Knowledge

Simplicial presheaf

Source 📝

1053:
as a constant simplicial set; this way, the category of sheaves on the site is included as a subcategory to the homotopy category of simplicial presheaves on the site. The inclusion functor has a left adjoint and that is exactly
48:
from the site to the category of simplicial sets). Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a
207: 578: 724:
The category of such functors is endowed with (at least) three model structures, namely the projective, the Reedy, and the injective model structure. The weak equivalences / fibrations in the first are maps
289: 463: 922: 818: 1014: 760: 1296: 719: 112: 643: 1211: 1088: 608: 334: 370: 242: 1130: 1051: 150: 155: 468: 1426: 1389:
Axiomatic, enriched and motivic homotopy theory. Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 9--20 September 2002
928: 1396: 247: 387: 870: 771: 1391:. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 131. Dordrecht: Kluwer Academic. pp. 29–68. 941: 731: 1223: 1315: 666: 1459: 1454: 79: 126: 613: 1139: 118:, a simplicial object in the site, represents a simplicial presheaf (in fact, often a simplicial sheaf). 1057: 45: 1336: 1373: 840: 58: 1133: 831:. The injective model structure is similar, but with weak equivalences and cofibrations instead. 29: 583: 309: 1464: 1392: 343: 215: 54: 37: 1387:
Jardine, J.F. (2004). "Generalised sheaf cohomology theories". In Greenlees, J. P. C. (ed.).
1402: 1344:
Introductory Workshop on Algebraic Stacks, Intersection Theory, and Non-Abelian Hodge Theory
1100: 1406: 1027: 33: 17: 132: 1415: 932: 654: 41: 1448: 854: 65: 1301:
where the left denotes a sheaf cohomology and the right the homotopy class of maps.
1310: 1132:
by doing classifying space construction levelwise (the notion comes from the
244:
is a local weak equivalence of simplicial presheaves, then the induced map
25: 660:
Some of them are obtained by viewing simplicial presheaves as functors
202:{\displaystyle B\operatorname {GL} =\varinjlim B\operatorname {GL_{n}} } 1439: 653:
The category of simplicial presheaves on a site admits many different
573:{\displaystyle (\pi _{i}^{\text{pr}}(F,s))(f)=\pi _{i}(F(Y),f^{*}(s))} 1097:
is a sheaf of abelian group (on the same site), then we define
823:
is a weak equivalence / fibration of simplicial sets, for all
796: 777: 747: 737: 284:{\displaystyle \mathbb {Z} f:\mathbb {Z} X\to \mathbb {Z} Y} 458:{\displaystyle (\pi _{0}^{\text{pr}}F)(X)=\pi _{0}(F(X))} 917:{\displaystyle F(X)\to \operatorname {holim} F(H_{n})} 813:{\displaystyle {\mathcal {F}}(U)\to {\mathcal {G}}(U)} 1226: 1142: 1103: 1060: 1030: 944: 873: 774: 734: 669: 616: 586: 471: 390: 346: 312: 250: 218: 158: 135: 82: 1427:
Simplicial presheaves and derived algebraic geometry
1024:
on the site can be considered as a stack by viewing
1290: 1205: 1124: 1082: 1045: 1008: 916: 812: 754: 713: 637: 602: 572: 457: 364: 328: 283: 236: 201: 144: 106: 1009:{\displaystyle =\{0,1,\dots ,n\}\mapsto F(H_{n})} 755:{\displaystyle {\mathcal {F}}\to {\mathcal {G}}} 129:section-wise, one obtains a simplicial presheaf 610:to be the sheaf associated with the pre-sheaf 209:. These types of examples appear in K-theory. 8: 1291:{\displaystyle \operatorname {H} ^{i}(X;A)=} 981: 957: 931:as simplicial sets, where the right is the 714:{\displaystyle S^{op}\to \Delta ^{op}Sets} 1374:Model structures on simplicial presheaves 1231: 1225: 1141: 1102: 1071: 1059: 1029: 997: 943: 905: 872: 795: 794: 776: 775: 773: 746: 745: 736: 735: 733: 690: 674: 668: 626: 621: 615: 591: 585: 552: 524: 484: 479: 470: 431: 403: 398: 389: 345: 317: 311: 295:Homotopy sheaves of a simplicial presheaf 274: 273: 263: 262: 252: 251: 249: 217: 192: 184: 168: 157: 134: 107:{\displaystyle \operatorname {Hom} (-,U)} 81: 849:on a site is called a stack if, for any 303:be a simplicial presheaf on a site. The 125:be a presheaf of groupoids. Then taking 1356: 1327: 1213:. One can show (by induction): for any 638:{\displaystyle \pi _{i}^{\text{pr}}F} 16:In mathematics, more specifically in 7: 1206:{\displaystyle K(A,i)=K(K(A,i-1),1)} 76:in the site represents the presheaf 1337:"Stacks and Non-abelian cohomology" 1228: 1083:{\displaystyle F\mapsto \pi _{0}F} 687: 291:is also a local weak equivalence. 193: 189: 185: 14: 340:is defined as follows. For any 1285: 1282: 1270: 1258: 1252: 1240: 1200: 1191: 1173: 1167: 1158: 1146: 1119: 1107: 1064: 1040: 1034: 1003: 990: 984: 951: 945: 911: 898: 886: 883: 877: 807: 801: 791: 788: 782: 742: 683: 567: 564: 558: 542: 536: 530: 514: 508: 505: 502: 490: 472: 452: 449: 443: 437: 421: 415: 412: 391: 356: 270: 228: 101: 89: 1: 152:. For example, one might set 372:in the site and a 0-simplex 1481: 838: 1316:N-group (category theory) 603:{\displaystyle \pi _{i}F} 329:{\displaystyle \pi _{*}F} 365:{\displaystyle f:X\to Y} 237:{\displaystyle f:X\to Y} 1440:J.F. Jardine's homepage 1416:"Simplicial presheaves" 1335:Toën, Bertrand (2002), 1414:Jardine, J.F. (2007). 1292: 1207: 1126: 1125:{\displaystyle K(A,1)} 1084: 1047: 1010: 918: 845:A simplicial presheaf 814: 756: 715: 639: 604: 574: 459: 366: 330: 285: 238: 203: 146: 108: 64:Example: Consider the 1293: 1208: 1127: 1085: 1048: 1011: 919: 815: 757: 716: 640: 605: 575: 460: 367: 331: 286: 239: 204: 147: 109: 46:contravariant functor 1224: 1140: 1101: 1058: 1046:{\displaystyle F(X)} 1028: 942: 871: 864:, the canonical map 772: 732: 667: 614: 584: 469: 388: 344: 310: 248: 216: 156: 133: 80: 841:Stack (mathematics) 631: 489: 408: 57:in the category of 40:) taking values in 22:simplicial presheaf 1288: 1203: 1134:obstruction theory 1122: 1080: 1043: 1006: 914: 810: 752: 711: 635: 617: 600: 570: 475: 455: 394: 362: 326: 281: 234: 199: 176: 145:{\displaystyle BG} 142: 104: 38:topological spaces 629: 487: 406: 169: 116:simplicial scheme 55:simplicial object 1472: 1422: 1420: 1410: 1372:Konrad Voelkel, 1360: 1354: 1348: 1347: 1341: 1332: 1297: 1295: 1294: 1289: 1236: 1235: 1212: 1210: 1209: 1204: 1131: 1129: 1128: 1123: 1089: 1087: 1086: 1081: 1076: 1075: 1052: 1050: 1049: 1044: 1015: 1013: 1012: 1007: 1002: 1001: 929:weak equivalence 923: 921: 920: 915: 910: 909: 819: 817: 816: 811: 800: 799: 781: 780: 761: 759: 758: 753: 751: 750: 741: 740: 720: 718: 717: 712: 698: 697: 682: 681: 655:model structures 649:Model structures 644: 642: 641: 636: 630: 627: 625: 609: 607: 606: 601: 596: 595: 579: 577: 576: 571: 557: 556: 529: 528: 488: 485: 483: 464: 462: 461: 456: 436: 435: 407: 404: 402: 371: 369: 368: 363: 335: 333: 332: 327: 322: 321: 305:homotopy sheaves 290: 288: 287: 282: 277: 266: 255: 243: 241: 240: 235: 208: 206: 205: 200: 198: 197: 196: 177: 151: 149: 148: 143: 113: 111: 110: 105: 51:simplicial sheaf 1480: 1479: 1475: 1474: 1473: 1471: 1470: 1469: 1460:Simplicial sets 1455:Homotopy theory 1445: 1444: 1436: 1431: 1418: 1413: 1399: 1386: 1382: 1369: 1367:Further reading 1364: 1363: 1355: 1351: 1339: 1334: 1333: 1329: 1324: 1307: 1227: 1222: 1221: 1138: 1137: 1099: 1098: 1067: 1056: 1055: 1026: 1025: 993: 940: 939: 901: 869: 868: 843: 837: 770: 769: 730: 729: 686: 670: 665: 664: 651: 612: 611: 587: 582: 581: 548: 520: 467: 466: 427: 386: 385: 342: 341: 313: 308: 307: 297: 246: 245: 214: 213: 188: 154: 153: 131: 130: 78: 77: 53:on a site is a 42:simplicial sets 18:homotopy theory 12: 11: 5: 1478: 1476: 1468: 1467: 1462: 1457: 1447: 1446: 1443: 1442: 1435: 1434:External links 1432: 1430: 1429: 1423: 1411: 1397: 1383: 1381: 1378: 1377: 1376: 1368: 1365: 1362: 1361: 1349: 1326: 1325: 1323: 1320: 1319: 1318: 1313: 1306: 1303: 1299: 1298: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1234: 1230: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1121: 1118: 1115: 1112: 1109: 1106: 1079: 1074: 1070: 1066: 1063: 1042: 1039: 1036: 1033: 1018: 1017: 1005: 1000: 996: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 933:homotopy limit 925: 924: 913: 908: 904: 900: 897: 894: 891: 888: 885: 882: 879: 876: 839:Main article: 836: 833: 821: 820: 809: 806: 803: 798: 793: 790: 787: 784: 779: 763: 762: 749: 744: 739: 722: 721: 710: 707: 704: 701: 696: 693: 689: 685: 680: 677: 673: 650: 647: 634: 624: 620: 599: 594: 590: 580:. We then set 569: 566: 563: 560: 555: 551: 547: 544: 541: 538: 535: 532: 527: 523: 519: 516: 513: 510: 507: 504: 501: 498: 495: 492: 482: 478: 474: 454: 451: 448: 445: 442: 439: 434: 430: 426: 423: 420: 417: 414: 411: 401: 397: 393: 361: 358: 355: 352: 349: 325: 320: 316: 296: 293: 280: 276: 272: 269: 265: 261: 258: 254: 233: 230: 227: 224: 221: 195: 191: 187: 183: 180: 175: 172: 167: 164: 161: 141: 138: 103: 100: 97: 94: 91: 88: 85: 13: 10: 9: 6: 4: 3: 2: 1477: 1466: 1463: 1461: 1458: 1456: 1453: 1452: 1450: 1441: 1438: 1437: 1433: 1428: 1424: 1417: 1412: 1408: 1404: 1400: 1398:1-4020-1833-9 1394: 1390: 1385: 1384: 1379: 1375: 1371: 1370: 1366: 1358: 1353: 1350: 1345: 1338: 1331: 1328: 1321: 1317: 1314: 1312: 1309: 1308: 1304: 1302: 1279: 1276: 1273: 1267: 1264: 1261: 1255: 1249: 1246: 1243: 1237: 1232: 1220: 1219: 1218: 1217:in the site, 1216: 1197: 1194: 1188: 1185: 1182: 1179: 1176: 1170: 1164: 1161: 1155: 1152: 1149: 1143: 1135: 1116: 1113: 1110: 1104: 1096: 1091: 1077: 1072: 1068: 1061: 1037: 1031: 1023: 998: 994: 987: 978: 975: 972: 969: 966: 963: 960: 954: 948: 938: 937: 936: 934: 930: 906: 902: 895: 892: 889: 880: 874: 867: 866: 865: 863: 859: 856: 855:hypercovering 852: 848: 842: 834: 832: 830: 826: 804: 785: 768: 767: 766: 728: 727: 726: 708: 705: 702: 699: 694: 691: 678: 675: 671: 663: 662: 661: 658: 656: 648: 646: 632: 622: 618: 597: 592: 588: 561: 553: 549: 545: 539: 533: 525: 521: 517: 511: 499: 496: 493: 480: 476: 446: 440: 432: 428: 424: 418: 409: 399: 395: 383: 379: 375: 359: 353: 350: 347: 339: 323: 318: 314: 306: 302: 294: 292: 278: 267: 259: 256: 231: 225: 222: 219: 210: 181: 178: 173: 170: 165: 162: 159: 139: 136: 128: 124: 121:Example: Let 119: 117: 98: 95: 92: 86: 83: 75: 71: 67: 62: 61:on the site. 60: 56: 52: 47: 43: 39: 35: 31: 27: 23: 19: 1388: 1357:Jardine 2007 1352: 1343: 1330: 1300: 1214: 1094: 1092: 1021: 1019: 926: 861: 857: 850: 846: 844: 828: 827:in the site 824: 822: 764: 723: 659: 652: 381: 377: 373: 337: 304: 300: 298: 211: 122: 120: 115: 73: 69: 68:of a scheme 63: 50: 21: 15: 1311:cubical set 1136:) and set 765:such that 32:(e.g., the 1449:Categories 1407:1063.55004 1380:References 1020:Any sheaf 114:. Thus, a 66:étale site 1425:B. Toën, 1238:⁡ 1186:− 1069:π 1065:↦ 985:↦ 973:… 893:⁡ 887:→ 792:→ 743:→ 688:Δ 684:→ 619:π 589:π 554:∗ 522:π 477:π 429:π 396:π 357:→ 319:∗ 315:π 271:→ 229:→ 179:⁡ 174:→ 93:− 87:⁡ 44:(i.e., a 1465:Functors 1305:See also 853:and any 34:category 26:presheaf 384:), set 72:. Each 59:sheaves 1405:  1395:  1346:, MSRI 127:nerves 1419:(PDF) 1340:(PDF) 1322:Notes 927:is a 890:holim 835:Stack 28:on a 24:is a 1393:ISBN 1359:, §1 465:and 299:Let 30:site 20:, a 1403:Zbl 1093:If 935:of 376:in 336:of 212:If 171:lim 84:Hom 36:of 1451:: 1401:. 1342:, 1090:. 657:. 645:. 628:pr 486:pr 405:pr 163:GL 1421:. 1409:. 1286:] 1283:) 1280:i 1277:, 1274:A 1271:( 1268:K 1265:, 1262:X 1259:[ 1256:= 1253:) 1250:A 1247:; 1244:X 1241:( 1233:i 1229:H 1215:X 1201:) 1198:1 1195:, 1192:) 1189:1 1183:i 1180:, 1177:A 1174:( 1171:K 1168:( 1165:K 1162:= 1159:) 1156:i 1153:, 1150:A 1147:( 1144:K 1120:) 1117:1 1114:, 1111:A 1108:( 1105:K 1095:A 1078:F 1073:0 1062:F 1041:) 1038:X 1035:( 1032:F 1022:F 1016:. 1004:) 999:n 995:H 991:( 988:F 982:} 979:n 976:, 970:, 967:1 964:, 961:0 958:{ 955:= 952:] 949:n 946:[ 912:) 907:n 903:H 899:( 896:F 884:) 881:X 878:( 875:F 862:X 860:→ 858:H 851:X 847:F 829:S 825:U 808:) 805:U 802:( 797:G 789:) 786:U 783:( 778:F 748:G 738:F 709:s 706:t 703:e 700:S 695:p 692:o 679:p 676:o 672:S 633:F 623:i 598:F 593:i 568:) 565:) 562:s 559:( 550:f 546:, 543:) 540:Y 537:( 534:F 531:( 526:i 518:= 515:) 512:f 509:( 506:) 503:) 500:s 497:, 494:F 491:( 481:i 473:( 453:) 450:) 447:X 444:( 441:F 438:( 433:0 425:= 422:) 419:X 416:( 413:) 410:F 400:0 392:( 382:X 380:( 378:F 374:s 360:Y 354:X 351:: 348:f 338:F 324:F 301:F 279:Y 275:Z 268:X 264:Z 260:: 257:f 253:Z 232:Y 226:X 223:: 220:f 194:n 190:L 186:G 182:B 166:= 160:B 140:G 137:B 123:G 102:) 99:U 96:, 90:( 74:U 70:S

Index

homotopy theory
presheaf
site
category
topological spaces
simplicial sets
contravariant functor
simplicial object
sheaves
étale site
nerves
model structures
Stack (mathematics)
hypercovering
weak equivalence
homotopy limit
obstruction theory
cubical set
N-group (category theory)
"Stacks and Non-abelian cohomology"
Jardine 2007
Model structures on simplicial presheaves
ISBN
1-4020-1833-9
Zbl
1063.55004
"Simplicial presheaves"
Simplicial presheaves and derived algebraic geometry
J.F. Jardine's homepage
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.