Knowledge (XXG)

Solar-cell efficiency

Source 📝

66:, in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m will produce 200 kWh/yr at Standard Test Conditions if exposed to the Standard Test Condition solar irradiance value of 1000 W/m for 2.74 hours a day. Usually solar panels are exposed to sunlight for longer than this in a given day, but the solar irradiance is less than 1000 W/m for most of the day. A solar panel can produce more when the Sun is high in Earth's sky and will produce less in cloudy conditions or when the Sun is low in the sky; usually the Sun is lower in the sky in the winter. 1029:
the deviation of the light rays from the incident direction, thereby increasing their path length in the cells' absorber. Conventional approaches used to implement light diffusion are based on textured rear/front surfaces, but many alternative optical designs have been demonstrated with promising results based in diffraction gratings, arrays of metal or dielectric nano/micro particles, wave-optical micro-structuring, among others. When applied in the devices' front these structures can act as geometric anti-reflective coatings, simultaneously reducing the reflection of out-going light.
33: 653:
surface of the solar panels causes the dust particles to move in a "flip-flop" manner. Then, due to gravity and the fact that the solar panels are slightly slanted, the dust particles get pulled downward by gravity. These systems only require a small power consumption and enhance the performance of the solar cells, especially when installed in the desert, where dust accumulation contributes to decreasing the solar panel's performance. Also, for systems large enough to justify the extra expense, a
1054:
front (multi-)layer composition, and/or by geometric refractive-index matching caused by the surface topography, with many architectures inspired by nature. For example, the nipple-array, a hexagonal array of subwavelength conical nanostructures, can be seen at the surface of the moth's eyes. It was reported that utilizing this sort of surface architecture minimizes the reflection losses by 25%, converting the additional captured photon to a 12% increase in a solar cell's energy.
239:. If we take 6000 K for the temperature of the sun and 300 K for ambient conditions on earth, this comes to 95%. In 1981, Alexis de Vos and Herman Pauwels showed that this is achievable with a stack of an infinite number of cells with band gaps ranging from infinity (the first cells encountered by the incoming photons) to zero, with a voltage in each cell very close to the open-circuit voltage, equal to 95% of the band gap of that cell, and with 6000 K 3320: 188: 256:
directions by 6000 K blackbody radiation. In this case, the voltages must be lowered to less than 95% of the band gap (the percentage is not constant over all the cells). The maximum theoretical efficiency calculated is 86.8% for a stack of an infinite number of cells, using the incoming concentrated sunlight radiation. When the incoming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.
343: 1058:
when travelling from air towards the photovoltaic material. These surfaces can be created by etching or using lithography. Concomitantly, they promote light scattering effects which further enhance the absorption, particularly of the longer wavelength sunlight photons. Adding a flat back surface in addition to texturizing the front surface further helps to trap the light within the cell, thus providing a longer optical path.
1013: 272:, so their energy is not converted to useful output, and only generates heat if absorbed. For photons with an energy above the band gap energy, only a fraction of the energy above the band gap can be converted to useful output. When a photon of greater energy is absorbed, the excess energy above the band gap is converted to kinetic energy of the carrier combination. The excess kinetic energy is converted to heat through 3326: 4122: 1223: 1045:. Gold and silver are not very efficient, as they absorb much of the light in the visible spectrum, which contains most of the energy present in sunlight, reducing the amount of light reaching the cell. Aluminium absorbs only ultraviolet radiation, and reflects both visible and infra-red light, so energy loss is minimized. Aluminium can increase cell efficiency up to 22% (in lab conditions). 1237: 3332: 1024:: anti-reflection and scattering; and two main spectral regions can be distinguished for each mechanism, at short and long wavelengths, thus leading to the 4 types of absorption enhancement profiles illustrated here across the absorber region. The main geometrical parameter of the photonic structures influencing the absorption enhancement in each profile is indicated by the black arrows. 1170: 4134: 83: 940:" have only begun to become cost-competitive as a result of the development of high efficiency GaAs cells. The increase in intensity is typically accomplished by using concentrating optics. A typical concentrator system may use a light intensity 6–400 times the Sun, and increase the efficiency of a one sun GaAs cell from 31% at AM 1.5 to 35%. 924:
an efficiency of 14% at AM0, but 16% on Earth at AM 1.5. Note, however, that the number of incident photons in space is considerably larger, so the solar cell might produce considerably more power in space, despite the lower efficiency as indicated by reduced percentage of the total incident energy captured.
1102:
is critical to solar cell efficiency. Many improvements have been made to the front side of mass-produced solar cells, but the aluminium back-surface is impeding efficiency improvements. The efficiency of many solar cells has benefitted by creating so-called passivated emitter and rear cells (PERCs).
1057:
The use of front micro-structures, such as those achieved with texturizing or other photonic features, can also be used as a method to achieve anti-reflectiveness, in which the surface of a solar cell is altered so that the impinging light experiences a gradually increasing effective refractive-index
968:
The energy payback time is defined as the recovery time required for generating the energy spent for manufacturing a modern photovoltaic module. In 2008, it was estimated to be from 1 to 4 years depending on the module type and location. With a typical lifetime of 20 to 30 years, this means that
1192:
light-trapping schemes promoting light scattering. Also important is thin film surface recombination. Since this is the dominant recombination process of nanoscale thin-film solar cells, it is crucial to their efficiency. Adding a passivating thin layer of silicon dioxide could reduce recombination.
1028:
The inclusion of light-scattering effects in solar cells is a photonic strategy to increase the absorption for the lower-energy sunlight photons (chiefly in near-infrared range) for which the photovoltaic material presents reduced absorption coefficient. Such light-trapping scheme is accomplished by
255:
radiation as it has non-zero temperature, and this radiation has to be subtracted from the incoming radiation when calculating the amount of heat being transferred and the efficiency. They also considered the more relevant problem of maximizing the power output for a stack being illuminated from all
78:
of energy per year. However, in Michigan, which receives only 1400 kWh/m/year, annual energy yield will drop to 280 kWh for the same panel. At more northerly European latitudes, yields are significantly lower: 175 kWh annual energy yield in southern England under the same conditions.
1084:
into space, cooling the cell up to 13 Â°C. Radiative cooling can thus extend the life of solar cells. Full-system integration of solar energy and radiative cooling is referred to as a combined SE–RC system, which have demonstrated higher energy gain per unit area when compared to non-integrated
989:
Like any other technology, solar cell manufacture is dependent on the existence of a complex global industrial manufacturing system. This includes the fabrication systems typically accounted for in estimates of manufacturing energy; the contingent mining, refining and global transportation systems;
923:
0 (AM0) in space, to approximately Air Mass 1.5 on Earth. Multiplying the spectral differences by the quantum efficiency of the solar cell in question yields the efficiency. Terrestrial efficiencies typically are greater than space efficiencies. For example, a silicon solar cell in space might have
652:
varies with incident illumination. For example, accumulation of dust on photovoltaic panels reduces the maximum power point. Recently, new research to remove dust from solar panels has been developed by utilizing electrostatic cleaning systems. In such systems, an applied electrostatic field at the
313:
Quantum efficiency refers to the percentage of photons that are converted to electric current (i.e., collected carriers) when the cell is operated under short circuit conditions. The two types of quantum that are usually referred to when talking about solar cells are external and internal. External
69:
Two location dependant factors that affect solar PV yield are the dispersion and intensity of solar radiation. These two variables can vary greatly between each country. The global regions that have high radiation levels throughout the year are the middle east, Northern Chile, Australia, China, and
1053:
Anti-reflective coatings are engineered to reduce the sunlight reflected from the solar cells, therefore enhancing the light transmitted into the photovoltaic absorber. This can be accomplished by causing the destructive interference of the reflected light waves, such as with coatings based on the
1032:
For instance, lining the light-receiving surface of the cell with nano-sized metallic studs can substantially increase the cell efficiency. Light reflects off these studs at an oblique angle to the cell, increasing the length of the light path through the cell. This increases the number of photons
976:
A study published in 2013 which the existing literature found that energy payback time was between 0.75 and 3.5 years with thin film cells being at the lower end and multicrystalline silicon (multi-Si) cells having a payback time of 1.5–2.6 years. A 2015 review assessed the energy payback time and
1210:
with multiple layers of silicon. Perovskites demonstrate a remarkable ability to efficiently capture and convert blue light, complementing silicon, which is particularly adept at absorbing red and infrared wavelengths. This unique synergy between perovskites and silicon in solar cell technologies
318:
solar cell includes the effect of optical losses such as transmission and reflection. Measures can be taken to reduce these losses. The reflection losses, which can account for up to 10% of the total incident energy, can be dramatically decreased using a technique called texturization, a light
932:
solar cells are around 14–19%. The highest efficiency cells have not always been the most economical – for example a 30% efficient multijunction cell based on exotic materials such as gallium arsenide or indium selenide produced at low volume might well cost one hundred times as much as an 8%
1191:
materials show a lot of promise for solar cells in terms of low costs and adaptability to existing structures and frameworks in technology. Since the materials are so thin, they lack the optical absorption of bulk material solar cells. Attempts to correct this have been demonstrated, such as
1003:
The illuminated side of some types of solar cells, thin films, have a transparent conducting film to allow light to enter into the active material and to collect the generated charge carriers. Typically, films with high transmittance and high electrical conductance such as indium tin oxide,
2914:"Rear-Surface Passivation Technology for Crystalline Silicon Solar Cells: A Versatile Process for Mass Production". Ieee, IEEE, 2012, www.osapublishing.org/DirectPDFAccess/F1E0036E-C63D-5F6F-EA52FF38B5D1786D_270075/oe-21-S6-A1065.pdf?da=1&id=270075&seq=0&mobile=no. 947:(kWh). The solar cell efficiency in combination with the available irradiation has a major influence on the costs, but generally speaking the overall system efficiency is important. Commercially available solar cells (as of 2006) reached system efficiencies between 5 and 19%. 577:). The cell temperature in full sunlight, even with 25 Â°C air temperature, will probably be close to 45 Â°C, reducing the open-circuit voltage to 0.55 V per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached ( 195:
for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by
322:
The internal quantum efficiency (IQE) gives insight into the internal material parameters like the absorption coefficient or internal luminescence quantum efficiency. IQE is mainly used to aid the understanding of the potential of a certain material rather than a device.
1004:
conducting polymers or conducting nanowire networks are used for the purpose. There is a trade-off between high transmittance and electrical conductance, thus optimum density of conducting nanowires or conducting network structure should be chosen for high efficiency.
330:
measurement (that is, as a function of photon wavelength or energy). Since some wavelengths are absorbed more effectively than others, spectral measurements of quantum efficiency can yield valuable information about the quality of the semiconductor bulk and surfaces.
927:
Solar cell efficiencies vary from 6% for amorphous silicon-based solar cells to 44.0% with multiple-junction production cells and 44.4% with multiple dies assembled into a hybrid package. Solar cell energy conversion efficiencies for commercially available
857: 981:
of solar photovoltaics. In this meta study, which uses an insolation of 1,700 kWh/m/year and a system lifetime of 30 years, mean harmonized EROIs between 8.7 and 34.2 were found. Mean harmonized energy payback time varied from 1.0 to 4.1 years.
3108:
Da, Yun, and Yimin Xuan. "Role of Surface Recombination in Affecting the Efficiency of Nanostructured Thin-Film Solar Cells .” Osapublishing, 2013, www.osapublishing.org/DirectPDFAccess/F1E0036E-C63D-5F6F-EA52FF38B5D1786D_270075/oe-21-S6-A1065
2038:"Part II – Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code". Part II – Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code - National Instruments, 10 May 2012, ni.com/white-paper/7230/en/. 918:
Air mass affects output. In space, where there is no atmosphere, the spectrum of the Sun is relatively unfiltered. However, on Earth, air filters the incoming light, changing the solar spectrum. The filtering effect ranges from
898:
Energy conversion efficiency is measured by dividing the electrical output by the incident light power. Factors influencing output include spectral distribution, spatial distribution of power, temperature, and resistive load.
375:
point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation. (The output power is zero in both the short circuit and open circuit extremes).
149:, Golden, Colorado, USA, which was set in lab conditions, under extremely concentrated light. The record in real-world conditions is also held by NREL, who developed triple junction cells with a tested efficiency of 39.5%. 1514:
Schygulla, Patrick; Beutel, Paul; Heckelmann, Stefan; Höhn, Oliver; Klitzke, Malte; Schön, Jonas; Oliva, Eduard; Predan, Felix; Schachtner, Michael; Siefer, Gerald; Helmers, Henning; Dimroth, Frank; Lackner, David (2022).
137:
As of 2024, the world record for solar cell efficiency is 47.6%, set in May 2022 by Fraunhofer ISE, with a III-V four-junction concentrating photovoltaic (CPV) cell. This beat the previous record of 47.1%, set in 2019 by
584:). Maximum power (with 45 Â°C cell temperature) is typically produced with 75% to 80% of the open-circuit voltage (0.43 V in this case) and 90% of the short-circuit current. This output can be up to 70% of the 301:
When a photon is absorbed by a solar cell it can produce an electron-hole pair. One of the carriers may reach the p–n junction and contribute to the current produced by the solar cell; such a carrier is said to be
492: 990:
and other energy intensive support systems including finance, information, and security systems. The difficulty in measuring such energy overhead confers some uncertainty on any estimate of payback times.
2264:
M. Ito; K. Kato; K. Komoto; et al. (2008). "A comparative study on cost and life-cycle analysis for 100 MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules".
268:
and are therefore subject to a lower efficiency limit, called the "ultimate efficiency" by Shockley and Queisser. Photons with an energy below the band gap of the absorber material cannot generate an
3060:
Bose, Sourav; Cunha, José M. V.; Suresh, Sunil; De Wild, Jessica; Lopes, Tomås S.; Barbosa, João R. S.; Silva, Ricardo; Borme, JérÎme; Fernandes, Paulo A.; Vermang, Bart; Salomé, Pedro M. P. (2018).
2531:
Schuster, Christian Stefano; Crupi, Isodiana; Halme, Janne; Koç, Mehmet; Mendes, Manuel João; Peters, Ian Marius; Yerci, Selçuk (2022), Lackner, Maximilian; Sajjadi, Baharak; Chen, Wei-Yin (eds.),
2694:
Gee, Justin. "How to Make Solar Panels More Efficient in 2018 | EnergySage". EnergySage Solar News Feed, EnergySage, 19 Sept. 2017, news.energysage.com/how-to-make-solar-panels-more-efficient/.
2574:
Mendes, Manuel J.; Sanchez-Sobrado, Olalla; Haque, Sirazul; Mateus, Tiago; Águas, Hugo; Fortunato, Elvira; Martins, Rodrigo (1 January 2020), Enrichi, Francesco; Righini, Giancarlo C. (eds.),
1126:
Concepts of the rear surface passivation for silicon solar cells has also been implemented for CIGS solar cells. The rear surface passivation shows the potential to improve the efficiency. Al
1877:
Verlinden, Pierre; Evrard, Olivier; Mazy, Emmanuel; Crahay, André (March 1992). "The surface texturization of solar cells: A new method using V-grooves with controllable sidewall angles".
287:
Solar cells with multiple band gap absorber materials improve efficiency by dividing the solar spectrum into smaller bins where the thermodynamic efficiency limit is higher for each bin.
126:. Reflectance losses are accounted for by the quantum efficiency value, as they affect "external quantum efficiency". Recombination losses are accounted for by the quantum efficiency, V 936:
However, there is a way to "boost" solar power. By increasing the light intensity, typically photogenerated carriers are increased, increasing efficiency by up to 15%. These so-called "
726: 379:
The maximum power point of a solar cell is affected by its temperature. Knowing the technical data of certain solar cell, its power output at a certain temperature can be obtained by
90:, which are collected by both the electrodes. The absorption and collection efficiencies of a solar cell depend on the design of transparent conductors and active layer thickness. 950:
Undoped crystalline silicon devices are approaching the theoretical limiting efficiency of 29.43%. In 2017, efficiency of 26.63% was achieved in an amorphous silicon/crystalline
2638:
Hylton, Nicholas; Li, X. F; Giannini, K. H.; Lee, N. J; Ekins-Daukes, N. J.; Loo, J.; Vercruysse, D.; Van Dorpe, P.; Sodabanlu, H.; Sugiyama, M.; Maier, S. A. (7 October 2013).
1211:
allows for a more comprehensive absorption of the solar spectrum, enhancing the overall efficiency and performance of photovoltaic devices. The cell achieved 32.5% efficiency.
334:
Quantum efficiency is not the same as overall energy conversion efficiency, as it does not convey information about the fraction of power that is converted by the solar cell.
973:
technologies—despite having comparatively low conversion efficiencies—achieve significantly shorter energy payback times than conventional systems (often < 1 year).
1532:
Geisz, John F.; France, Ryan M.; Schulte, Kevin L.; Steiner, Myles A.; Norman, Andrew G.; Guthrey, Harvey L.; Young, Matthew R.; Song, Tao; Moriarty, Thomas (April 2020).
911:) of 1.5 and a cell temperature 25 Â°C. The resistive load is varied until the peak or maximum power point (MPP) is achieved. The power at this point is recorded as 561: 525: 2169:
K. Yoshikawa; H. Kawasaki & W. Yoshida (2017). "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%".
609:) may drop only 10% with an 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2  969:
modern solar cells would be net energy producers, i.e., they would generate more energy over their lifetime than the energy expended in producing them. Generally,
349:
often accumulates on the glass of solar modules - highlighted in this negative image as black dots - which reduces the amount of light admitted to the solar cells
130:
ratio, and fill factor values. Resistive losses are predominantly accounted for by the fill factor value, but also contribute to the quantum efficiency and V
3003:
Bose, S.; Cunha, J.M.V.; Borme, J.; Chen, W.C.; Nilsson, N.S.; Teixeira, J.P.; Gaspar, J.; Leitão, J.P.; Edoff, M.; Fernandes, P.A.; Salomé, P.M.P. (2019).
1250: 903:
standard 61215 is used to compare the performance of cells and is designed around standard (terrestrial, temperate) temperature and conditions (STC):
900: 2431: 2388: 2954:
Vermang, Bart; WÀtjen, Jörn Timo; FjÀllström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis (2014).
3815: 3258: 1072:
An increase in solar cell temperature of approximately 1 Â°C causes an efficiency decrease of about 0.45%. To prevent this, a transparent
881:) lead to a higher fill factor, thus resulting in greater efficiency, and bringing the cell's output power closer to its theoretical maximum. 3118:
Mendes, Manuel J.; Haque, Sirazul; Sanchez-Sobrado, Olalla; AraĂșjo, Andreia; Águas, Hugo; Fortunato, Elvira; Martins, Rodrigo (25 May 2018).
2587: 2552: 2059: 2427:
Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis
1390: 307: 146: 41: 2492:
Mendes, Manuel J.; AraĂșjo, Andreia; Vicente, AntĂłnio; Águas, Hugo; Ferreira, Isabel; Fortunato, Elvira; Martins, Rodrigo (1 August 2016).
2075: 2613: 978: 382: 3926: 3717: 3587: 2938: 2899: 1067: 276:
interactions as the kinetic energy of the carriers slows to equilibrium velocity. Traditional single-junction cells with an optimal
3184: 1516: 110:
efficiency values. Because these parameters can be difficult to measure directly, other parameters are measured instead, including
3722: 3597: 2134:
A. Richter; M. Hermle; S.W. Glunz (October 2013). "Reassessment of the limiting efficiency for crystalline silicon solar cells".
4107: 3787: 2640:"Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes" 1621:
France, Ryan M.; Geisz, John F.; Song, Tao; Olavarria, Waldo; Young, Michelle; Kibbler, Alan; Steiner, Myles A. (18 May 2022).
1492: 3657: 3278: 1123:
wafer material from just over 17% to over 21% by the mid-2010s, and the cell efficiency for quasi-mono-Si to a record 19.9%.
182: 99: 2097: 1318:"Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation" 1679: 1623:"Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices" 3931: 3805: 3357: 862:
The fill factor can be represented graphically by the IV sweep, where it is the ratio of the different rectangular areas.
2300: 874: 314:
quantum efficiency (EQE) relates to the measurable properties of the solar cell. The "external" quantum efficiency of a
158: 1206:
Tandem solar cells combine two materials to increase efficiency. In 2022 a device was announced that combined multiple
281: 192: 170: 3692: 3682: 654: 1596: 243:
coming from all directions. However, the 95% efficiency thereby achieved means that the electric power is 95% of the
3952: 3662: 3434: 3251: 2347:
K. L. Chopra; P. D. Paulson & V. Dutta (2004). "Thin-film solar cells: An overview Progress in Photovoltaics".
1449:
Kumar, Ankush (3 January 2017). "Predicting efficiency of solar cells based on transparent conducting electrodes".
937: 142: 1807:
RĂŒhle, Sven (8 February 2016). "Tabulated Values of the Shockley–Queisser Limit for Single Junction Solar Cells".
218:, the maximum theoretically possible value for the ratio of work (or electric power) obtained to heat supplied is 3499: 1201: 951: 852:{\displaystyle FF={\frac {P_{m}}{V_{OC}\times I_{SC}}}={\frac {\eta \times A_{c}\times G}{V_{OC}\times I_{SC}}}.} 139: 86:
Schematic of charge collection by solar cells. Light transmits through transparent conducting electrode creating
4035: 3637: 3557: 3529: 3449: 3211: 1842:
Cheng-Hsiao Wu & Richard Williams (1983). "Limiting efficiencies for multiple energy-gap quantum devices".
1146:
layer and line contacts on SiO2 layer provide the electrical connection of CIGS absorber to the rear electrode
197: 661:(and hence, power transfer), and uses this information to dynamically adjust the load so the maximum power is 4138: 3743: 3702: 3672: 3667: 3524: 3288: 3283: 1228: 920: 4165: 4102: 3782: 3712: 3687: 3677: 3652: 3647: 3602: 3592: 3567: 3562: 3552: 3547: 3539: 3407: 3362: 2855: 2384:
Review on lifecycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems
566:
A high quality, monocrystalline silicon solar cell, at 25 Â°C cell temperature, may produce 0.60 
32: 2575: 1103:
The chemical deposition of a rear-surface dielectric passivation layer stack that is also made of a thin
1033:
absorbed by the cell and the amount of current generated. The main materials used for the nano-studs are
4126: 3988: 3957: 3777: 3707: 3642: 3632: 3617: 3607: 3577: 3572: 3244: 1166:. Also, the implementation of the passivation layers does not change the morphology of the CIGS layers. 933:
efficient amorphous silicon cell in mass production, while delivering only about four times the output.
372: 358: 269: 103: 2493: 2001: 1317: 1278: 4160: 3727: 3697: 3627: 3622: 3612: 3582: 3514: 3349: 3131: 3016: 2761: 2750:"Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody" 2651: 2325: 2178: 1963: 1920: 1851: 1816: 1773: 1730: 1691: 1545: 1458: 1329: 1255: 1182: 1017: 970: 115: 2816: 4082: 3856: 3772: 3519: 3423: 3417: 3377: 2956:"Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In, Ga)Se2 solar cells" 1764:
A. De Vos & H. Pauwels (1981). "On the Thermodynamic Limit of Photovoltaic Energy Conversion".
1120: 1099: 1094: 983: 963: 240: 63: 3062:"Optical Lithography Patterning of SiO2 Layers for Interface Passivation of Thin Film Solar Cells" 3910: 3504: 3412: 3091: 3042: 2836: 2458: 2364: 2282: 2194: 2151: 1979: 1936: 1789: 1746: 1660: 1634: 1577: 1412: 1363: 884:
Typical fill factors range from 50% to 82%. The fill factor for a normal silicon PV cell is 80%.
866: 296: 236: 111: 107: 87: 3319: 4072: 4030: 3936: 3836: 3467: 3165: 3147: 3005:"A morphological and electronic study of ultrathin rear passivated Cu(In, Ga) Se2 solar cells" 2985: 2934: 2895: 2797: 2779: 2730: 2677: 2583: 2576:"Chapter Nine - Wave-optical front structures on silicon and perovskite thin-film solar cells" 2548: 2513: 2494:"Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells" 2055: 2021: 1652: 1569: 1561: 1534:"Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration" 1474: 1355: 1298: 1020:(thickness t_PV) patterned with front features. Two simultaneous optical mechanisms can cause 530: 1908: 1416: 497: 265: 4077: 3462: 3309: 3155: 3139: 3081: 3073: 3032: 3024: 2975: 2967: 2867: 2828: 2787: 2769: 2722: 2667: 2659: 2540: 2505: 2440: 2405: 2397: 2356: 2274: 2213:"New World Record Established for Conversion Efficiency in a Crystalline Silicon Solar Cell" 2186: 2143: 2013: 1971: 1928: 1886: 1859: 1824: 1781: 1738: 1699: 1644: 1553: 1466: 1385: 1345: 1337: 1290: 1163: 658: 162: 71: 2121:"Silicon Solar Cells with Screen-Printed Front Side Metallization Exceeding 19% Efficiency" 634:
product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as
342: 187: 2425:
Bhandari, Khagendra P.; Jennifer, M.Collier; Ellingson, Randy J.; Apul, Defne S. (2015). "
1316:
Köberle, Alexandre C.; Gernaat, David E. H. J.; van Vuuren, Detlef P. (1 September 2015).
1112: 1108: 1073: 602:) from a cell is nearly proportional to the illumination, while the open-circuit voltage ( 70:
Southwestern USA. In a high-yield solar area like central Colorado, which receives annual
3135: 3020: 2765: 2709:
Raut, Hemant Kumar; Ganesh, V. Anand; Nair, A. Sreekumaran; Ramakrishna, Seeram (2011).
2655: 2212: 2182: 1967: 1924: 1855: 1820: 1777: 1734: 1695: 1549: 1518:
Quadruple Junction Solar Cell with 47.6 % Conversion Efficiency under Concentration
1462: 1333: 3810: 3495: 3402: 3325: 3160: 3119: 2980: 2955: 2792: 2749: 2672: 2639: 2002:"Improvement of an electrostatic cleaning system for removal of dust from solar panels" 1012: 915:(Wp). The same standard is used for measuring the power and efficiency of PV modules. 3120:"Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture" 2301:"Net Energy Analysis For Sustainable Energy Production From Silicon Based Solar Cells" 2120: 2049: 1707: 361:(I). By increasing the resistive load on an irradiated cell continuously from zero (a 4154: 3993: 3851: 3846: 3841: 3490: 3472: 3392: 3367: 3221: 3095: 3046: 2840: 2198: 1983: 1975: 1940: 1890: 1793: 1750: 1742: 1721:
De Vos, A. (1980). "Detailed balance limit of the efficiency of tandem solar cells".
1664: 1581: 1367: 1242: 944: 943:
A common method used to express economic costs is to calculate a price per delivered
893: 363: 166: 75: 17: 2368: 2286: 645:, without giving load curves, can be seriously distorting their actual performance. 4051: 4014: 3890: 3882: 3820: 3382: 3267: 2155: 1533: 649: 52: 2544: 1828: 2871: 2509: 2147: 2017: 1341: 4056: 3877: 3428: 3340: 3331: 2925: 2886: 2854:
Ahmed, Salman; Li, Zhenpeng; Javed, Muhammad Shahzad; Ma, Tao (September 2021).
2532: 1648: 1222: 95: 3229: 3143: 2444: 2401: 1294: 3998: 3972: 3967: 3962: 3900: 3895: 3509: 3439: 3372: 3028: 2856:"A review on the integration of radiative cooling and solar energy harvesting" 2239: 1622: 1557: 1218: 1207: 1169: 1147: 1077: 904: 683:). This factor is a measure of quality of a solar cell. This is the available 56: 37: 3151: 2927:
New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface
2888:
New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface
2817:"Heat-shedding with photonic structures: radiative cooling and its potential" 2783: 2734: 2517: 2025: 1656: 1565: 1478: 1359: 1302: 907:
of 1 kW/m, a spectral distribution close to solar radiation through AM (
3905: 3457: 2774: 2190: 1236: 1188: 1138:
have been used as the passivation materials. Nano-sized point contacts on Al
1042: 912: 280:
for the solar spectrum have a maximum theoretical efficiency of 33.16%, the
3169: 3077: 2989: 2801: 2681: 1932: 51:
is the portion of energy in the form of sunlight that can be converted via
2326:"Can Solar Cells Ever Recapture the Energy Invested in their Manufacture?" 1016:
Diagram of the characteristic E-field enhancement profiles experienced in
1081: 1076:
crystal layer can be applied to solar panels. The silica layer acts as a
865:
The fill factor is directly affected by the values of the cell's series,
277: 1597:"Scientists just broke the record for the highest efficiency solar cell" 1158:
layer are created by e-beam lithography and the line contacts on the SiO
954:
that place both positive and negative contacts on the back of the cell.
657:
tracks the instantaneous power by continually measuring the voltage and
3185:"Perovskite/silicon tandem solar cell advance breaks efficiency record" 3086: 3037: 2832: 2726: 2710: 2479:
Trainer, FE (2007) "Renewable Energy Cannot Sustain a Consumer Society"
2410: 1785: 1350: 1116: 908: 354: 315: 2663: 1703: 1573: 1470: 1432:
Solar photovoltaics: data from a 25-m2 array in Cambridgeshire in 2006
673:
Another defining term in the overall behaviour of a solar cell is the
82: 3215: 2971: 1863: 1521:. International Conference on Metal Organic Vapor Phase Epitaxy 2022. 1104: 1034: 273: 94:
Several factors affect a cell's conversion efficiency, including its
74:
of 2000 kWh/m/year, a panel can be expected to produce 400 
3061: 3004: 2360: 2278: 2533:"Empowering Photovoltaics with Smart Light Management Technologies" 1639: 1187:
Although not constituting a direct strategy to improve efficiency,
1680:"Detailed Balance Limit of Efficiency of p-n Junction Solar Cells" 1168: 1011: 186: 81: 1119:
solar cells. This helped increase cell efficiency for commercial
2748:
Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui (6 October 2015).
2076:"Solar Junction Breaks Its Own CPV Conversion Efficiency Record" 1038: 986:
devices achieve on average an energy payback period of 2 years.
567: 346: 3240: 3236: 2539:, Cham: Springer International Publishing, pp. 1165–1248, 487:{\displaystyle P(T)=P_{STC}+{\frac {dP}{dT}}(T_{cell}-T_{STC})} 3304: 623:. The usable power output could thus drop from 70% of the 527:
is the power generated at the standard testing condition;
2098:"Solar Cell Efficiency World Record Set By Sharp — 44.4%" 1277:
Kannan, Nadarajah; Vakeesan, Divagar (1 September 2016).
2815:
Heo, Se-Yeon; Ju Lee, Gil; Song, Young Min (June 2022).
2711:"Anti-reflective coatings: A critical, in-depth review" 2119:
Schultz, O.; Mette, A.; Preu, R.; Glunz, S. W. (2007).
1954:
A. Molki (2010). "Dust affects solar-cell efficiency".
319:
trapping method that modifies the average light path.
177:
Thermodynamic-efficiency limit and infinite-stack limit
665:
transferred, regardless of the variation in lighting.
27:
Ratio of energy extracted from sunlight in solar cells
3222:"How Can We Increase the Efficiency of Solar Panels?" 869:
and diodes losses. Increasing the shunt resistance (R
729: 533: 500: 385: 106:
efficiency, charge carrier collection efficiency and
2960:
Progress in Photovoltaics: Research and Applications
2537:
Handbook of Climate Change Mitigation and Adaptation
2459:"Highest silicon solar cell efficiency ever reached" 2267:
Progress in Photovoltaics: Research and Applications
4095: 4065: 4044: 4023: 4007: 3981: 3945: 3919: 3876: 3869: 3829: 3798: 3765: 3756: 3736: 3538: 3481: 3448: 3391: 3348: 3339: 3297: 326:Quantum efficiency is most usefully expressed as a 1386:"Photovoltaic Solar Resource of the United States" 851: 555: 519: 486: 264:Normal photovoltaic systems however have only one 2000:Kawamoto, Hiroyuki; Guo, Bing (1 February 2018). 2607: 2605: 2382:Peng, Jinqing; Lu, Lin; Yang, Hongxing (2013). " 1493:"Photovoltaic Cell Conversion Efficiency Basics" 2754:Proceedings of the National Academy of Sciences 964:Energy payback time by technology and location 353:A solar cell may operate over a wide range of 153:Factors affecting energy conversion efficiency 3252: 563:is the actual temperature of the solar cell. 8: 3230:"Factors That Affect Solar Panel Efficiency" 62:The efficiency of the solar cells used in a 1444: 1442: 1440: 1279:"Solar energy for future world: - A review" 1251:Environmental impact of the energy industry 204:If one has a source of heat at temperature 147:National Renewable Energy Laboratory (NREL) 40:energy conversion efficiencies since 1976 ( 3873: 3762: 3345: 3259: 3245: 3237: 2614:"Improving the efficiency of solar panels" 1678:Shockley William; Queisser Hans J (1961). 1417:"Sustainable Energy - without the hot air" 1379: 1377: 310:with no net contribution to cell current. 3159: 3085: 3036: 2979: 2791: 2773: 2671: 2409: 2234: 2232: 2230: 1638: 1349: 994:Technical methods of improving efficiency 834: 818: 800: 787: 772: 756: 745: 739: 728: 538: 532: 505: 499: 469: 447: 420: 405: 384: 2432:Renewable and Sustainable Energy Reviews 2389:Renewable and Sustainable Energy Reviews 1283:Renewable and Sustainable Energy Reviews 341: 31: 2843:– via Royal Society of Chemistry. 2487: 2485: 1266: 3816:Financial incentives for photovoltaics 2612:Mukunth, Vasudevan (24 October 2013). 1879:Solar Energy Materials and Solar Cells 999:Choosing optimum transparent conductor 161:were expounded in a landmark paper by 2704: 2702: 2700: 1995: 1993: 1902: 1900: 1723:Journal of Physics D: Applied Physics 1049:Anti-reflective coatings and textures 249:amount of light absorbed – the stack 7: 4133: 3183:Irving, Michael (20 December 2022). 2874:– via Elsevier Science Direct. 2240:"What is the Energy Payback for PV?" 1907:Kirchartz, Thomas; Rau, Uwe (2018). 1391:National Renewable Energy Laboratory 1272: 1270: 1115:film helps to improve efficiency in 595:product. The short-circuit current ( 211:and cooler heat sink at temperature 42:National Renewable Energy Laboratory 2715:Energy & Environmental Science 25: 3927:Building-integrated photovoltaics 1384:Billy Roberts (20 October 2008). 1068:Passive daytime radiative cooling 4132: 4121: 4120: 3330: 3324: 3318: 2821:Journal of Materials Chemistry C 2580:Solar Cells and Light Management 1235: 1221: 123: 2461:. ScienceDaily. 24 October 2008 1909:"What Makes a Good Solar Cell?" 2582:, Elsevier, pp. 315–354, 1595:Ozdemir, Derya (20 May 2022). 1150:. The point contacts on the Al 481: 440: 395: 389: 183:Thermodynamic efficiency limit 36:Reported timeline of research 1: 3932:Passive solar building design 3358:Passive solar building design 2545:10.1007/978-3-030-72579-2_112 2136:IEEE Journal of Photovoltaics 1829:10.1016/j.solener.2016.02.015 648:The maximum power point of a 2872:10.1016/j.mtener.2021.100776 2510:10.1016/j.nanoen.2016.05.038 2148:10.1109/JPHOTOV.2013.2270351 2018:10.1016/j.elstat.2017.12.002 1891:10.1016/0927-0248(92)90126-A 1342:10.1016/j.energy.2015.05.145 159:energy conversion efficiency 1649:10.1016/j.joule.2022.04.024 1495:. U.S. Department of Energy 952:silicon heterojunction cell 655:maximum power point tracker 367:) to a very high value (an 4182: 3435:Photovoltaic power station 3144:10.1016/j.isci.2018.04.018 2933:. Springer. pp. 1–2. 2924:Black, Lachlan E. (2016). 2885:Black, Lachlan E. (2016). 2445:10.1016/j.rser.2015.02.057 2402:10.1016/j.rser.2012.11.035 2054:. Imperial College Press. 2051:The Physics of Solar Cells 1976:10.1088/0031-9120/45/5/F03 1743:10.1088/0022-3727/13/5/018 1684:Journal of Applied Physics 1601:interestingengineering.com 1451:Journal of Applied Physics 1295:10.1016/j.rser.2016.05.022 1199: 1180: 1092: 1065: 1008:Promoting light scattering 961: 891: 294: 180: 4116: 3500:artificial photosynthesis 3316: 3274: 3029:10.1016/j.tsf.2018.12.028 2349:Research and Applications 2324:Corkish, Richard (1997). 2006:Journal of Electrostatics 1913:Advanced Energy Materials 1558:10.1038/s41560-020-0598-5 1202:Multi-junction solar cell 198:multijunction solar cells 145:solar cells developed at 104:charge carrier separation 4036:Solar water disinfection 3530:Thermoelectric generator 1162:layer are created using 1089:Rear surface passivation 556:{\displaystyle T_{cell}} 371:) one can determine the 100:thermodynamic efficiency 55:into electricity by the 3744:Solar Shade Control Act 3525:Space-based solar power 2860:Materials Today: Energy 2775:10.1073/pnas.1509453112 2191:10.1038/nenergy.2017.32 1229:Renewable energy portal 1018:thin photovoltaic films 520:{\displaystyle P_{STC}} 282:Shockley–Queisser limit 193:Shockley–Queisser limit 171:Shockley–Queisser limit 4108:Solar power by country 3783:Thermal energy storage 3408:Nanocrystal solar cell 3363:Solar air conditioning 3078:10.1002/solr.201800212 1933:10.1002/aenm.201703385 1173: 1025: 853: 557: 521: 488: 350: 201: 157:The factors affecting 91: 45: 3989:Salt evaporation pond 3958:Hybrid solar lighting 3778:Phase-change material 2048:Jenny Nelson (2003). 1172: 1015: 873:) and decreasing the 854: 711:short circuit current 558: 522: 489: 345: 190: 85: 49:Solar-cell efficiency 35: 18:Solar cell efficiency 3515:Solar thermal rocket 1710:on 23 February 2013. 1183:Thin-film solar cell 1080:which emits heat as 938:concentrator systems 727: 700:open circuit voltage 531: 498: 383: 116:open-circuit voltage 4083:Solar water heating 3857:Solar water heating 3773:Grid energy storage 3520:Solar updraft tower 3429:Photovoltaic module 3424:Photovoltaic effect 3378:Solar water heating 3136:2018iSci....3..238M 3021:2019TSF...671...77B 2766:2015PNAS..11212282Z 2760:(40): 12282–12287. 2656:2013NatSR...3E2874H 2183:2017NatEn...217032Y 1968:2010PhyEd..45..456M 1925:2018AdEnM...803385K 1856:1983JAP....54.6721W 1821:2016SoEn..130..139R 1778:1981ApPhy..25..119D 1735:1980JPhD...13..839D 1696:1961JAP....32..510S 1550:2020NatEn...5..326G 1463:2017JAP...121a4502K 1334:2015Ene....89..739K 1177:Thin film materials 1111:film topped with a 1100:Surface passivation 1095:Surface passivation 984:Crystalline silicon 930:multicrystalline Si 689:maximum power point 338:Maximum power point 306:. Or, the carriers 260:Ultimate efficiency 241:blackbody radiation 88:electron hole pairs 64:photovoltaic system 3911:Solar-powered pump 3505:Solar-pumped laser 3418:Photovoltaic array 3413:Organic solar cell 3396:and related topics 2833:10.1039/D2TC00318J 2727:10.1039/c1ee01297e 2644:Scientific Reports 2078:. 18 December 2013 1786:10.1007/BF00901283 1413:David J. C. MacKay 1174: 1082:infrared radiation 1078:thermal black body 1026: 849: 553: 517: 484: 351: 297:Quantum efficiency 291:Quantum efficiency 270:electron-hole pair 237:Carnot heat engine 202: 124:§ Fill factor 112:quantum efficiency 92: 46: 4148: 4147: 4091: 4090: 4073:Solar combisystem 4031:Soil solarization 3937:Urban heat island 3865: 3864: 3837:Electric aircraft 3752: 3751: 3468:Solar power tower 2966:(10): 1023–1029. 2827:(27): 9915–9937. 2664:10.1038/srep02874 2589:978-0-08-102762-2 2554:978-3-030-72579-2 2061:978-1-86094-340-9 1956:Physics Education 1704:10.1063/1.1736034 1471:10.1063/1.4973117 1256:Energy efficiency 1062:Radiative cooling 875:series resistance 867:shunt resistances 844: 782: 698:) divided by the 438: 173:for more detail. 16:(Redirected from 4173: 4136: 4135: 4124: 4123: 4078:Solar controller 3874: 3763: 3463:Parabolic trough 3346: 3334: 3328: 3322: 3310:Solar irradiance 3261: 3254: 3247: 3238: 3233: 3225: 3200: 3199: 3197: 3195: 3180: 3174: 3173: 3163: 3115: 3109: 3106: 3100: 3099: 3089: 3057: 3051: 3050: 3040: 3009:Thin Solid Films 3000: 2994: 2993: 2983: 2972:10.1002/pip.2527 2951: 2945: 2944: 2932: 2921: 2915: 2912: 2906: 2905: 2893: 2882: 2876: 2875: 2851: 2845: 2844: 2812: 2806: 2805: 2795: 2777: 2745: 2739: 2738: 2706: 2695: 2692: 2686: 2685: 2675: 2635: 2629: 2628: 2626: 2624: 2609: 2600: 2599: 2598: 2596: 2571: 2565: 2564: 2563: 2561: 2528: 2522: 2521: 2489: 2480: 2477: 2471: 2470: 2468: 2466: 2455: 2449: 2448: 2422: 2416: 2415: 2413: 2379: 2373: 2372: 2344: 2338: 2337: 2321: 2315: 2314: 2312: 2310: 2305: 2297: 2291: 2290: 2261: 2255: 2254: 2252: 2250: 2244: 2236: 2225: 2224: 2222: 2220: 2215:. 25 August 2017 2209: 2203: 2202: 2166: 2160: 2159: 2142:(4): 1184–1191. 2131: 2125: 2124: 2116: 2110: 2109: 2107: 2105: 2094: 2088: 2087: 2085: 2083: 2072: 2066: 2065: 2045: 2039: 2036: 2030: 2029: 1997: 1988: 1987: 1951: 1945: 1944: 1904: 1895: 1894: 1874: 1868: 1867: 1864:10.1063/1.331859 1839: 1833: 1832: 1804: 1798: 1797: 1761: 1755: 1754: 1718: 1712: 1711: 1706:. Archived from 1675: 1669: 1668: 1642: 1633:(5): 1121–1135. 1618: 1612: 1611: 1609: 1607: 1592: 1586: 1585: 1529: 1523: 1522: 1511: 1505: 1504: 1502: 1500: 1489: 1483: 1482: 1446: 1435: 1434: 1429: 1427: 1421:inference.org.uk 1409: 1403: 1402: 1400: 1398: 1381: 1372: 1371: 1353: 1313: 1307: 1306: 1274: 1245: 1240: 1239: 1231: 1226: 1225: 1164:photolithography 858: 856: 855: 850: 845: 843: 842: 841: 826: 825: 812: 805: 804: 788: 783: 781: 780: 779: 764: 763: 750: 749: 740: 562: 560: 559: 554: 552: 551: 526: 524: 523: 518: 516: 515: 493: 491: 490: 485: 480: 479: 461: 460: 439: 437: 429: 421: 416: 415: 234: 217: 210: 163:William Shockley 21: 4181: 4180: 4176: 4175: 4174: 4172: 4171: 4170: 4151: 4150: 4149: 4144: 4112: 4087: 4061: 4040: 4019: 4003: 3977: 3941: 3915: 3880: 3861: 3825: 3794: 3758: 3748: 3732: 3534: 3483: 3477: 3444: 3395: 3387: 3335: 3329: 3323: 3314: 3293: 3270: 3265: 3232:. 18 July 2021. 3228: 3220: 3208: 3203: 3193: 3191: 3182: 3181: 3177: 3117: 3116: 3112: 3107: 3103: 3072:(12): 1800212. 3059: 3058: 3054: 3002: 3001: 2997: 2953: 2952: 2948: 2941: 2930: 2923: 2922: 2918: 2913: 2909: 2902: 2891: 2884: 2883: 2879: 2853: 2852: 2848: 2814: 2813: 2809: 2747: 2746: 2742: 2708: 2707: 2698: 2693: 2689: 2637: 2636: 2632: 2622: 2620: 2611: 2610: 2603: 2594: 2592: 2590: 2573: 2572: 2568: 2559: 2557: 2555: 2530: 2529: 2525: 2491: 2490: 2483: 2478: 2474: 2464: 2462: 2457: 2456: 2452: 2424: 2423: 2419: 2381: 2380: 2376: 2361:10.1002/pip.541 2346: 2345: 2341: 2323: 2322: 2318: 2308: 2306: 2303: 2299: 2298: 2294: 2279:10.1002/pip.770 2263: 2262: 2258: 2248: 2246: 2245:. December 2004 2242: 2238: 2237: 2228: 2218: 2216: 2211: 2210: 2206: 2168: 2167: 2163: 2133: 2132: 2128: 2118: 2117: 2113: 2103: 2101: 2096: 2095: 2091: 2081: 2079: 2074: 2073: 2069: 2062: 2047: 2046: 2042: 2037: 2033: 1999: 1998: 1991: 1953: 1952: 1948: 1919:(28): 1703385. 1906: 1905: 1898: 1876: 1875: 1871: 1841: 1840: 1836: 1806: 1805: 1801: 1763: 1762: 1758: 1720: 1719: 1715: 1677: 1676: 1672: 1620: 1619: 1615: 1605: 1603: 1594: 1593: 1589: 1531: 1530: 1526: 1513: 1512: 1508: 1498: 1496: 1491: 1490: 1486: 1448: 1447: 1438: 1425: 1423: 1411: 1410: 1406: 1396: 1394: 1383: 1382: 1375: 1315: 1314: 1310: 1276: 1275: 1268: 1264: 1241: 1234: 1227: 1220: 1217: 1204: 1198: 1185: 1179: 1161: 1157: 1153: 1145: 1141: 1137: 1133: 1129: 1113:silicon nitride 1109:aluminium oxide 1097: 1091: 1070: 1064: 1051: 1010: 1001: 996: 966: 960: 896: 890: 880: 872: 830: 814: 813: 796: 789: 768: 752: 751: 741: 725: 724: 718: 707: 696: 671: 643: 639: 632: 628: 621: 614: 607: 600: 593: 589: 582: 575: 534: 529: 528: 501: 496: 495: 465: 443: 430: 422: 401: 381: 380: 340: 299: 293: 262: 232: 225: 219: 216: 212: 209: 205: 185: 179: 155: 134:ratio values. 133: 129: 121: 28: 23: 22: 15: 12: 11: 5: 4179: 4177: 4169: 4168: 4163: 4153: 4152: 4146: 4145: 4143: 4142: 4130: 4117: 4114: 4113: 4111: 4110: 4105: 4099: 4097: 4093: 4092: 4089: 4088: 4086: 4085: 4080: 4075: 4069: 4067: 4063: 4062: 4060: 4059: 4054: 4048: 4046: 4042: 4041: 4039: 4038: 4033: 4027: 4025: 4021: 4020: 4018: 4017: 4011: 4009: 4005: 4004: 4002: 4001: 3996: 3991: 3985: 3983: 3979: 3978: 3976: 3975: 3970: 3965: 3960: 3955: 3949: 3947: 3943: 3942: 3940: 3939: 3934: 3929: 3923: 3921: 3917: 3916: 3914: 3913: 3908: 3903: 3898: 3893: 3887: 3885: 3871: 3867: 3866: 3863: 3862: 3860: 3859: 3854: 3849: 3844: 3839: 3833: 3831: 3827: 3826: 3824: 3823: 3818: 3813: 3811:Feed-in tariff 3808: 3806:Cost by source 3802: 3800: 3796: 3795: 3793: 3792: 3791: 3790: 3780: 3775: 3769: 3767: 3760: 3754: 3753: 3750: 3749: 3747: 3746: 3740: 3738: 3734: 3733: 3731: 3730: 3725: 3720: 3718:United Kingdom 3715: 3710: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3615: 3610: 3605: 3600: 3595: 3590: 3588:Czech Republic 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3544: 3542: 3536: 3535: 3533: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3496:Solar chemical 3493: 3487: 3485: 3479: 3478: 3476: 3475: 3470: 3465: 3460: 3454: 3452: 3446: 3445: 3443: 3442: 3437: 3432: 3426: 3421: 3415: 3410: 3405: 3403:Floating solar 3399: 3397: 3389: 3388: 3386: 3385: 3380: 3375: 3370: 3365: 3360: 3354: 3352: 3343: 3337: 3336: 3317: 3315: 3313: 3312: 3307: 3301: 3299: 3295: 3294: 3292: 3291: 3286: 3281: 3275: 3272: 3271: 3266: 3264: 3263: 3256: 3249: 3241: 3235: 3234: 3226: 3218: 3212:Solar electric 3207: 3206:External links 3204: 3202: 3201: 3175: 3110: 3101: 3052: 2995: 2946: 2939: 2916: 2907: 2900: 2877: 2846: 2807: 2740: 2696: 2687: 2630: 2601: 2588: 2566: 2553: 2523: 2481: 2472: 2450: 2417: 2374: 2339: 2330:Solar Progress 2316: 2292: 2256: 2226: 2204: 2161: 2126: 2111: 2100:. 28 July 2013 2089: 2067: 2060: 2040: 2031: 1989: 1962:(5): 456–458. 1946: 1896: 1885:(1–2): 71–78. 1869: 1834: 1799: 1772:(2): 119–125. 1756: 1729:(5): 839–846. 1713: 1690:(3): 510–519. 1670: 1613: 1587: 1544:(4): 326–335. 1524: 1506: 1484: 1436: 1404: 1373: 1308: 1265: 1263: 1260: 1259: 1258: 1253: 1247: 1246: 1232: 1216: 1213: 1197: 1194: 1178: 1175: 1159: 1155: 1151: 1143: 1139: 1135: 1131: 1127: 1090: 1087: 1063: 1060: 1050: 1047: 1022:light-trapping 1009: 1006: 1000: 997: 995: 992: 959: 958:Energy payback 956: 892:Main article: 889: 886: 878: 870: 860: 859: 848: 840: 837: 833: 829: 824: 821: 817: 811: 808: 803: 799: 795: 792: 786: 778: 775: 771: 767: 762: 759: 755: 748: 744: 738: 735: 732: 716: 705: 694: 670: 667: 641: 637: 630: 626: 619: 612: 605: 598: 591: 587: 580: 573: 570:open-circuit ( 550: 547: 544: 541: 537: 514: 511: 508: 504: 483: 478: 475: 472: 468: 464: 459: 456: 453: 450: 446: 442: 436: 433: 428: 425: 419: 414: 411: 408: 404: 400: 397: 394: 391: 388: 339: 336: 295:Main article: 292: 289: 261: 258: 230: 223: 214: 207: 181:Main article: 178: 175: 154: 151: 140:multi-junction 131: 127: 119: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4178: 4167: 4166:Photovoltaics 4164: 4162: 4159: 4158: 4156: 4141: 4140: 4131: 4129: 4128: 4119: 4118: 4115: 4109: 4106: 4104: 4103:Photovoltaics 4101: 4100: 4098: 4094: 4084: 4081: 4079: 4076: 4074: 4071: 4070: 4068: 4066:Water heating 4064: 4058: 4055: 4053: 4050: 4049: 4047: 4043: 4037: 4034: 4032: 4029: 4028: 4026: 4022: 4016: 4013: 4012: 4010: 4006: 4000: 3997: 3995: 3994:Solar furnace 3992: 3990: 3987: 3986: 3984: 3980: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3950: 3948: 3944: 3938: 3935: 3933: 3930: 3928: 3925: 3924: 3922: 3918: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3888: 3886: 3884: 3879: 3875: 3872: 3868: 3858: 3855: 3853: 3852:Solar vehicle 3850: 3848: 3847:Solar balloon 3845: 3843: 3842:Electric boat 3840: 3838: 3835: 3834: 3832: 3828: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3803: 3801: 3797: 3789: 3786: 3785: 3784: 3781: 3779: 3776: 3774: 3771: 3770: 3768: 3764: 3761: 3755: 3745: 3742: 3741: 3739: 3735: 3729: 3726: 3724: 3723:United States 3721: 3719: 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3614: 3611: 3609: 3606: 3604: 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3545: 3543: 3541: 3537: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3497: 3494: 3492: 3491:Magnetic sail 3489: 3488: 3486: 3480: 3474: 3473:Solar tracker 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3455: 3453: 3451: 3447: 3441: 3438: 3436: 3433: 3431:(solar panel) 3430: 3427: 3425: 3422: 3420:(and systems) 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3400: 3398: 3394: 3393:Photovoltaics 3390: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3368:Solar chimney 3366: 3364: 3361: 3359: 3356: 3355: 3353: 3351: 3347: 3344: 3342: 3338: 3333: 3327: 3321: 3311: 3308: 3306: 3303: 3302: 3300: 3296: 3290: 3287: 3285: 3282: 3280: 3277: 3276: 3273: 3269: 3262: 3257: 3255: 3250: 3248: 3243: 3242: 3239: 3231: 3227: 3223: 3219: 3217: 3213: 3210: 3209: 3205: 3190: 3186: 3179: 3176: 3171: 3167: 3162: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3114: 3111: 3105: 3102: 3097: 3093: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3056: 3053: 3048: 3044: 3039: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 2999: 2996: 2991: 2987: 2982: 2977: 2973: 2969: 2965: 2961: 2957: 2950: 2947: 2942: 2940:9783319325217 2936: 2929: 2928: 2920: 2917: 2911: 2908: 2903: 2901:9783319325217 2897: 2890: 2889: 2881: 2878: 2873: 2869: 2865: 2861: 2857: 2850: 2847: 2842: 2838: 2834: 2830: 2826: 2822: 2818: 2811: 2808: 2803: 2799: 2794: 2789: 2785: 2781: 2776: 2771: 2767: 2763: 2759: 2755: 2751: 2744: 2741: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2705: 2703: 2701: 2697: 2691: 2688: 2683: 2679: 2674: 2669: 2665: 2661: 2657: 2653: 2649: 2645: 2641: 2634: 2631: 2619: 2615: 2608: 2606: 2602: 2591: 2585: 2581: 2577: 2570: 2567: 2556: 2550: 2546: 2542: 2538: 2534: 2527: 2524: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2488: 2486: 2482: 2476: 2473: 2460: 2454: 2451: 2446: 2442: 2438: 2434: 2433: 2428: 2421: 2418: 2412: 2407: 2403: 2399: 2395: 2391: 2390: 2385: 2378: 2375: 2370: 2366: 2362: 2358: 2355:(23): 69–92. 2354: 2350: 2343: 2340: 2335: 2331: 2327: 2320: 2317: 2302: 2296: 2293: 2288: 2284: 2280: 2276: 2272: 2268: 2260: 2257: 2241: 2235: 2233: 2231: 2227: 2214: 2208: 2205: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2171:Nature Energy 2165: 2162: 2157: 2153: 2149: 2145: 2141: 2137: 2130: 2127: 2122: 2115: 2112: 2099: 2093: 2090: 2077: 2071: 2068: 2063: 2057: 2053: 2052: 2044: 2041: 2035: 2032: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1996: 1994: 1990: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1903: 1901: 1897: 1892: 1888: 1884: 1880: 1873: 1870: 1865: 1861: 1857: 1853: 1849: 1845: 1844:J. Appl. Phys 1838: 1835: 1830: 1826: 1822: 1818: 1814: 1810: 1803: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1760: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1717: 1714: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1674: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1641: 1636: 1632: 1628: 1624: 1617: 1614: 1602: 1598: 1591: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1538:Nature Energy 1535: 1528: 1525: 1520: 1519: 1510: 1507: 1494: 1488: 1485: 1480: 1476: 1472: 1468: 1464: 1460: 1457:(1): 014502. 1456: 1452: 1445: 1443: 1441: 1437: 1433: 1422: 1418: 1414: 1408: 1405: 1393: 1392: 1387: 1380: 1378: 1374: 1369: 1365: 1361: 1357: 1352: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1312: 1309: 1304: 1300: 1296: 1292: 1289:: 1092–1105. 1288: 1284: 1280: 1273: 1271: 1267: 1261: 1257: 1254: 1252: 1249: 1248: 1244: 1243:Energy portal 1238: 1233: 1230: 1224: 1219: 1214: 1212: 1209: 1203: 1195: 1193: 1190: 1184: 1176: 1171: 1167: 1165: 1149: 1124: 1122: 1118: 1114: 1110: 1106: 1101: 1096: 1088: 1086: 1083: 1079: 1075: 1069: 1061: 1059: 1055: 1048: 1046: 1044: 1040: 1036: 1030: 1023: 1019: 1014: 1007: 1005: 998: 993: 991: 987: 985: 980: 974: 972: 965: 957: 955: 953: 948: 946: 945:kilowatt-hour 941: 939: 934: 931: 925: 922: 916: 914: 910: 906: 902: 895: 894:Photovoltaics 887: 885: 882: 876: 868: 863: 846: 838: 835: 831: 827: 822: 819: 815: 809: 806: 801: 797: 793: 790: 784: 776: 773: 769: 765: 760: 757: 753: 746: 742: 736: 733: 730: 723: 722: 721: 719: 712: 708: 701: 697: 690: 686: 682: 678: 677: 668: 666: 664: 660: 656: 651: 646: 644: 633: 622: 615: 608: 601: 594: 583: 576: 569: 564: 548: 545: 542: 539: 535: 512: 509: 506: 502: 476: 473: 470: 466: 462: 457: 454: 451: 448: 444: 434: 431: 426: 423: 417: 412: 409: 406: 402: 398: 392: 386: 377: 374: 373:maximum power 370: 366: 365: 364:short circuit 360: 356: 348: 344: 337: 335: 332: 329: 324: 320: 317: 311: 309: 305: 298: 290: 288: 285: 283: 279: 275: 271: 267: 259: 257: 254: 253: 248: 247: 242: 238: 235:, given by a 233: 226: 199: 194: 189: 184: 176: 174: 172: 169:in 1961. See 168: 167:Hans Queisser 164: 160: 152: 150: 148: 144: 141: 135: 125: 122:) ratio, and 117: 113: 109: 105: 101: 97: 89: 84: 80: 77: 73: 67: 65: 60: 58: 54: 53:photovoltaics 50: 43: 39: 34: 30: 19: 4137: 4125: 4052:Desalination 4045:Desalination 4024:Disinfection 4015:Solar cooker 3982:Process heat 3883:horticulture 3870:Applications 3830:Applications 3821:Net metering 3757:Distribution 3693:South Africa 3683:Saudi Arabia 3484:and proposed 3482:Experimental 3450:Concentrated 3383:Thermal mass 3268:Solar energy 3192:. Retrieved 3188: 3178: 3127: 3123: 3113: 3104: 3069: 3065: 3055: 3012: 3008: 2998: 2963: 2959: 2949: 2926: 2919: 2910: 2894:. Springer. 2887: 2880: 2863: 2859: 2849: 2824: 2820: 2810: 2757: 2753: 2743: 2721:(10): 3779. 2718: 2714: 2690: 2647: 2643: 2633: 2621:. Retrieved 2617: 2593:, retrieved 2579: 2569: 2558:, retrieved 2536: 2526: 2501: 2497: 2475: 2463:. Retrieved 2453: 2436: 2430: 2426: 2420: 2393: 2387: 2383: 2377: 2352: 2348: 2342: 2333: 2329: 2319: 2309:13 September 2307:. Retrieved 2295: 2270: 2266: 2259: 2247:. Retrieved 2217:. Retrieved 2207: 2177:(5): 17032. 2174: 2170: 2164: 2139: 2135: 2129: 2114: 2102:. Retrieved 2092: 2080:. Retrieved 2070: 2050: 2043: 2034: 2009: 2005: 1959: 1955: 1949: 1916: 1912: 1882: 1878: 1872: 1850:(11): 6721. 1847: 1843: 1837: 1812: 1809:Solar Energy 1808: 1802: 1769: 1765: 1759: 1726: 1722: 1716: 1708:the original 1687: 1683: 1673: 1630: 1626: 1616: 1604:. Retrieved 1600: 1590: 1541: 1537: 1527: 1517: 1509: 1497:. Retrieved 1487: 1454: 1450: 1431: 1424:. Retrieved 1420: 1407: 1395:. Retrieved 1389: 1325: 1321: 1311: 1286: 1282: 1205: 1196:Tandem cells 1186: 1125: 1098: 1071: 1056: 1052: 1031: 1027: 1021: 1002: 988: 975: 967: 949: 942: 935: 929: 926: 917: 897: 883: 864: 861: 714: 710: 703: 699: 692: 688: 684: 680: 675: 674: 672: 662: 650:photovoltaic 647: 635: 624: 617: 616:at 1/2  610: 603: 596: 585: 578: 571: 565: 378: 369:open circuit 368: 362: 352: 333: 327: 325: 321: 312: 303: 300: 286: 266:p–n junction 263: 251: 250: 245: 244: 228: 221: 203: 156: 143:concentrator 136: 93: 68: 61: 48: 47: 29: 4161:Solar cells 4057:Solar still 3953:Daylighting 3891:Agrivoltaic 3878:Agriculture 3663:New Zealand 3658:Netherlands 3341:Solar power 3194:26 December 3130:: 238–254. 3087:10773/30564 3038:10773/30445 2504:: 286–296. 2498:Nano Energy 2439:: 133–141. 2411:10397/34975 2396:: 255–274. 2336:(2): 16–17. 2249:20 December 2082:18 December 1815:: 139–147. 1499:6 September 1426:20 November 1351:1874/319865 1328:: 739–756. 676:fill factor 669:Fill factor 96:reflectance 4155:Categories 3999:Solar pond 3973:Solar Tuki 3968:Solar lamp 3963:Light tube 3901:Polytunnel 3896:Greenhouse 3540:By country 3510:Solar sail 3440:Solar cell 3373:Solar pond 2866:: 100776. 2465:9 December 1766:Appl. Phys 1640:2203.15593 1262:References 1208:perovskite 1200:See also: 1181:See also: 1148:Molybdenum 1093:See also: 1066:See also: 962:See also: 905:irradiance 888:Comparison 709:) and the 108:conduction 72:insolation 57:solar cell 38:solar cell 3906:Row cover 3638:Lithuania 3558:Australia 3458:Heliostat 3189:New Atlas 3152:2589-0042 3096:139388117 3066:RRL Solar 3047:139582764 3015:: 77–84. 2841:249695930 2784:0027-8424 2735:1754-5692 2618:The Hindu 2518:2211-2855 2273:: 17–30. 2199:114171665 2026:0304-3886 2012:: 28–33. 1984:250818645 1941:103853300 1794:119693148 1751:250782402 1665:247778421 1657:2542-4351 1582:216289881 1566:2058-7546 1479:0021-8979 1368:108996432 1360:0360-5442 1303:1364-0321 1189:thin film 1085:systems. 1043:aluminium 971:thin-film 913:Watt-peak 828:× 807:× 794:× 791:η 766:× 463:− 308:recombine 304:collected 4127:Category 4096:See also 3946:Lighting 3920:Building 3799:Adoption 3788:seasonal 3759:and uses 3703:Thailand 3673:Portugal 3668:Pakistan 3298:Concepts 3289:Timeline 3170:30428324 3124:iScience 2990:26300619 2802:26392542 2682:24096686 2650:: 2874. 2623:6 August 2369:39250492 2287:97914857 2219:15 March 1606:7 August 1397:17 April 1215:See also 921:Air Mass 494:, where 359:currents 357:(V) and 355:voltages 328:spectral 278:band gap 4139:Commons 4008:Cooking 3766:Storage 3713:Ukraine 3688:Somalia 3678:Romania 3653:Myanmar 3648:Morocco 3603:Germany 3598:Georgia 3593:Denmark 3568:Belgium 3563:Austria 3553:Armenia 3548:Albania 3350:Thermal 3305:The Sun 3284:Outline 3161:6137392 3132:Bibcode 3017:Bibcode 2981:4540152 2793:4603484 2762:Bibcode 2673:3791440 2652:Bibcode 2595:9 March 2560:9 March 2179:Bibcode 2156:6013813 2104:28 July 1964:Bibcode 1921:Bibcode 1852:Bibcode 1817:Bibcode 1774:Bibcode 1731:Bibcode 1692:Bibcode 1574:1659948 1546:Bibcode 1459:Bibcode 1330:Bibcode 1134:and SiO 1117:silicon 909:airmass 687:at the 659:current 316:silicon 3708:Turkey 3643:Mexico 3633:Kosovo 3618:Israel 3608:Greece 3578:Canada 3573:Brazil 3216:Curlie 3168:  3158:  3150:  3094:  3045:  2988:  2978:  2937:  2898:  2839:  2800:  2790:  2782:  2733:  2680:  2670:  2586:  2551:  2516:  2367:  2285:  2197:  2154:  2058:  2024:  1982:  1939:  1792:  1749:  1663:  1655:  1580:  1572:  1564:  1477:  1366:  1358:  1322:Energy 1301:  1105:silica 1074:silica 1041:, and 1035:silver 663:always 274:phonon 3737:Legal 3728:Yemen 3698:Spain 3628:Japan 3623:Italy 3613:India 3583:China 3279:Index 3092:S2CID 3043:S2CID 2931:(PDF) 2892:(PDF) 2837:S2CID 2365:S2CID 2304:(PDF) 2283:S2CID 2243:(PDF) 2195:S2CID 2152:S2CID 1980:S2CID 1937:S2CID 1790:S2CID 1747:S2CID 1661:S2CID 1635:arXiv 1627:Joule 1578:S2CID 1364:S2CID 1121:Cz-Si 685:power 252:emits 3881:and 3498:and 3196:2022 3166:PMID 3148:ISSN 2986:PMID 2935:ISBN 2896:ISBN 2798:PMID 2780:ISSN 2731:ISSN 2678:PMID 2625:2016 2597:2023 2584:ISBN 2562:2023 2549:ISBN 2514:ISSN 2467:2009 2311:2011 2251:2008 2221:2018 2106:2013 2084:2013 2056:ISBN 2022:ISSN 1653:ISSN 1608:2023 1570:OSTI 1562:ISSN 1501:2014 1475:ISSN 1428:2017 1399:2017 1356:ISSN 1299:ISSN 1039:gold 979:EROI 347:Dust 191:The 165:and 3214:at 3156:PMC 3140:doi 3082:hdl 3074:doi 3033:hdl 3025:doi 3013:671 2976:PMC 2968:doi 2868:doi 2829:doi 2788:PMC 2770:doi 2758:112 2723:doi 2668:PMC 2660:doi 2541:doi 2506:doi 2441:doi 2429:". 2406:hdl 2398:doi 2386:". 2357:doi 2275:doi 2187:doi 2144:doi 2014:doi 1972:doi 1929:doi 1887:doi 1860:doi 1825:doi 1813:130 1782:doi 1739:doi 1700:doi 1645:doi 1554:doi 1467:doi 1455:121 1346:hdl 1338:doi 1291:doi 1107:or 901:IEC 720:): 640:x I 629:x I 590:x I 246:net 76:kWh 4157:: 3187:. 3164:. 3154:. 3146:. 3138:. 3126:. 3122:. 3090:. 3080:. 3068:. 3064:. 3041:. 3031:. 3023:. 3011:. 3007:. 2984:. 2974:. 2964:22 2962:. 2958:. 2864:21 2862:. 2858:. 2835:. 2825:10 2823:. 2819:. 2796:. 2786:. 2778:. 2768:. 2756:. 2752:. 2729:. 2717:. 2713:. 2699:^ 2676:. 2666:. 2658:. 2646:. 2642:. 2616:. 2604:^ 2578:, 2547:, 2535:, 2512:. 2502:26 2500:. 2496:. 2484:^ 2437:47 2435:. 2404:. 2394:19 2392:. 2363:. 2353:12 2351:. 2334:18 2332:. 2328:. 2281:. 2271:16 2269:. 2229:^ 2193:. 2185:. 2173:. 2150:. 2138:. 2020:. 2010:91 2008:. 2004:. 1992:^ 1978:. 1970:. 1960:45 1958:. 1935:. 1927:. 1915:. 1911:. 1899:^ 1883:26 1881:. 1858:. 1848:54 1846:. 1823:. 1811:. 1788:. 1780:. 1770:25 1768:. 1745:. 1737:. 1727:13 1725:. 1698:. 1688:32 1686:. 1682:. 1659:. 1651:. 1643:. 1629:. 1625:. 1599:. 1576:. 1568:. 1560:. 1552:. 1540:. 1536:. 1473:. 1465:. 1453:. 1439:^ 1430:. 1419:. 1415:. 1388:. 1376:^ 1362:. 1354:. 1344:. 1336:. 1326:89 1324:. 1320:. 1297:. 1287:62 1285:. 1281:. 1269:^ 1037:, 877:(R 871:sh 717:SC 706:OC 681:FF 642:SC 638:OC 631:SC 627:OC 620:SC 613:OC 606:OC 599:SC 592:SC 588:OC 581:SC 574:OC 284:. 220:1- 132:OC 128:OC 120:OC 118:(V 114:, 102:, 98:, 59:. 3260:e 3253:t 3246:v 3224:. 3198:. 3172:. 3142:: 3134:: 3128:3 3098:. 3084:: 3076:: 3070:2 3049:. 3035:: 3027:: 3019:: 2992:. 2970:: 2943:. 2904:. 2870:: 2831:: 2804:. 2772:: 2764:: 2737:. 2725:: 2719:4 2684:. 2662:: 2654:: 2648:3 2627:. 2543:: 2520:. 2508:: 2469:. 2447:. 2443:: 2414:. 2408:: 2400:: 2371:. 2359:: 2313:. 2289:. 2277:: 2253:. 2223:. 2201:. 2189:: 2181:: 2175:2 2158:. 2146:: 2140:3 2123:. 2108:. 2086:. 2064:. 2028:. 2016:: 1986:. 1974:: 1966:: 1943:. 1931:: 1923:: 1917:8 1893:. 1889:: 1866:. 1862:: 1854:: 1831:. 1827:: 1819:: 1796:. 1784:: 1776:: 1753:. 1741:: 1733:: 1702:: 1694:: 1667:. 1647:: 1637:: 1631:6 1610:. 1584:. 1556:: 1548:: 1542:5 1503:. 1481:. 1469:: 1461:: 1401:. 1370:. 1348:: 1340:: 1332:: 1305:. 1293:: 1160:2 1156:3 1154:O 1152:2 1144:3 1142:O 1140:2 1136:2 1132:3 1130:O 1128:2 879:s 847:. 839:C 836:S 832:I 823:C 820:O 816:V 810:G 802:c 798:A 785:= 777:C 774:S 770:I 761:C 758:O 754:V 747:m 743:P 737:= 734:F 731:F 715:I 713:( 704:V 702:( 695:m 693:P 691:( 679:( 636:V 625:V 618:I 611:V 604:V 597:I 586:V 579:I 572:V 568:V 549:l 546:l 543:e 540:c 536:T 513:C 510:T 507:S 503:P 482:) 477:C 474:T 471:S 467:T 458:l 455:l 452:e 449:c 445:T 441:( 435:T 432:d 427:P 424:d 418:+ 413:C 410:T 407:S 403:P 399:= 396:) 393:T 390:( 387:P 231:s 229:T 227:/ 224:c 222:T 215:c 213:T 208:s 206:T 200:. 44:) 20:)

Index

Solar cell efficiency

solar cell
National Renewable Energy Laboratory
photovoltaics
solar cell
photovoltaic system
insolation
kWh

electron hole pairs
reflectance
thermodynamic efficiency
charge carrier separation
conduction
quantum efficiency
open-circuit voltage
§ Fill factor
multi-junction
concentrator
National Renewable Energy Laboratory (NREL)
energy conversion efficiency
William Shockley
Hans Queisser
Shockley–Queisser limit
Thermodynamic efficiency limit

Shockley–Queisser limit
multijunction solar cells
Carnot heat engine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑