 2540:: 2513:. 2501:: 2495:6 2474:. 2452:: 2444:: 2436:: 2406:. 2376:: 2370:6 2349:. 2319:: 2292:. 2262:: 2256:2 2235:. 2205:: 2195:: 2189:7 2168:. 2164:: 2158:4 2137:. 2107:: 2099:: 2093:4 2072:. 2052:: 2046:5 2025:. 1995:: 1987:: 1957:. 1937:: 1931:4 1910:. 1898:: 1890:: 1884:4 1863:. 1833:: 1827:2 1806:. 1786:: 1759:. 1739:: 1712:. 1692:: 1669:. 1649:: 1621:. 1601:: 1593:: 1566:. 1554:: 1546:: 1540:9 1523:. 1503:: 1497:5 1475:. 1455:: 1449:7 1425:. 1405:: 1399:5 1378:. 1356:: 1350:5 1329:. 1305:. 1283:: 1277:8 1256:. 1228:: 1220:: 1193:. 1165:: 1157:: 1130:. 1100:: 1092:: 1086:5 1065:. 1041:. 1016:. 1004:: 977:. 965:: 938:. 918:: 910:: 883:. 871:: 844:. 814:: 806:: 774:. 762:: 754:: 727:. 697:: 689:: 659:. 639:: 609:. 589:: 581:: 551:. 531:: 523:: 493:. 473:: 441:. 429:: 301:2 299:T 294:1 292:T

Index

quantum dots
photoluminescence
indirect band gap
Stokes shifts
disproportionation
pyrolysis
carbon quantum dots
biological imaging
luminescent solar concentrators
light emitting diodes
sensors
lithium-ion battery
Silicon
conduction band and valence band
Leigh Canham
light
quantum confinement
porous silicon
nanostructures
nanoparticles
nanowires
nanoshells
nanotubes
aerogels
mesoporous
luminescence
passivate
oxidation
quantum yields
heavy metals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.