Knowledge (XXG)

Sonication

Source 📝

274: 186: 282:
scale to prove feasibility and establish some of the required ultrasonic exposure parameters. After this phase is complete, the process is transferred to a pilot (bench) scale for flow-through pre-production optimization and then to an industrial scale for continuous production. During these scale-up steps, it is essential to make sure that all local exposure conditions (ultrasonic amplitude,
38: 286:
intensity, time spent in the active cavitation zone, etc.) stay the same. If this condition is met, the quality of the final product remains at the optimized level, while the productivity is increased by a predictable "scale-up factor". The productivity increase results from the fact that laboratory,
281:
Substantial intensity of ultrasound and high ultrasonic vibration amplitudes are required for many processing applications, such as nano-crystallization, nano-emulsification, deagglomeration, extraction, cell disruption, as well as many others. Commonly, a process is first tested on a laboratory
842:
A.S. Peshkovsky, S.L. Peshkovsky "Industrial-scale processing of liquids by high-intensity acoustic cavitation - the underlying theory and ultrasonic equipment design principles", In: Nowak F.M, ed., Sonochemistry: Theory, Reactions and Syntheses, and Applications, Hauppauge, NY: Nova Science
300:
result in direct scalability, since it may be (and frequently is) accompanied by a reduction in the ultrasonic amplitude and cavitation intensity. During direct scale-up, all processing conditions must be maintained, while the power rating of the equipment is increased in order to enable the
211:
Sonication is used in food industry as well. Main applications are for dispersion to save expensive emulgators (mayonnaise) or to speed up filtration processes (vegetable oil etc.). Experiments with sonication for artificial ageing of liquors and other alcoholic beverages were conducted.
141:, polymer and epoxy processing, adhesive thinning, and many other processes. It is applied in pharmaceutical, cosmetic, water, food, ink, paint, coating, wood treatment, metalworking, nanocomposite, pesticide, fuel, wood product and many other industries. 109:. The chemical effects of ultrasound do not come from a direct interaction with molecular species. Studies have shown that no direct coupling of the acoustic field with chemical species on a molecular level can account for sonochemistry or 862:
Parvareh, A., Mohammadifar, A., Keyhani, M. and Yazdanpanah, R. (2015). A statistical study on thermal side effects of ultrasonic mixing in a gas-liquid system. In: The 15 th Iranian National Congress of Chemical Engineering (IChEC 2015).
852:
A.S. Peshkovsky, S.L. Peshkovsky "Acoustic Cavitation Theory and Equipment Design Principles for Industrial Applications of High-Intensity Ultrasound", Book Series: Physics Research and Technology, Hauppauge, NY: Nova Science Publishers;
175:(SUVs) can be made by sonication of a dispersion of large multilamellar vesicles (LMVs). Sonication is also used to fragment molecules of DNA, in which the DNA subjected to brief periods of sonication is sheared into smaller fragments. 181:
Sonication can also be used to initiate crystallisation processes and even control polymorphic crystallisations. It is used to intervene in anti-solvent precipitations (crystallisation) to aid mixing and isolate small crystals.
295:
zones and, therefore, to process more material per unit of time. This is called "direct scalability". It is important to point out that increasing the power capacity of the ultrasonic processor alone does
301:
operation of a larger ultrasonic horn. Finding the optimum operation condition for this equipment is a challenge for process engineers and needs deep knowledge about side effects of ultrasonic processors.
273: 345:
Garcia-Vaquero, M.; Rajauria, G.; O'Doherty, J.V.; Sweeney, T. (2017-09-01). "Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification".
113:. Instead, in sonochemistry the sound waves migrate through a medium, inducing pressure variations and cavitations that grow and collapse, transforming the sound waves into mechanical energy. 713: 133:
and wax emulsions, as well as for wastewater purification, degassing, extraction of seaweed polysaccharides and plant oil, extraction of anthocyanins and antioxidants, production of
178:
Sonication is commonly used in nanotechnology for evenly dispersing nanoparticles in liquids. Additionally, it is used to break up aggregates of micron-sized colloidal particles.
743: 215:
Soil samples are often subjected to ultrasound in order to break up soil aggregates; this allows the study of the different constituents of soil aggregates (especially
105:
Sonication has numerous effects, both chemical and physical. The scientific field concerned with understanding the effect of sonic waves on chemical systems is called
712:
Catherin Vaska, Susan; Muralakar, Pavankumar; H.S, Arunkumar; D, Manoj; Nadiger, Seemantini; D, Jeevitha; Chimmalagi, Umesh; T V, Vinay; M, Nagaraju (2023-07-04).
144:
Sonication can be used to speed dissolution, by breaking intermolecular interactions. It is especially useful when it is not possible to stir the sample, as with
200:—loosening particles adhering to surfaces. In addition to laboratory science applications, sonicating baths have applications including cleaning objects such as 557:
Golmohamadi, Amir (September 2013). "Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree".
530:
Peshkovsky, A. S.; Peshkovsky, S. L.; Bystryak, S. (2013). "Scalable high-power ultrasonic technology for the production of translucent nanoemulsions".
148:. It may also be used to provide the energy for certain chemical reactions to proceed. Sonication can be used to remove dissolved gases from liquids ( 52:
is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants,
163:
In biological applications, sonication may be sufficient to disrupt or deactivate a biological material. For example, sonication is often used to
901: 808:
Peshkovsky, S. L.; Peshkovsky, A. S. (2007). "Matching a transducer to water at cavitation: Acoustic horn design principles".
891: 484:
Suslick, K. S.; Flannigan, D. J. (2008). "Inside a Collapsing Bubble, Sonoluminescence and Conditions during Cavitation".
190: 90: 42: 185: 714:"CURRENT TRENDS IN PRODUCTION AND PROCESSING OF FISH OILS & ITS CHEMICAL ANALYTICAL TECHNIQUES: AN OVERVIEW" 593: 669:
Gensel, P.G.; Johnson, N.G.; Strother, P.K. (1990). "Early Land Plant Debris (Hooker's" Waifs and Strays"?)".
407: 896: 233:
or an ultrasonic probe system is used for extraction. For instance, this technique was suggested to remove
737: 678: 493: 442: 157: 886: 315: 216: 197: 86: 694: 613: 466: 388: 320: 60:
frequencies (> 20 kHz) are usually used, leading to the process also being known as
825: 790: 633:"How does sonication affect the mineral and organic constituents of soil aggregates?-A review" 574: 509: 505: 458: 380: 372: 223: 864: 817: 780: 770: 725: 686: 644: 605: 592:
Deora, N. S.; Misra, N. N.; Deswal, A.; Mishra, H. N.; Cullen, P. J.; Tiwari, B. K. (2013).
566: 539: 501: 450: 362: 354: 110: 77: 31: 759:"Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.)" 288: 230: 164: 138: 94: 287:
bench and industrial-scale ultrasonic processor systems incorporate progressively larger
682: 497: 446: 785: 758: 30:
This article is about the laboratory procedure. For the bee pollination procedure, see
757:
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid (2013-03-12).
880: 632: 470: 250: 152:) by sonicating the liquid while it is under a vacuum. This is an alternative to the 106: 729: 617: 392: 821: 570: 168: 122: 454: 358: 310: 609: 543: 292: 283: 262: 234: 201: 57: 53: 376: 258: 153: 149: 868: 829: 794: 648: 578: 513: 462: 384: 775: 172: 145: 130: 126: 17: 698: 254: 242: 238: 205: 134: 367: 37: 690: 277:
Schematic of bench and industrial-scale ultrasonic liquid processors
272: 265:
is the basis for the operation of ultrasound-assisted extraction.
184: 36: 246: 594:"Ultrasound for Improved Crystallisation in Food Processing" 532:
Chemical Engineering and Processing: Process Intensification
291:, able to generate progressively larger high-intensity 253:
powder. The outcomes differ for every raw material and
219:) without subjecting them to harsh chemical treatment. 631:
Kaiser, Michael; Asefaw Berhe, Asmeret (August 2014).
167:
and release cellular contents. This process is called
525: 523: 71:In the laboratory, it is usually applied using an 742:: CS1 maint: DOI inactive as of September 2024 ( 257:utilized and the other extraction techniques. 121:Sonication can be used for the production of 8: 763:International Journal of Molecular Sciences 637:Journal of Plant Nutrition and Soil Science 189:Sonication machines for record cleaning at 784: 774: 506:10.1146/annurev.physchem.59.032607.093739 366: 97:more uniformly and strengthen the paper. 433:Suslick, K. S. (1990). "Sonochemistry". 332: 735: 7: 340: 338: 336: 196:Sonication is the mechanism used in 222:Sonication is also used to extract 25: 822:10.1016/j.ultsonch.2006.07.003 571:10.1016/j.ultsonch.2013.01.020 137:, crude oil desulphurization, 1: 730:10.48047/ecb/2023.12.si5a.049 455:10.1126/science.247.4949.1439 359:10.1016/j.foodres.2016.11.016 191:Swiss National Sound Archives 43:Weizmann Institute of Science 414:. Royal Society of Chemistry 347:Food Research International 27:Application of sound energy 918: 718:European Chemical Bulletin 173:Small unilamellar vesicles 81:, colloquially known as a 29: 810:Ultrasonics Sonochemistry 610:10.1007/s12393-012-9061-0 559:Ultrasonics Sonochemistry 544:10.1016/j.cep.2013.02.010 412:Chemical Methods Ontology 598:Food Engineering Reviews 902:Medical ultrasonography 869:10.13140/2.1.4913.9524 732:(inactive 2024-09-12). 649:10.1002/jpln.201300339 278: 193: 165:disrupt cell membranes 46: 892:Laboratory techniques 486:Annu. Rev. Phys. Chem 276: 188: 40: 776:10.3390/ijms14035750 683:1990Palai...5..520G 498:2008ARPC...59..659S 447:1990Sci...247.1439S 441:(4949): 1439–1445. 353:(Pt 3): 1011–1020. 316:Ultrasonic cleaning 217:soil organic matter 198:ultrasonic cleaning 41:A sonicator at the 321:Kenneth S. Suslick 279: 243:phenolic compounds 194: 47: 843:Publishers; 2010. 408:"Ultrasonication" 406:Colin Batchelor. 45:during sonication 16:(Redirected from 909: 871: 860: 854: 850: 844: 840: 834: 833: 805: 799: 798: 788: 778: 769:(3): 5750–5764. 754: 748: 747: 741: 733: 724:(5): 1705-1725. 709: 703: 702: 666: 660: 659: 657: 655: 628: 622: 621: 589: 583: 582: 554: 548: 547: 527: 518: 517: 481: 475: 474: 430: 424: 423: 421: 419: 403: 397: 396: 370: 342: 289:ultrasonic horns 154:freeze-pump-thaw 129:, nanocrystals, 111:sonoluminescence 95:cellulose fibres 78:ultrasonic probe 66:ultra-sonication 62:ultrasonication 32:buzz pollination 21: 917: 916: 912: 911: 910: 908: 907: 906: 877: 876: 875: 874: 861: 857: 851: 847: 841: 837: 807: 806: 802: 756: 755: 751: 734: 711: 710: 706: 691:10.2307/3514860 668: 667: 663: 653: 651: 630: 629: 625: 591: 590: 586: 556: 555: 551: 529: 528: 521: 483: 482: 478: 432: 431: 427: 417: 415: 405: 404: 400: 344: 343: 334: 329: 307: 271: 231:ultrasonic bath 139:cell disruption 119: 103: 93:can distribute 91:ultrasonic foil 73:ultrasonic bath 35: 28: 23: 22: 15: 12: 11: 5: 915: 913: 905: 904: 899: 897:Fluid dynamics 894: 889: 879: 878: 873: 872: 855: 845: 835: 816:(3): 314–322. 800: 749: 704: 677:(6): 520–547. 661: 643:(4): 479–495. 623: 584: 565:(5): 1316–23. 549: 519: 476: 425: 398: 331: 330: 328: 325: 324: 323: 318: 313: 306: 303: 270: 267: 261:or ultrasonic 118: 115: 102: 99: 56:and seaweeds. 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 914: 903: 900: 898: 895: 893: 890: 888: 885: 884: 882: 870: 866: 859: 856: 849: 846: 839: 836: 831: 827: 823: 819: 815: 811: 804: 801: 796: 792: 787: 782: 777: 772: 768: 764: 760: 753: 750: 745: 739: 731: 727: 723: 719: 715: 708: 705: 700: 696: 692: 688: 684: 680: 676: 672: 665: 662: 650: 646: 642: 638: 634: 627: 624: 619: 615: 611: 607: 603: 599: 595: 588: 585: 580: 576: 572: 568: 564: 560: 553: 550: 545: 541: 537: 533: 526: 524: 520: 515: 511: 507: 503: 499: 495: 491: 487: 480: 477: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 429: 426: 413: 409: 402: 399: 394: 390: 386: 382: 378: 374: 369: 364: 360: 356: 352: 348: 341: 339: 337: 333: 326: 322: 319: 317: 314: 312: 309: 308: 304: 302: 299: 294: 290: 285: 275: 268: 266: 264: 260: 256: 252: 251:coconut shell 248: 244: 240: 236: 232: 227: 225: 220: 218: 213: 209: 207: 203: 199: 192: 187: 183: 179: 176: 174: 170: 166: 161: 159: 155: 151: 147: 142: 140: 136: 132: 128: 127:nanoemulsions 124: 123:nanoparticles 116: 114: 112: 108: 107:sonochemistry 100: 98: 96: 92: 88: 87:paper machine 84: 80: 79: 74: 69: 67: 63: 59: 55: 51: 44: 39: 33: 19: 858: 848: 838: 813: 809: 803: 766: 762: 752: 738:cite journal 721: 717: 707: 674: 670: 664: 652:. Retrieved 640: 636: 626: 604:(1): 36–44. 601: 597: 587: 562: 558: 552: 535: 531: 489: 485: 479: 438: 434: 428: 416:. Retrieved 411: 401: 350: 346: 297: 280: 228: 224:microfossils 221: 214: 210: 195: 180: 177: 169:sonoporation 162: 143: 120: 117:Applications 104: 82: 76: 72: 70: 65: 61: 49: 48: 654:18 February 492:: 659–683. 311:Ultrasonics 235:isoflavones 226:from rock. 887:Ultrasound 881:Categories 368:10197/8191 327:References 293:cavitation 284:cavitation 263:cavitation 247:wheat bran 202:spectacles 125:, such as 58:Ultrasonic 54:microalgae 50:Sonication 538:: 77–82. 471:220099341 377:0963-9969 269:Equipment 160:methods. 150:degassing 146:NMR tubes 131:liposomes 83:sonicator 18:Sonicator 830:16905351 795:23481637 618:55520937 579:23507361 514:18393682 463:17791211 418:17 April 393:10531419 385:28865611 305:See also 259:Acoustic 239:soybeans 158:sparging 135:biofuels 786:3634473 699:3514860 679:Bibcode 671:PALAIOS 494:Bibcode 443:Bibcode 435:Science 255:solvent 206:jewelry 101:Effects 85:. In a 828:  793:  783:  697:  616:  577:  512:  469:  461:  391:  383:  375:  75:or an 853:2010. 695:JSTOR 614:S2CID 467:S2CID 389:S2CID 245:from 237:from 89:, an 826:PMID 791:PMID 744:link 656:2016 575:PMID 510:PMID 459:PMID 420:2023 381:PMID 373:ISSN 249:and 241:and 204:and 156:and 865:doi 818:doi 781:PMC 771:doi 726:doi 687:doi 645:doi 641:177 606:doi 567:doi 540:doi 502:doi 451:doi 439:247 363:hdl 355:doi 298:not 229:An 64:or 883:: 824:. 814:14 812:. 789:. 779:. 767:14 765:. 761:. 740:}} 736:{{ 722:12 720:. 716:. 693:. 685:. 673:. 639:. 635:. 612:. 600:. 596:. 573:. 563:20 561:. 536:69 534:. 522:^ 508:. 500:. 490:59 488:. 465:. 457:. 449:. 437:. 410:. 387:. 379:. 371:. 361:. 351:99 349:. 335:^ 208:. 171:. 68:. 867:: 832:. 820:: 797:. 773:: 746:) 728:: 701:. 689:: 681:: 675:5 658:. 647:: 620:. 608:: 602:5 581:. 569:: 546:. 542:: 516:. 504:: 496:: 473:. 453:: 445:: 422:. 395:. 365:: 357:: 34:. 20:)

Index

Sonicator
buzz pollination

Weizmann Institute of Science
microalgae
Ultrasonic
ultrasonic probe
paper machine
ultrasonic foil
cellulose fibres
sonochemistry
sonoluminescence
nanoparticles
nanoemulsions
liposomes
biofuels
cell disruption
NMR tubes
degassing
freeze-pump-thaw
sparging
disrupt cell membranes
sonoporation
Small unilamellar vesicles

Swiss National Sound Archives
ultrasonic cleaning
spectacles
jewelry
soil organic matter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.