Knowledge (XXG)

Source unfolding

Source đź“ť

100:
on its surface, cutting the polyhedron on the cut locus will produce a result that can be unfolded into a flat plane, producing the source unfolding. The resulting net may, however, cut across some of the faces of the polyhedron rather than only cutting along its edges.
335: 104:
The source unfolding can also be continuously transformed from the polyhedron to its flat net, keeping flat the parts of the net that do not lie along edges of the polyhedron, as a
130: 98: 78: 54: 328: 321: 185: 570: 280: 591: 491: 743: 632: 702: 398: 216: 171: 429: 577: 344: 175: 627: 368: 662: 598: 221: 504: 388: 230: 17: 373: 548: 378: 358: 235: 515: 496: 109: 105: 738: 677: 500: 475: 256: 733: 697: 584: 455: 181: 25: 657: 622: 553: 510: 393: 289: 278:(2008), "Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings", 240: 212: 29: 303: 252: 136:, a different method for producing nets that does not always produce star-shaped polygons. 637: 465: 450: 299: 248: 140: 424: 707: 682: 672: 667: 652: 647: 530: 363: 204: 133: 115: 83: 63: 39: 727: 460: 712: 642: 414: 200: 167: 143:, cutting the surface of the polytope into a net that can be unfolded into a flat 260: 692: 383: 313: 264:. Announced at the Japan Conference on Computational Geometry and Graphs, 2009. 687: 520: 445: 294: 244: 144: 112:, with all of its points visible by straight line segments from the image of 605: 33: 108:
of the polyhedron. The unfolded shape of the source unfolding is always a
419: 275: 57: 208: 139:
An analogous unfolding method can be applied to any higher-dimensional
36:
of a point on the surface of the polyhedron. The cut locus of a point
470: 56:
consists of all points on the surface that have two or more shortest
317: 80:. For every convex polyhedron, and every choice of the point 118: 86: 66: 42: 615: 562: 541: 484: 438: 407: 351: 219:(2011), "Continuous blooming of convex polyhedra", 124: 92: 72: 48: 180:, Cambridge University Press, pp. 359–362, 329: 32:obtained by cutting the polyhedron along the 8: 336: 322: 314: 293: 234: 117: 85: 65: 41: 156: 281:Discrete & Computational Geometry 162: 160: 7: 571:Geometric Exercises in Paper Folding 592:A History of Folding in Mathematics 174:(2007), "24.1.1 Source unfolding", 14: 492:Alexandrov's uniqueness theorem 1: 430:Regular paperfolding sequence 132:; this is in contrast to the 578:Geometric Folding Algorithms 345:Mathematics of paper folding 177:Geometric Folding Algorithms 760: 628:Margherita Piazzola Beloch 399:Yoshizawa–Randlett system 295:10.1007/s00454-008-9052-3 245:10.1007/s00373-011-1024-3 599:Origami Polyhedra Design 222:Graphs and Combinatorics 744:Computational geometry 389:Napkin folding problem 126: 94: 74: 50: 18:computational geometry 127: 95: 75: 51: 549:Fold-and-cut theorem 505:Steffen's polyhedron 369:Huzita–Hatori axioms 359:Big-little-big lemma 307:. Announced in 2003. 116: 84: 64: 40: 497:Flexible polyhedron 110:star-shaped polygon 678:Toshikazu Kawasaki 501:Bricard octahedron 476:Yoshimura buckling 374:Kawasaki's theorem 205:Demaine, Martin L. 122: 90: 70: 46: 721: 720: 585:Geometric Origami 456:Paper bag problem 379:Maekawa's theorem 213:Langerman, Stefan 187:978-0-521-71522-5 125:{\displaystyle p} 93:{\displaystyle p} 73:{\displaystyle p} 49:{\displaystyle p} 26:convex polyhedron 751: 658:David A. Huffman 623:Roger C. Alperin 526:Source unfolding 394:Pureland origami 338: 331: 324: 315: 308: 306: 297: 288:(1–3): 339–388, 271: 265: 263: 238: 217:O'Rourke, Joseph 211:; Iacono, John; 201:Demaine, Erik D. 197: 191: 190: 172:O'Rourke, Joseph 164: 131: 129: 128: 123: 99: 97: 96: 91: 79: 77: 76: 71: 55: 53: 52: 47: 22:source unfolding 759: 758: 754: 753: 752: 750: 749: 748: 724: 723: 722: 717: 703:Joseph O'Rourke 638:Robert Connelly 611: 558: 537: 480: 466:Schwarz lantern 451:Modular origami 434: 403: 347: 342: 312: 311: 273: 272: 268: 236:10.1.1.150.9715 199: 198: 194: 188: 166: 165: 158: 153: 141:convex polytope 114: 113: 82: 81: 62: 61: 38: 37: 12: 11: 5: 757: 755: 747: 746: 741: 736: 726: 725: 719: 718: 716: 715: 710: 708:Tomohiro Tachi 705: 700: 695: 690: 685: 683:Robert J. Lang 680: 675: 673:Humiaki Huzita 670: 665: 660: 655: 653:Rona Gurkewitz 650: 648:Martin Demaine 645: 640: 635: 630: 625: 619: 617: 613: 612: 610: 609: 602: 595: 588: 581: 574: 566: 564: 560: 559: 557: 556: 551: 545: 543: 539: 538: 536: 535: 534: 533: 531:Star unfolding 528: 523: 518: 508: 494: 488: 486: 482: 481: 479: 478: 473: 468: 463: 458: 453: 448: 442: 440: 436: 435: 433: 432: 427: 422: 417: 411: 409: 405: 404: 402: 401: 396: 391: 386: 381: 376: 371: 366: 364:Crease pattern 361: 355: 353: 349: 348: 343: 341: 340: 333: 326: 318: 310: 309: 274:Miller, Ezra; 266: 229:(3): 363–376, 192: 186: 155: 154: 152: 149: 134:star unfolding 121: 89: 69: 45: 13: 10: 9: 6: 4: 3: 2: 756: 745: 742: 740: 737: 735: 732: 731: 729: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 620: 618: 614: 608: 607: 603: 601: 600: 596: 594: 593: 589: 587: 586: 582: 580: 579: 575: 573: 572: 568: 567: 565: 561: 555: 554:Lill's method 552: 550: 547: 546: 544: 542:Miscellaneous 540: 532: 529: 527: 524: 522: 519: 517: 514: 513: 512: 509: 506: 502: 498: 495: 493: 490: 489: 487: 483: 477: 474: 472: 469: 467: 464: 462: 461:Rigid origami 459: 457: 454: 452: 449: 447: 444: 443: 441: 439:3d structures 437: 431: 428: 426: 423: 421: 418: 416: 413: 412: 410: 408:Strip folding 406: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 360: 357: 356: 354: 350: 346: 339: 334: 332: 327: 325: 320: 319: 316: 305: 301: 296: 291: 287: 283: 282: 277: 270: 267: 262: 258: 254: 250: 246: 242: 237: 232: 228: 224: 223: 218: 214: 210: 206: 202: 196: 193: 189: 183: 179: 178: 173: 169: 168:Demaine, Erik 163: 161: 157: 150: 148: 146: 142: 137: 135: 119: 111: 107: 102: 87: 67: 59: 43: 35: 31: 27: 23: 19: 713:Eve Torrence 643:Erik Demaine 604: 597: 590: 583: 576: 569: 563:Publications 525: 425:Möbius strip 415:Dragon curve 352:Flat folding 285: 279: 269: 226: 220: 195: 176: 138: 103: 21: 15: 698:KĹŤryĹŤ Miura 693:Jun Maekawa 668:KĂ´di Husimi 384:Map folding 728:Categories 688:Anna Lubiw 521:Common net 446:Miura fold 151:References 145:hyperplane 739:Polyhedra 606:Origamics 485:Polyhedra 276:Pak, Igor 231:CiteSeerX 58:geodesics 34:cut locus 734:Polygons 663:Tom Hull 633:Yan Chen 516:Blooming 420:Flexagon 209:Hart, Vi 106:blooming 304:2383765 253:2787423 616:People 471:Sonobe 302:  259:  251:  233:  184:  20:, the 261:82408 257:S2CID 28:is a 24:of a 182:ISBN 511:Net 290:doi 241:doi 60:to 30:net 16:In 730:: 503:, 300:MR 298:, 286:39 284:, 255:, 249:MR 247:, 239:, 227:27 225:, 215:; 207:; 203:; 170:; 159:^ 147:. 507:) 499:( 337:e 330:t 323:v 292:: 243:: 120:p 88:p 68:p 44:p

Index

computational geometry
convex polyhedron
net
cut locus
geodesics
blooming
star-shaped polygon
star unfolding
convex polytope
hyperplane


Demaine, Erik
O'Rourke, Joseph
Geometric Folding Algorithms
ISBN
978-0-521-71522-5
Demaine, Erik D.
Demaine, Martin L.
Hart, Vi
Langerman, Stefan
O'Rourke, Joseph
Graphs and Combinatorics
CiteSeerX
10.1.1.150.9715
doi
10.1007/s00373-011-1024-3
MR
2787423
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑